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Abstract: In this study, the authors develop a distributed space–time coding scheme for a two-way relay network that contains
multiple distributed relay nodes. Both the time and frequency asynchronous nature of the distributed system are considered in the
design. Distributed convolutional coding is employed to handle multiple timing errors in the networks. The authors prove that
under perfect frequency synchronisation, the proposed scheme can achieve both spatial and multipath diversity by linear
receivers, such as linear zero-forcing or minimum mean-square-error receiver, thus providing a low decoding complexity. The
authors further find that frequency asynchronism has little effect on the designed scheme and show that the diversity can still
be achieved almost surely (in the measured theoretic sense) under both time and frequency asynchronous scenarios. The
authors also provide numerical results to corroborate the proposed studies.
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1 Introduction

Two-way relay networks (TWRN) have recently attracted much
attention [1–3] because of their enhanced spectral efficiency
as compared with the conventional one-way relay network
(OWRN) [4]. In a typical TWRN consisting of a single user
pair and a single relay node, the signals are sent
simultaneously from both users to the relay node and are then
retransmitted to the two users after necessary processing.
After removing the self-interference components, each user
can obtain the expected information from the other user.
Consequently, the overall communication rate of the two
users in TWRN is approximately twice that achieved in
OWRN, making TWRN particularly attractive to bidirectional
systems [5, 6].
As an efficient way to further improve the bandwidth

efficiency of the TWRN, analogue network coding has drawn
a lot of interest. Based on the assumption of perfect time and
frequency synchronisation, the distributed linear dispersion
code and a family of relaying protocols were developed in
[7]. However, a cooperative communication system is both
time and frequency asynchronous in nature since the multiple
transmissions come from distributed users or relay nodes.
Intensive studies on achieving cooperative diversity with

time or frequency asynchronism have been made for
conventional OWRN [8–13]. However, on the side of
TWRN, few works have been reported and most of them
considered only time asynchronism. For example, Li et al.
[14] generalised the Alamouti-like code into an orthogonal
frequency-division multiplexing aided TWRN, where cyclic
prefix (CP) was exploited to combat timing errors. The
unique property of this work was that the fast symbol-wise
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maximum likelihood (ML) detection can be applied at the
destination to achieve diversity. In [15], the distributed
convolutional code was exploited to deal with multiple
timing errors. The pairwise error probability (PEP) was also
computed, from which it demonstrated that both cooperative
and multipath diversity can be achieved by the optimal
receiver. Another similar work has been proposed in [16],
which proved that cooperative diversity can be achieved
using only linear receivers, such as linear zero-forcing (ZF),
or linear minimum mean-square-error (MMSE) receivers.
However, Wang et al. [16] assumed a flat fading channel
only. Moreover, all these schemes [14–16] assumed perfect
frequency synchronisation.
More recently, another space-frequency convolutional coding

scheme was designed in [17] for both time and frequency
asynchronous amplify-and-forward relay networks, which
exploited an extended CP as well as the signal space diversity
technique. Although the scheme [17] can be straightforwardly
extended to time–frequency asynchronous TWRN, it relies on
high-complexity decoding to achieve diversity gain.
In this paper, we propose a distributed space–time coding

scheme for TWRN with multiple distributed relay nodes.
Both time and frequency asynchronous nature are
considered in our design. Convolutional coding is employed
to deal with multiple timing errors. The relay nodes
implement only simple operations, such as convolution and
amplification, and they do not ask for any information
about the channels and frequency offsets. The main
contributions of this paper are twofold.
First, different from [16], we consider the more general

frequency selective fading channels, and we also prove that
under perfect frequency synchronisation, the proposed
137
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scheme can achieve both spatial and multipath diversity by
the linear receivers. It is worth mentioning that [15]
adopted the same convolutional coding and proved that
diversity can be achieved by the optimal ML receiver.
However, in this paper we prove that diversity can be
obtained by the linear receivers.
Second, different from both [15, 16] which assumed

perfect frequency synchronisation, we consider the
frequency offsets among the distributed nodes in the
network and find that frequency asynchronism has little
effect on our designed scheme. We further show that
diversity can still be achieved by the linear receivers almost
surely (in the measured theoretical sense) under both time
and frequency asynchronous scenarios. Thus, as compared
with the existing competitor in [17] which relies on high
complexity ML decoding, our proposed scheme can provide
a much lower decoding complexity.
The rest of this paper is organised as follows. We present a

system model in Section 2. The coding design under frequency
synchronous and asynchronous scenarios is developed in
Sections 3 and 4, respectively. Simulation results are given in
Section 5 and conclusions are drawn in Section 6.

