协同网络创新平台服务,让科研更成功

Probing Far-Infrared Surface Phonon Polaritons in Semiconductor Nanostructures at Nanoscale

Abstract: Phonon polaritons hold potential prospects of nanophotonic applications at the mid- and far-infrared wavelengths. However, their experimental investigation in the far-infrared range has long been a technical challenge due to the lack of suitable light sources and detectors. To obviate these difficulties, here we use an electron probe with sub-10 meV energy resolution and subnanometer spatial resolution to study far-infrared surface phonon polaritons (similar to 50-70 meV) in ZnO nanostructures. We observe ultraslow propagation and interference fringes of propagating surface phonon polaritons and obtain their dispersion relation through measurements in the coordinate space. By mapping localized modes in nanowires and flakes, we reveal their localized nature and investigate geometry and size effects. Associated with simulation, we show that surface phonon polariton behaviors can be well described by the local continuum dielectric model. Our work paves the way for spatial-resolved investigation of surface phonon polaritons by electron probes and forwards polaritonics in the far-infrared range.