
Antibacterial Activities of Carbapenem Derivatives and
Quantitative Structure – Activity Relationship for Drug Design

Jian Liua, Lu Zhoua* and Zhili Zuob

a College of Chemical Engineering, Sichuan University, Sichuan, Chengdu 610065, China, E-mail: zhouluscu@163.com
b Centre for Biomedical and Life Sciences, Singapore Polytechnic, 139651 Singapore, Singapore

Keywords: Carbapenem, Drug design, GA-ANN, QSAR

Received: July 17, 2008; Accepted: May 15, 2008

DOI: 10.1002/qsar.200710104

Abstract
b-Lactams, a class of antibiotics including penicillins, cephems, monobactams, and
carbapenems, is widely used. In this work, the Quantitative Structure – Activity
Relationship (QSAR) models have been built by Partial Least Squares (PLS), Artificial
Neural Network (ANN), and Genetic Algorithm optimized ANN (GA-ANN) to study
the antibacterial activities of carbapenem derivatives. Of the three methods, GA-ANN is
potentially useful in predicting QSAR properties of chemical agents. Furthermore, some
novel penem derivatives are designed using classical bioisosterism strategy, and the
antibacterial activities are predicted by the built GA-ANN model without any chemical
or biological experiments. In conclusion, the niapenems and thiapenems show good
antibiotic activities.

1 Introduction

b-Lactams, a class of antibiotics that includes penicillins,
cephems, monobactams, and carbapenems [1], is widely
used. Among these b-lactams, carbapenems show a broad
spectrum of pathogens, including Gram-positive and
Gram-negative bacterium, and also show good antibacteri-
al effects. Carbapenems thus may be developed to the ma-
jor classes of b-lactams [2]. The major difference between
carbapenems and penicillins is that there is an unsaturated
five-membered ring in carbapenems and a sulfur atom at
C-1 instead of a carbon atom. Thienamycin is discovered
in 1976 [3], which is a carbapenem derivative exhibiting
good antimicrobial activity. Subsequently, more and more
carbapenem derivatives have been synthesized. However,
there are still some problems. The antibacterial activity
against Methicillin-Resistant Staphylococcus aureus
(MRSA), is particularly relatively weak. Thus, further
structure-based drug design study is needed to discover
new antibiotics.

Quantitative Structure – Activity Relationship (QSAR)
models, mathematical equations relating chemical struc-
ture to their biological activities, give information that is
useful for drug design and medicinal chemistry [4]. This
method attempts to relate structural descriptors of mole-
cules with their physicochemical properties and biological
activities. It is widely used for the prediction of physico-
chemical properties in chemical, environmental, and phar-
maceutical areas [5]. The success of QSAR approach can

be explained by the structural determination of chemical
properties, and the possibility to estimate the properties of
new chemical compounds without any experiments [6].
Recently, many QSAR models which can successfully pre-
dict antimicrobial activity are reported [7 – 10]. The main
steps of this method include data collection, molecular de-
scriptors calculation and selection, correlation model de-
velopment, and finally model evaluation.

A challenging problem in QSAR studies is the selection
of the suitable modeling method. Different techniques
have been used for establishing QSAR models including
Multiple Linear Regression (MLR) [11, 12], Partial Least
Squares (PLS) [13], and Artificial Neural Network (ANN)
[14]. ANN has grown in popularity due to its ease of use
and success in solving problems where complex nonlinear
relationships exist [15 – 18]. However, the ANN has some
limitations, such as overfitting and local optimum. Genetic
Algorithm (GA) is a general evolutionary algorithm that
can be used for optimization [19]. The combining GA with
ANN (GA-ANN) can solve the problems that exist in ANN.

In this article, the QSAR models have been built by
PLS, ANN, and GA-ANN to study the antibacterial activi-
ties of carbapenem derivatives, and compare the results
obtained from the three methods. Of the three methods,
GA-ANN is potentially useful in predicting QSAR prop-
erties of chemical agents. Then the classical bioisosterism
strategy is applied to design some new penem derivatives,
and their antibacterial activities are predicted using the
built GA-ANN model without any experiments.
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2 Materials and Methods

2.1 Biological Activity Data

The biological activity data of 83 carbapenem derivatives
are extracted from the work of Azami et al. [20 – 25]. All
the derivatives are tested for antibacterial activities in vi-
tro against methicillin-suspectible S. aureus (MRSA). The
biological activity data, inhibitory concentration (MIC)
values, are determined using twofold dilution methods [26,
27]. The MIC values are converted to the logarithmic scale
(pMIC) and then used as dependent variables as in QSAR
analysis. The structural features of the compounds and
their biological data are listed in Table 1.