Notations: Superscripts (·)*, (·)T, (·)H, [·]† and E{·} represent
conjugate, transpose, Hermitian, pseudo inverse and
expectation, respectively; j =

����
−1

√
is the imaginary unit;

||X||F denotes the Frobenius norm of X, and diag{·} is a
diagonal matrix with main diagonal {·}; IN denotes the N ×
N identity matrix and 0M×N denotes the M × N matrix with
all entries being zero;⊗ denotes linear convolution operation.

2 System model

Consider a TWRN withM relay nodes Rm, m = 1, 2,…,M, and
two terminal nodes Ti, i = 1, 2, as shown in Fig. 1. Each node
is equipped with a single antenna and operates in a
half-duplex mode, that is, it cannot simultaneously transmit
and receive. Let the two terminals exchange information
with the assistance of the relays. Denote

hm = hm(0), hm(1), . . . , hm(Lh − 1)
[ ]

gm = gm(0), gm(1), . . . , gm(Lg − 1)
[ ]

as the channel responses between the relay Rm and two
sources T1, T2, respectively. We assume hm(l ) and gm(l )
are circularly complex Gaussian random variables with
variance 1/Lh and 1/Lg, respectively, such that the channel

Fig. 1 System model of TWRN, where the solid and dashed lines
represent transmission in the first and the second phase, respectively
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gains are normalised, that is, ‖hm‖2F = 1 and ‖gm‖2F = 1.
The channels are also assumed to be reciprocal in this
paper. Nonetheless, the proposed scheme can be
straightforwardly extended to more general situations.
Suppose terminal Ti, i = 1, 2, wishes to transmit the

N-length signals si = [si,1, si,2,…,si,N] to the other terminal
with average power PT. Denote the delay from Ti to Rm

as t(1)i,m in the first phase, and define their maximum as
t(1)i, max = max1≤m≤M t(1)i,m. For notational convenience, we
define the following two zero-padded channel vectors

hD1,m
= 0

1×t
(1)
1,m
, hTm, 0

1×(L(1)max−Lh−t
(1)
1,m)

[ ]T

gD1,m
= 0

1×t
(1)
2,m
, gTm, 0

1×(L(1)max−Lg−t
(1)
2,m)

[ ]T

where L(1)max = max (Lh + t(1)1, max, Lg + t(1)2, max). By
applying the two-way protocol, the signal received at relay
node Rm in the first phase can be expressed by a N1-length
vector

yRm =
���
PT

√
hD1,m

⊗ s1 +
���
PT

√
gD1,m

⊗ s2 + nRm (1)

where N1 = N + L(1)max − 1, and nRm is the corresponding
N1-length additive white Gaussian noise (AWGN) vector

with variance E nRmn
H
Rm

{ }
= s2

nIN1
.

In the second phase, the received signal yRm is linearly
convoluted, amplified and then broadcasted to the two
terminals simultaneously. For simplicity, we assume that
each relay node has equal power constraint PR. After the
convolution and amplifying process, the transmitted signal
at Rm becomes

xRm = a · tm ⊗ yRm (2)

where tm = [tm,0, tm,1,…,tm,Q−1]
T denotes the normalised

Q-length generator vector to be designed later. The vector
is normalised such that ‖tm‖2F = 1. Meanwhile, the
amplification factor is taken as

a =
���������������

PRN1

2NPT + N1s
2
n

√

to meet the average power constraint. A brief proof can be
found in Appendix 1.
Owing to the symmetry, we explain only the process at

T1. Denote the delay from Rm to Ti as t(2)i,m, and define
t(2)i, max = max1≤m≤M t(2)i,m. Then, the received signal at
terminal T1 can be expressed by an N2-length vector

zT1 =
∑M
m=1

hD2,m
⊗ xRm + nT1

=
∑M
m=1

ahD2,m
⊗ tm ⊗ yRm + nT1 (3)
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where

hD2,m
= 0

1×t
(2)
1,m
, hTm, 0

1× t
(2)
1,m−t

(2)
1,m

( )[ ]T
N2 = N1 + Lh + t(2)1, max + Q− 2

and nT1 is the corresponding N2-length AWGN vector with

variance E nT1n
H
T1

{ }
= s2

nIN2
.