2.2 Molecular Descriptors Calculation

Molecular structures of compounds were constructed in
SYBYL7.3 (Tripos Associates, Inc., St. Louis, MO, USA)
sketch molecule package [28]. The initial structures were
first minimized using molecular mechanics with the
MMFF94 force field [29] until the RMS of potential ener-
gy is smaller than 0.001 kcal/mol. Nearly 680 molecular de-
scriptors, such as 0D, 1D, and 2D, were calculated using
SYBYL. The brief description of those descriptors is pre-
sented in Table 2.

2.3 Division of the Dataset

In order to obtain a reliable QSAR model, an available
dataset must be divided into the training set and prediction
set. In this study, the division of a dataset into the training
set and prediction set was performed using clustering tech-
niques. A cluster sampling algorithm will focus on densely
occupied region of the space and hence avoid region outli-
ers. After the clustering process, the structure closest to
the center of a cluster is selected as the representative
structure. The dataset is divided into training set and pre-
diction set (10%) by a K-means clustering algorithm clus-
tering on descriptors (X) and biological activity (Y) values
together [30]. Clustering on X and Y data together, rather
than just on X, can cluster compounds according to all of
the given information. This may lead to different predic-
tion sets for different groups of indices but is appropriate
when searching for the best model to represent a dataset
[31 – 34].

2.4 Variable Selection

To build robust and accurate models, the models must be
trained by a set of feature descriptors instead of all gener-
ated descriptors. The method of reducing the descriptors
space is to extract features by building linear and nonlin-
ear combinations of a lower dimension of the input fea-
tures, which is called feature extraction. And this method

extracts the information of the original descriptors into
new variables by simple algorithms such as PCA [35].

In addition, in order to determine the variables which
are significantly correlated with activity, regression coeffi-
cients (B) [36, 37], and Variable Importance for the Pro-
jection (VIP) [37, 38] of molecular descriptors are used to
find the descriptor variables which are the most relevant
to explain pMIC. High values of the regression coefficients
signify that the descriptors are important to the regression.
The VIP represents the value of each predictor in fitting
the model for both predictor and response. If a predictor
has a relatively small coefficient, then it is a prime candi-
date for deletion. The predictors with coefficients smaller
than 0.01 are certainly suspect, and that with coefficients
smaller than 0.05 probably do not contribute much.

2.5 Partial Least Squares

PLS is used to generate the linear models and it is per-
formed with the MATLAB 7.0.1 (MathWorks, Inc.). PLS
introduced by Wold [13] is well suited for problems with
multicollinear predictor and response variables. The pre-
dictive values of the models are evaluated by Leave-One-
Out (LOO) [49] cross-validation. The cross-validated coef-
ficient, Q2, is calculated using the following equation

Q2 ¼ 1�
P
ðyi � yÞ2

P
ðy� ymeanÞ2

ð1Þ

where yi, y, and ymean are predicted, actual, and mean val-
ues of the target property (pMIC), respectively. To main-
tain the optimum number of PLS components and mini-
mize the tendency to overfit the data, the number of com-
ponents corresponding to the lowest PRESS value is to de-
rive the final PLS regression model. PRESS is defined as

PRESS ¼
Xn

i¼1

yi � yð Þ2 ð2Þ

In addition to the Q2 and number of components, the
squared correlation coefficients (R2) of experimental
pMICs versus predicted pMICs of training and prediction
set, F-statistics, Standard Deviations (SD) and RMSE of
training and prediction set are also computed.

2.6 Artificial Neural Network

ANN is used to generate the nonlinear models and it is
performed with the MATLAB 7.0.1 (MathWorks, Inc.). In
this work, Back-Propagation ANN (BP-ANN) is used. In
BP-ANN, “learning” is a supervised process that occurs
with each cycle of “epoch” through a forward activation
flow of inputs and the backward error propagation of
weight adjustment [50]. In this work, gradient descent with
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Table 1. Molecular structure, experimental and calculated antibiotic activities of carbapenems.

NO. R1 pMIC Calculated pMIC (g/mol)

PLS ANN GA-ANN

A-1 2-Propenyl-pyrrolidine 3.486 3.810 3.656 3.735
A-2 2-Propenyl-pyrrolidine 3.466 3.761 3.793 3.668
A-3 2-(2-Me)-propenyl-pyrrolidine 3.787 3.854 3.694 3.735
A-4 2-(2-CH2OCH3)-propenyl-pyrrolidine 3.527 3.474 3.456 3.589
A-5 2-(2-CH2SCH3)-propenyl-pyrrolidine 3.547 3.702 3.663 3.728
A-6 2-(2-CH2NH2)-propenyl-pyrrolidine 3.510 3.836 3.658 3.589
B-7 CH2OCH2COOH 3.587 3.817 3.788 3.759
B-8a CH2OCH2NH2 3.903 4.126 4.146 4.075
B-9a CH2OCH2CONHCH3 4.122 4.188 4.118 4.031
B-10 CH2OCH2CON(CH3)2 3.932 4.329 4.175 4.144
B-11 CH2OC(CH3)2CONH2 4.233 4.139 4.043 4.038
B-12 CH2O(CH2)2OH 3.888 3.926 4.138 4.071
B-13 CH2O(CH2)2NH2 4.489 4.116 4.337 4.266
B-14 CH2O(CH2)2NHCH3 4.505 4.229 4.226 4.342
B-15 CH2O(CH2)2N(CH3)2 3.918 4.213 4.193 4.109
B-16 CH2O(CH2)2F 4.191 3.972 4.027 4.115
B-17a CH2OCH2CHFCH3 3.605 4.127 4.015 3.708
B-18a CH2O(CH2)2NHCONH2 4.222 4.183 4.277 4.293
B-19 3-CH2OCH2CH2-1-Me-3H-imidazol-1-ium 4.558 4.624 4.624 4.608
B-20 2-CH2OCH2CH2-1-Me-2H-pyrazol-1-ium 4.558 4.819 4.708 4.733
B-21 CH2O(CH2)4F 4.234 4.246 4.275 4.165
B-22 CH2O(CH2)2Cl 4.209 4.034 4.175 3.967
B-23 CH2OCH3 4.756 3.858 4.639 4.626
B-24 C(NH)CH3 3.832 3.927 3.871 4.067
B-25 CO(NH2)2 4.186 4.174 4.051 4.120
B-26 6,7-dihydro-5H-pyrazolo[1,2,4]trizol-4-ylium 4.148 4.022 4.108 4.225
B-27 3-CH2-1-Me-3H-imidazol-1-ium 4.212 4.245 4.169 4.154
B-28 1-CH2-5-Me-1H-imidazo[1,2,4]pyrazol-5-ium 4.554 4.700 4.574 4.544
B-29 1-Me-3-ethyl-3H-imidazol-1-ium 4.528 4.772 4.777 4.780
B-30 1-Me-2-ethyl-2H-pyrazol-1-ium 4.528 4.784 4.724 4.657
B-31 4-Me-1-ethyl-1H-[1,2,4] triazol-4-ium 4.830 4.873 4.786 4.863
B-32 1-Ethyl-pyridinium 4.926 4.812 4.713 5.051
B-33 3-Ethyl-1-Me-3H-imidazol-1-ium 4.843 4.566 4.662 4.685
B-34 3-CH¼CHCH2-1-Me-3H-imidazol-1-ium 4.540 4.692 4.724 4.783
B-35 1-CH¼CHCH2-pyridinium 4.838 4.761 4.696 4.666
B-36 1-Me-3-ethyl-3H-imidazol-1-ium 4.528 4.594 4.680 4.762
B-37 1-CH2CONH2-3-ethyl-3H-imidazol-1-ium 4.557 4.877 4.664 4.704
B-38a 1-(CH2)3NH2-3-ethyl-3H-imidazol-1-ium 4.871 4.941 4.828 4.880
B-39 2-CH2OH-1-Me-3-ethyl-3H-imidazol-1-ium 4.558 4.348 4.338 4.548
B-40 5-CH2OH-1-Me-3-ethyl-3H-imidazol-1-ium 4.841 4.678 4.638 4.544
B-41 4-CH2OCH3-Me-3-ethyl-3H-imidazol-1-ium 4.571 4.500 4.493 4.543
B-42 2-CONH2-1-Me-3-ethyl-3H-imidazol-1-ium 4.872 4.651 4.630 4.720
B-43a 5-CONH2-1-Me-3-ethyl-3H-imidazol-1-ium 4.872 4.820 4.769 4.753
B-44 5-CH2CONH2-l-3-Me-l-3-ethyl-3H-imidazol-1-ium 4.583 4.959 4.719 4.861
B-45 5-CH¼CHCONH2-1-Me-3-ethyl-3H-imidazol-1-ium 4.895 4.985 5.000 4.988
B-46 5-CN-1-Me-3-ethyl-3H-imidazol-1-ium 4.854 4.562 4.592 4.663
B-47 4-CH2-1,3-dimethyl-3H-imidazol-1-ium 4.829 4.598 4.670 4.920
B-48 2-CH2-1,3-dimethyl-3H-imidazol-1-ium 4.829 4.562 4.655 4.687
B-49 4-CH2-1,2-dimethyl-2H-imidazol-1-ium 5.129 4.829 4.941 4.936
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momentum is applied and the performance function is
Root-Mean-Square-Error (RMSE), which is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r