Substituting (1) into (3), and cancelling backward
self-interference signal related to s1, we obtain

yT1 =
∑M
m=1

a
���
PT

√
hD2 ,m

⊗ tm ⊗ gD1,m
⊗ s2 + wT1

= a
���
PT

√
Hs2 + wT1

(4)

where

H = T (N )[he], he =
∑M
m=1

hD2,m
⊗ tm ⊗ gD1,m

wT1
= nT1 +

∑M
m=1

ahD2,m
⊗ tm ⊗ nRm

and T (K)[x] is a Toeplitz matrix in the following form

T (K)[x] =

x1 · · · 0

..

. . .
. ..

.

xP
. .
.

x1

..

. . .
. ..

.

0 · · · xP

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸���������︷︷���������︸
K columns

for any vector x = [x1, x2, . . . , xP]
T.

3 Distributed convolutional coding with
linear receiver

By defining

vm = hm ⊗ gm, L = Lg + Lh − 1

tD,m = 0
1× t

(1)
2,m+t

(2)
1,m

( ), tTm, 0
1×(L(1)max−Lg−t

(1)
2,m+t

(2)
1, max

−t
(2)
1,m

[ ]T
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we rewrite he as

he =
∑M
m=1

tD,m ⊗ vm =
∑M
m=1

T (L)[tD,m]vm = QDv (5)

where

QD = T (L)[tD,1], T (L)[tD,2], . . . , T (L)[tD,M ]
[ ]

v = vT1 , v
T
2 , . . . , v

T
M

[ ]T
The following lemma provides the condition that can
guarantee achievement of cooperative and multipath
diversity with a linear ZF or an MMSE receiver:

Lemma 1: For PAM, PSK and square QAM, ifΘΔ has a full
column rank under any delay profile, then the proposed scheme
can achieve both cooperative and multipath diversity M ·
min{Lg, Lh} with a linear ZF or an MMSE receiver.

Proof: See Appendix 2.

Lemma 1 tells us that we need to carefully design the
convolutional vectors tm such that the matrix ΘΔ always has
full column rank under any delay profile. This is related to
the shift-full-rank (SFR) matrices [10, 11]. Note that, in
previous works [11], the construction criteria of SFR
matrices under multipath fading have been studied. Thus,
we directly adopt the designs in [11]. We provide some
design examples in Table 1.

Remark:Note that [15] considered the optimal ML receiver
and arrived at the same diversity order M · min{Lg, Lh} via
PEP analysis. However, we prove that diversity can be
achieved by the linear receivers, which is one of the
contributions in this work.

4 Frequency asynchronous cooperation

We denote the oscillator frequencies of the two terminals and
relays by fTi , i = 1, 2 and fRm , m = 1, 2,…,M, respectively.
Then, in the first phase, the received signal at the relay
node Rm becomes

y
Rm

=
���
PT

√
F(N1) fT1 − fRm

[ ]
hD1,m

⊗ s1

( )
+

���
PT

√
F(N1) fT2 − fRm

[ ]
gD1,m

⊗ s2

( )
+ nRm (6)

where

F(K)[f ] = diag 1, ej2pfTs , . . . , ej2p(K−1)fTs
{ }
Table 1 Convolutional vector examples

tTm

M = 2, L = 1
1��
2

√ [1, 1],
1��
2

√ [1, −1]

M = 3, L = 1
1��
3

√ [1, 1, 1],
1��
6

√ [1, −2, 1],
1��
2

√ [1, 0, −1]

M = 2, L = 3
1��
2

√ [1, 0, 0, 1],
1��
2

√ [1, 0, 0, −1]