ð3Þ

where n is the number of compounds.
For the basic gradient descent algorithm, the weights

and biases are moved in the direction of the negative gra-
dient of the performance function. Gradient descent with
momentum often provides faster convergence [50]. Mo-
mentum can also help the network to overcome a shallow
local minimum in the error surface and settle down at or
near the global minimum [51].

2.7 Genetic Algorithm Optimized ANN Connection
Weights

Genetic algorithm, which was first introduced in the early
1970s [19], becomes an important tool for optimizing func-
tions. Genetic algorithm is a searching or optimizing algo-
rithm based on Darwinian biological evolution principle.

The BP algorithm by which the network is trained be-
gins with a random set of weights. GA uses survival of the
fittest to learn connection weights in an ANN [52, 53]. In
this study, we use a three layer (of nodes) ANN with 10 in-
put, 6 hidden, and 1output nodes. For our architecture, the
number of genes at each chromosome is defined as fol-
lows: z¼73[(10 inputsþ1 threshold)�6 hiddenþ (6
hiddenþ1 threshold)�1 output]. z is the number of genes
in a population member, and z is a constant in all the pop-
ulation members.
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Table 1. (cont.)

NO. R1 pMIC Calculated pMIC (g/mol)

PLS ANN GA-ANN

B-50 5-CH2-1,2-dimethyl-2H-imidazol-1-ium 4.829 4.611 4.694 4.624
B-51 4-CH2-1,3-dimethyl-3H-[1,2,3]triazol-1-ium 4.228 4.109 4.058 4.128
B-52 5-CH2-1,4-dimethyl-1H-[1,2,4]triazol-4-ium 4.529 4.711 4.716 4.555
B-53 2-CH2-1-Me-pyridinium 4.525 4.675 4.706 4.594
B-54 3-CH2-1-Me-pyridinium 4.826 4.534 4.629 4.803
B-55 4-CH2-1-Me-pyridinium 4.826 4.673 4.724 4.620
B-56a 4-CH2-1-(CH2)2OH-3-Me-3H-imidazol-1-ium 4.558 4.641 4.687 4.450
B-57 4-CH2-2-(CH2)2OH-1,3-dimethyl-3H-imidazol-1-ium 4.859 4.685 4.790 4.769
B-58 1-CH2CONH2-4-CH2-3-Me-3H-imidazol-1-ium 4.570 4.781 4.522 4.557
B-59 5-CH2-2-CH2OH-1-Me-2H-pyrazol-1-ium 4.859 4.763 4.644 4.711
B-60 5-CH2-4-(CH2)2OH-1,2-dimethyl-2H-pyrazol-1-ium 4.257 4.378 4.439 4.386
B-61 2-CH2OH-4-CH2-1-Me-2H-pyrazol-1-ium 4.544 4.873 4.616 4.744
B-62 3-CH2OH-1,2-dimethyl-2H-pyrazol-1-ium 4.845 4.460 4.432 4.612
B-63 1-(CH2)2OH-pyridinium 4.541 4.607 4.545 4.667
B-64 2-CH2OH-1-Me-pyridinium 4.842 4.440 4.469 4.665
B-65 1-CH2CONH2-pyridinium 4.855 4.933 4.701 4.752
B-66 2-CONH2-1-Me-pyridinium 4.552 4.618 4.652 4.613
A-67 4-Piperidine 3.448 3.680 3.594 3.676
A-68 3-Piperidine 3.749 3.680 3.631 3.518
A-69 3-Pyrrolidine 3.425 3.719 3.734 3.363
A-70 3-Azetidine 3.402 3.699 3.793 3.538
A-71 S(CH2)2NHCH¼NH 3.797 4.065 3.977 4.054
C-72 CH¼NH 4.069 4.137 4.402 4.344
C-73 C(CH3)¼NH 4.692 4.218 4.526 4.445
C-74 CH¼N(CH3) 4.995 4.256 4.885 4.816
C-75 3,4-Dihydro-2H-pyrrole 4.426 4.513 4.497 4.729
C-76 C(CH2OH)¼NH 4.112 4.274 4.073 4.098
C-77a C(CH2OCONH2)¼NH 4.751 4.561 4.578 4.609
C-78 C(CH2CONH2)¼NH 4.165 4.282 4.445 4.369
C-79a C(CH2NHCONH2)¼NH 4.731 4.768 4.676 4.510
B-80 5-CH2-2-CH2CONH2-1-Me-2H-pyrazol-1-ium 4.871 4.738 4.731 4.639
B-81a 4-CH2-2-CH2CONH2-1-Me-2H-imidazol-1-ium 4.871 5.051 4.729 4.760
B-82 4-CH2-2-CH2COOH-1-Me-2H-imidazol-1-ium 4.571 4.565 4.667 4.344
B-83 4-CH2-(CH2)2OH-1-Me-3H-[1,2,3]triazol-1-ium 4.259 4.009 4.157 4.193