M = 3, L = 3
1��
3

√ [1, 0, 0, 1, 0, 0, 1],
1��
6

√ [1, 0, 0, −2, 0, 0, 1],
1��
2

√ [1, 0, 0, 0, 0, 0, −1]
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denotes the diagonal matrix reflecting the phase rotation
introduced by frequency offsets, with Ts being the sampling
period.
In the second phase, each relay node conducts convolution

and amplification for the received signal y
Rm

and then
broadcasts. Terminal T1 receives

zT1 = a
∑M
m=1

fmF
(N2) fRm − fT1

[ ]
hD2 ,m

⊗ tm⊗ y
Rm

( )
+nT1 (7)

where fm = ej2pN1(fRm−fT1 )Ts stands for cumulative phase
rotation in the first phase. Substituting (6) into (7) and
cancelling the self-interference, terminal T1 obtains

y
T1
= a

���
PT

√ ∑M
m=1

fmF
(N2) fRm − fT1

[ ]
× hD2,m

⊗ tm⊗ F(N1) fT2 − fRm

[ ]
gD1 ,m

⊗ s2

( )( )( )
+wT1

(8)

where

wT1
= nT1 +a

∑M
m=1

fmF
(N2) fRm − fT1

[ ]
× hD2 ,m

⊗ tm⊗nRm

( )
(9)

Note that

hD2 ,m
⊗ tm⊗ F(N1)[fT2 − fRm ] gD1 ,m

⊗ s2

( )( )
=T (N1)[hD2 ,m

⊗ tm]F
(N1)[fT2 − fRm ] gD1,m

⊗ s2

( )
(10)

Then, according to Lemma 1 in [18], we obtain

T (N1) hD2,m
⊗ tm

[ ]
F(N1) fT2 − fRm

[ ]
=F(N2) fT2 − fRm

[ ]
T (N1) F(N3) fRm − fT2

[ ]
hD2 ,m

⊗ tm

( )[ ]
(11)

where N3 = Lh+ t(2)1,max+Q− 1 is the length of hD2,m
⊗ tm.

By substituting (10) and (11) into (8), we rewrite y
T1

as
follows

y
T1
= a

���
PT

√
F(N2) fT2 − fT1

[ ]

×
∑M
m=1

fm T (N1) F(N3) fRm−fT2

[ ]
hD2 ,m

⊗tm

( )[ ](

× gD1,m
⊗s2

( ))
+wT1

(12)

We then derive

F(N3) fRm − fT2

[ ]
hD2,m

⊗ tm

( )
= F(N3) fRm − fT2

[ ]
T Lh+t

(2)
1, max

( )
[tm]hD2,m

(13)

Again, using the converse transition of Lemma 1 in [18], there
140
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F(N3) fRm − fT2

[ ]
T Lh+t

(2)
1, max

( )
[tm]

= T Lh+t
(2)
1, max

( )
F(Q) fRm − fT2

[ ]
ztm

[ ]
F Lh+t

(2)
1, max

( )
fRm − fT2

[ ]
(14)

Substituting (14) into (13) yields

F(N3) fRm − fT2

[ ]
hD2,m

⊗ tm

( )
= F(Q) fRm − fT2

[ ]
tm

( )
⊗ F Lh+t

(2)
1, max

( )
[fRm − fT2 ]hD2,m

( )
(15)

By defining

hD2,m
= fmF

Lh+t
(2)
1, max

( )
fRm − fT2

[ ]
hD2 ,m

Equation (12) can be simplified to

y
T1

= a
���
PT

√
F(N2) fT2 − fT1

[ ]

×
∑M
m=1

F(Q) fRm − fT2

[ ]
tm

( )
⊗ hD2,m

⊗ gD1,m
⊗ s2

( )
+ wT1

(16)

Similarly, we define

he =
∑M
m=1

F(Q)[fRm − fT2 ]tm

( )
⊗ hD2 ,m

⊗ gD1,m

( )
H = T (N )[he]

and then (16) can be rewritten as

y
T1

= a
���
PT

√
F(N2) fT2 − fT1

[ ]
·Hs2 + wT1

(17)

which arrives at a similar format as (4). An important
observation is made here that the received signal model of
(17) is equivalent to the situation that signal s2 transmitted
by T2 directly arrives at T1 after experiencing channel
response he. There appears only one frequency offset fT2 −
fT1 left at terminal T1, which can be easily compensated.
By denoting

vm = fme
j2pt(2)1,m fRm−fT2

( )
Ts F(Lh) fRm − fT2

[ ]
hm

( )
⊗ gm

tD,m = 0
1× t

(1)
2,m+t

(2)
1,m

( ), tTmF
(Q) fRm − fT2

[ ]
,

[

× 0
1× L(1)max−Lg−t

(1)
2,m+t

(2)
1, max

−t
(2)
1,m

( )]T

we obtain

he = QDv (18)
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where

QD = T (L)[tD,1], T (L)[tD,2], . . . , T (L)[tD,M ]
[ ]

v = vT1 , v
T
2 , . . . , v

T
M

[ ]T
Since vm has the same statistical behaviour with vm, we can
directly apply Lemma 1 and draw the conclusion that a
diversity of M · min{Lg, Lh} can be achieved with linear
receivers, when QD has full-column rank under any delay
profile, that is, QD is an SFR matrix. Different from ΘΔ,
each submatrix of QD, that is, T (L)[tD,m] is affected by the
frequency offset between relay Rm and T2 individually.
Since the relay nodes are assumed to have no knowledge of
any frequency offset information between themselves and
the terminals, we provide the following lemma:

Lemma 2: If the convolutional vector tm is designed such that
ΘΔ always has a full column rank under any delay profile,
then the matrix QD will almost surely (in the measured
theoretical sense) have full column rank under frequency
asynchronism with any delay profile. □

Proof: See Appendix 3.

Lemma 2 tells us that, with frequency asynchronism, we can
still adopt the convolutional vectors that are originally
designed for the frequency synchronous scenarios. The
multiple frequency offsets will not affect diversity almost
surely (in the measured theoretical sense).

5 Simulations

In this section, we provide simulation results to examine our
studies. Each block contains N = 32 BPSK data symbols.
Unless otherwise stated, we let the terminal nodes adopt ZF
decoding, and assume that they have perfect knowledge of
the channels and frequency offsets. The convolutional
vectors are selected from Table 1 according to the number
of relay nodes and the value of L. Moreover, the
performance under both flat fading channel and frequency
selective fading channel with two paths, that is, Lg = 2 and
Lh = 2, are considered, which are referred to as ‘flat’ and
‘fre’, respectively. For each round of simulation, the
random delays t(1)i,m and t(2)i,m, m = 1, 2, …, M, i = 1, 2, are
uniformly selected from the set {0, 1, 2, 3}. The entries of
the channel vectors hm and gm follow complex Gaussian
distribution with variance 1/Lh and 1/Lg, respectively.
First, we consider that perfect frequency synchronisation is

achieved in the network. We denote P as the total average
power of the whole network and let a portion of β · P be
allocated to the two terminals and the rest (1 − β) · P is
assigned to M relays, that is, PT = β · P/2 and PR = (1 −
β)·P/M. In Fig. 2, we investigate the bit-error rate (BER)
performance under different power allocation schemes by
changing β from 0.1 to 0.9. We fix P/s2

n as 35 dB in this
example and consider both two-relay and three-relay
scenarios. The four curves in this figure suggest that there is
an optional range of β that can be selected without
considerable loss of performance among these scenarios, for
example, from 0.3 to 0.5 in this example. Without loss of
generality, we choose β = 0.5 in our following evaluations,
and define PT/s

2
n as the system signal-to-noise ratio (SNR).