aThe compounds using in the prediction set.
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During the connection weights optimization in GA, the
chromosome and its fitness in the species represent a set
of connection weights and predictive ability of the QSAR
models, respectively. Each individual of the population is
defined by a chromosome of binary values which represent
a subset of connection weights. The population of the first
generation is selected randomly. The operators used here
are crossover and mutation (0 – 0.1% for mutation and
60 – 90% for crossover). The fitness score of each member
of this new generation is evaluated again, and the repro-
ductive cycle is continued until a desired number of gener-
ations or target fitness score is reached. Here, the fitness
function is the RMSE.

3 Results and Discussion

As mentioned above, the aim of this work is to compare
the results from PLS, ANN, and GA-ANN. In this section,
the predictive abilities of the GA-ANN and two other
models (PLS and ANN) are evaluated. All the data are
scaled to unit variance [-1,1] before modeling. After the
models have been built, the calculated values of pMIC
need to be transferred back to the same units that are used
for the original experimental values of pMIC for compari-
son purpose. To ensure a fair comparison, the same train-
ing set and prediction set is used for each model.

The 83 carbapenem derivatives are used in experiments.
This dataset is divided into a training set of 73 compounds
and a prediction set of 10 compounds by using a cluster
technique [30 – 34]. The corresponding actual versus pre-
dicted values of the pMIC of all molecules studied by PLS,
ANN, and GA-ANN are shown in Table 1.

All descriptors are included in the PLS model. LOO
cross-validation is used to determine the number of PLS

components. The PRESS statistic is based on the generat-
ed residuals. The cross-validation resulted in 10 LVs is the
optimal number with a minimum PRESS and maximum
Q2. The result is obtained by the PLS model with R2

(train)¼0.7039, RMSE (train)¼0.2509, R2 (pred)¼
0.7465, RMSE (pred)¼0.2265, Q2¼0.6373, and F¼
17.1161. It indicates that the PLS model is improper in fit-
ting this data. The plots of calculated versus observed val-
ues pMIC from the PLS are shown in Figure 1.

To predict antibacterial activities of carbapenem deriva-
tives, descriptor selection is important for ANN model.
The variables that produce the best model are selected us-
ing the values of regression coefficients and VIP as previ-
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Table 2. The calculated chemical descriptors used in this study.

Descriptor type Molecular descriptor

Constitutional Molecular weight, number of atoms, number of non-H atoms, number of heteroatoms, number
of multiple bonds, number of aromatic bonds, number of functional groups, number of rings, number
of H-bond donors, number of H-bond acceptors, etc.

Topological indices Molecular connectivity: Chi indices [39], molecular shape: Kappa and Phi indices [40, 41], counts
and complexity indices, topological state [42], shape, wiener [43], Shannon indices, vertex and edge
counts, atom type electrotopological state indices [44], group type electrotopological state indices,
randic connectivity indices [45], etc.

Chemical Log P, hydration energy (Ehydr), Molar Refractivity (MR), Polarizability (Pol), molecular Surface
Area (SA), molecular volume (V), etc.

Empirical descriptors Dipole Moment (DM), HOMO and LUMO energies, heat of formation (Hform), total energy (Etotal) ,
electronic energy (Eele), the local charges at each atom of the base unit of basic structure (LCi),
Most Positive Charge (MPC), Most Negative Charge (MNC), Sum of Squares of Charges (SSC),
hardness (h), softness (S), electronegativity (c), chemical potential (m), electrophilicity (w) [46], etc.