Fig. 3 depicts the BER performance as a function of SNR
forM = 2 andM = 3 relay nodes. To demonstrate the achieved
IET Commun., 2013, Vol. 7, Iss. 2, pp. 137–145
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diversity of our scheme, we also include the performance of
standard 2 × 1 and 2 × 2 co-located multiple-in multiple-out
(MIMO) systems with Alamouti coding, whose diversity
order are two and four, respectively. It is seen apparently
that our relay scheme performs much worse than the
standard MIMO systems. This is because the signal
transmission in our scheme experiences two fading
processes, that is, from one terminal to the relay nodes and
then from the relay nodes to the other terminal. In addition,
our relay scheme also suffers from noise propagation from
the relay nodes to the terminal nodes. However, we see that
in the high SNR region, the curves of our scheme
corresponding to two relays under flat fading channels are
nearly parallel with the curve of 2 × 1 MIMO. We can also
observe the diversity improvement of our scheme under
frequency selective channels. These verify that our scheme
can achieve both spatial and multipath diversity, which
coincides with our analysis.
Next, we consider the frequency asynchronous scenarios.

The normalised frequency offsets between Rm and T2 and
between T1 and T2 are defined as jm = (fRm − fT2 )NTs and
jT = (fT1 − fT2 )NTs, respectively. For each round of

Fig. 3 BER performance of our scheme against SNR under both
flat and frequency selective fading channels with perfect frequency
synchronisation

Fig. 2 BER performance of our scheme with different power
allocation schemes under both flat and frequency selective channels
141
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simulation, we assume ξm and ξT are randomly generated from
−ξmax to ξmax. The BER performance of our scheme against
ξmax under different scenarios is shown in Fig. 4, where the
SNR is set as 25 dB. The results clearly demonstrate that
under both flat and frequency selective fading channels, the
existence of frequency asynchronism has little effect on the
BER performance of our scheme.
Then, we show the BER performance comparison against

SNR of our scheme between frequency synchronous and
asynchronous scenarios in Fig. 5, represented by the solid
and dashed curves, respectively. We set ξmax = 1 in the
frequency asynchronous scenarios. Clearly, for both the
two-relay and three-relay cases, the curves with frequency
asynchronism almost overlap with the corresponding ones
under perfect frequency synchronisation. This once again
verifies that our scheme works well and can achieve both
spatial and multipath diversity under the frequency
asynchronous scenarios.
In Fig. 6, we compare the BER performance of our scheme

under frequency asynchronous scenarios between ZF and
MMSE decoding. The performance of the space frequency
convolutional coding scheme proposed in [17] is also

Fig. 4 BER performance of our scheme against ξmax under both
flat and frequency selective fading channels (SNR = 25 dB)

Fig. 5 BER comparison of our scheme between frequency
synchronous and asynchronous scenarios, represented by the solid
and dashed curves, respectively
142
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included, referred to as ‘ConvSF’. In this example, we
consider two relays and frequency selective channels, and
assume ξmax = 1. The encoding size is set as four in ConvSF.
As expected, MMSE decoding can significantly improve the
BER performance of our scheme. It is also seen that, with
block-wise ML decoding, ConvSF also works well in both
the time and frequency asynchronous scenarios. It not only
nearly achieves spatial and multipath diversity, but also
obtains similar performance to our scheme with MMSE
decoding. However, as we have mentioned earlier, ConvSF
suffers from a substantial loss of both BER performance and
diversity when low-complexity ZF decoding is adopted.

6 Conclusions

In this paper, we proposed a distributed space–time coding
scheme for time–frequency asynchronous TWRN. It was
proved that, under time asynchronism or time–frequency
asynchronism, the proposed scheme could achieve both
cooperative and multipath diversity with linear receivers.
Numerical results were provided to verify our studies.
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9 Appendix 1

9.1 Amplification factor

The power of the received signal yRm at the first phase can be
expressed as 2NPT + N1s

2
n. Since the convolutional vector tm

is normalised, the power of the signal transmitted by each
relay node is given by a2(2NPT + N1s

2
n) = PRN1. Thereby,

we obtain

a =
���������������

PRN1

2NPT + N1s
2
n

√
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10 Appendix 2

10.1 Proof of Lemma 1

Before our proof, we cite the results from [19] in the
following properties.
Property 1: ([19]) If HHH is non-singular for any non-zero

he, then the diagonal elements of [HHH]−1 satisfy the
following inequality

[(HHH)−1]−1
ll ≥ c0‖he‖2F

for l = 1, 2,…,N, where c0 is a constant independent of he.
Property 2: ([19]) For any non-zero vector x, there exists

0 < CTmin≤CTmax≤ 1, and the matrix (T (K)[x])HT (K)[x]
satisfies the following inequality

CT min‖x‖2KF ≤ det T (K)[x]
( )HT (K)[x]
[ ]

≤ CT max‖x‖2KF

From (4), the ZF detection for s2 is given by

ŝ2 = [H]†yT1 = a
���
PT

√
s2 + [H]†wT1

(19)

Then, the noise covariance is

P = R−1

+ a2[H]†
∑M
m=1

T N1 hD2 ,m
⊗ tm

[ ]
T N1 hD2,m

⊗ tm

[ ]( )H( )

([H]†)H

where

R−1 = [H]†([H]†)H = (HHH)−1

Denote ωl as the lth column of ([H]†)H, then the lth diagonal
entry of the noise covariance is given by

Pll = s2
nv

H
l vl + a2s2

n

∑M
m=1

vH
l T N1 hD2,m

⊗ tm

[ ]

× T N1 hD2 ,m
⊗ tm

[ ]( )H
vl

Since T N1 [hD2,m
⊗ tm] = T (N1+Q−1)[hD,m]T (N1)[tm] and

vH
l T N1 [hD,m ⊗ tm] T N1 [hD,m ⊗ tm]

( )H
vl

= vH
l T N1+Q−1[hD2,m

]T N1 [tm] T N1 [tm]
( )H

T N1+Q−1[hD2,m
]

( )H
vl

, N1v
H
l T N1+Q−1[hD2,m

] T N1+Q−1[hD2,m
]

( )H
vl

, N1(N1 + Q− 1)‖hD2,m
‖2FvH

l vl

we obtain

Pll , s2
n 1+ g

∑M
m=1

‖hm‖2F

( )
R−1
ll (20)
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where γ = α2N1(N1 +Q − 1). The symbol error probability
under any given channel realisation he is expressed as [19]

P(he, s2,l) , j exp − aia
2PT

s2
n 1+ g

∑M
m=1 ‖hm‖2F

( )
R−1
ll

( )
(21)

where ξ = (μ − 1/μ), a1 = (3/4(μ − 1)), a2 = (3/(2(μ2 − 1))) and
a3 = ((sin2(π/μ))/2) are constants for QAM, PAM and PSK
constellations, respectively, with μ denoting the cardinality
of the constellation.
Since H has full column rank for any non-zero he, from

the above Property 1, we have (R−1
ll )−1 ≥ c0‖he‖2F .

Moreover, there is ‖he‖2F = ‖QDv‖2F ≥ c1‖v‖2F , where
c1 = lmin(Q

H
DQD). Under the condition that ΘΔ has full

column rank, that is, c1 > 0, we directly arrive at
R−1
ll

( )−1≥ c‖v‖2F , where c = c0c1 > 0.
As a result, we rewrite (21) as

P(he, s2,l) , j exp − aia
2cPT‖v‖2F

s2
n 1+ g

∑M
m=1 ‖hm‖2F

( )
( )

(22)

Following the approximation that
∑M

m=1 ‖hm‖
2
F = M when

M ≫ 1 [20, 21], we have

P(s2,l) = Ehe
P(he, s2,l)
{ }

, j · Ehe
exp −sPT‖v‖2F

( ){ }
(23)

where

s = aia
2c

s2
n(1+ gM )

Without loss of generality, we first assume Lh≥ Lg in the
following. Note that vm = T Lg [hm]gm, then v =Γg, where

G = diag T Lg [h1], T Lg [h2], . . . , T Lg [hM ]
( )

g = gT1 , g
T
2 , . . . , g

T
M

[ ]T (24)

Moreover, we know

P(s2,l) , j · Ehe
exp −sPTg

HGHGg
( ){ }

= j · Ehm
det I + sPTG

HG
[ ]−1

{ }

= j ·
∏M
m=1

Ehm
det I + sPT T Lg [hm]

( )HT Lg [hm]
[ ]−1

{ }

, j ·
∏M
m=1

Ehm

1

1+ sLgP
Lg
T det T Lg [hm]

( )HT Lg [hm]
[ ]

⎧⎨
⎩

⎫⎬
⎭

(25)

From the above Property 2, we obtain

det T Lg [hm]
( )HT Lg [hm]
[ ]

≥ c3‖hm‖
2Lg
F (26)

where c3 > 0 is a constant. Then we arrive at

P(s2,l) , j ·
∏M
m=1

Ehm

1

1+ dP
Lg
T ‖hm‖

2Lg
F

{ }
(27)
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where d = c3s
Lg . Denote x = ‖hm‖2F for short and its

probability density function is given by

fx(x) =
Lh(Lhx)

Lh−1e−Lhx

(Lh − 1)!
(28)

Then, we have

Ehm

1

1+ dP
Lg
T ‖hm‖

2Lg
F

{ }
=
∫1
0

fx(x)

1+ dP
Lg
T xLg

dx

= 1

(Lh − 1)!

∫1
0

xLh−1e−x

1+ d(PT/Lh)
Lg xLg

dx

(29)

1. When Lg = Lh, there is

∫1
0

xLg−1e−x

1+ d(PT/Lh)
Lg xLg

dx ,

∫1
0

xLg−1

1+ d(PT/Lh)
Lg xLg

dx

+
∫1
1

e−x

d(PT/Lh)
Lg

dx

=
log 1+ d(PT/Lh)

Lg
( )

+ Lge
−1

Lgd

( )
L
Lg
h

P
Lg
T

(30)

2. When Lg < Lh, there is

∫1
0

xLh−1e−x

1+ d(PT/Lh)
Lg xLg

dx ,

∫1
0

xLh−Lg−1

d(PT/Lh)
Lg

dx

+
∫1
1

xLh−Lg−1e−x

d(PT/Lh)
Lg

dx

= 1

Lh − Lg
+ e−1

∑Lh−Lg−1

k=0

(Lh − Lg − 1)!

k!

( )
L
Lg
h

dP
Lg
T

(31)

Finally, combining (29)–(31), we can obtain a compact form
as PT→∞

Ehm

1

1+ dP
Lg
T ‖hm‖

2Lg
F

{ }
, Gc ·

1

P
Lg
T

(32)

and

P(s2,l) , j · GM
c · P−MLg

T (33)

which indicates that a diversity of order MLg is obtained,
including both the cooperative and multipath diversity.
Bearing in mind that from (24) to (33), we consider only

Lh ≥ Lg. Note that hm and gm are symmetrical in (23). Thus,
following (24)–(33), we can directly find out that a
diversity of order MLh is obtained when Lh < Lg. Hence,
finally, the obtained diversity by the ZF receiver can be
expressed as M · min{Lh, Lg}. Based on the fact that the
linear MMSE receiver is superior to or, at least, equivalent
to the ZF receiver, this lemma is proved.
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11 Appendix 3

11.1 Proof of Lemma 2

We define the Q-length Vandermonde vectors

am = 1, am, . . . , a
Q−1
m

[ ]T
, and

t̃D,m = 0
1× t

(1)
2,m+t

(2)
1,m

( ), tTmdiag(am), 01× L(1)max−t
(1)
2,m+t

(2)
1, max

−t
(2)
1,m

( )[ ]T
Q̃D = T (L)[t̃D,1], T (L)[t̃D,2], . . . , T (L)[t̃D,M ]

[ ]
Define

G(a1, a2, . . . , aM ) = det Q̃
H

DQ̃D

[ ]
(34)
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which is a polynomial in several variables and hence is
analytical. To establish the desired result, it suffices to
show that G(a1, a2,…,aM) is non-trivial. Let am = a, that
is, am becomes identical. The key observation here is that
at this situation, Q̃D has the same rank property with ΘΔ.
Thus, when tm is carefully designed such that ΘΔ has full
column rank under any delay profile, we have G(a, a,…,
a) ≠ 0. This shows that G(a1, a2,…,aM) is a non-trivial
polynomial. According to the analytical function Lemma
2 in [22], G(a1, a2,…,aM) is non-zero almost everywhere,
except for a measure zero subset, which implies that Q̃D
has full column rank almost surely (in the measured
theoretical sense).
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