Charge topological
indices

Galvez charge topological indices [47], mean topological charge indices order 1 – 10, global topological
charge index, maximum, minimum, average and total charges, local dipole index, etc.

WHIM descriptors Unweighted size [48], shape, symmetry and accessibility directional indices; size, shape, symmetry
and accessibility directional indices weighted by atomic polarizability, atomic Sanderson electronegativity
or atomic van der Waals volume; total size, shape symmetry and accessibility indices, etc.

Figure 1. Correlation between experimental pMIC and PLS
predicted pMIC for the training set and prediction set.
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ously mentioned [36 – 38]. After the PLS analysis, it is
noteworthy that these selected descriptors have no signifi-
cant intercorrelation. Finally, ten descriptors are remained
to build a nonlinear model. All of them have a relatively
high regression coefficient (B), a high value of VIP and no
significant intercorrelation. These descriptors are FPSA1
(partial positive surface area/total area), FNSA1 (partial
negative surface area/total area), FNSA2 (total charge
weighted partial negative surface area/total area), H-bond
Acceptor (HA), electronic energy (Eele), heat of molecular
formation (Hform), n-octanol/water partition (log P), mo-
lecular dipole moment at z direction (DMZ), softness (S),
and chain of cycle terms of 5th order (5cCH).

The neural-network approach is especially suitable for
analyzing complex nonlinear relationships between the ac-
tivity and descriptor. The number of neurons in the hidden
layer is an important factor determining the network�s per-
formance. Too many nodes may cause the network to
memorize the dataset (overfitting); network with few no-
des may be insufficient to use all the information from the
dataset (underfitting). It is desirable to construct the net-
work that generalize the patterns of the dataset rather
than merely memorize them [54]. Previous studies con-
ducted to determine the appropriate number of hidden
units suggest that 1, the ratio of number of data points to
the number of adjustable weights in the neural network,
may have a value between 1.8 and 2.3 [54, 55]. The range
of 1 is used as a guideline for an acceptable number of
neurons in the hidden layer when the increasing of hidden
neurons does not improve the model anymore.

To solve the problems of overfitting and overtraining, is
becoming an important factor for the improvement of gen-
eralization ability in neural network studies [56]. In the
present study, a subdivision of the initial training set of 73
compounds into a learning set (n¼63) and into a valida-
tion set (n¼10) is done. The first set is used to train the
network, whereas the second set is used to monitor the
training process. The optimal training endpoint and net-
work architecture are determined on the basis of this vali-
dation set. The network architecture and training endpoint
which can make the model give the lowest RMSE and the
maximal R2, will be used for the predictions of the valida-
tion. In order to study the effect of network parameters on
its performances, networks with different configurations
are built. To avoid the results obtained by chance, the pre-
dictions are repeated 1000 times with different initial
weights and the average pMIC values are calculated for
each model. The network with six neurons in the hidden
layer gives the best performance, as shown in Table 3. A
sufficient training level is not reached with smaller number
of neurons (<6) and overfitting exists with a larger num-
ber of neurons (>6) in the hidden layer. The optimal train-
ing ANN endpoint requires 8000 training epochs when the
ANN architecture 10-6-1 is used. The architecture of 10-6-
1 with minimum RMSE of training and prediction set is
0.1807 and 0.1943, respectively, and with maximum R2 of

the training and prediction set is 0.8556 and 0.8931, respec-
tively. The architecture of 10-6-1 also gives results of Q2¼
0.7738 and F¼42.6615. So it is selected as the best ANN
model. The plots of calculated versus observed values
pMIC from the best nonlinear model of ANN are shown
in Figure 2.

As a gradient search algorithm, ANN also has some lim-
itations, such as overfitting, local optimum, and sensitivity
to the initial values of weights. GA uses survival of the fit-
test strategy to learn connection weights in an ANN. The
GA search process is terminated as the generation number
reaches a predefined value of 200. The corresponding
RMSE of the training set and the prediction set is 0.1647
and 0.1594, respectively, and R2 is 0.8761 and 0.9565, re-
spectively. Meanwhile the best prediction is obtained by
the GA-ANN model with Q2 of 0.8286 and F of 50.9114. In
consequence, the BPNN prediction performance calculat-
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Figure 2. Correlation between experimental pMIC and ANN
predicted pMIC for the training set and prediction set.

Table 3. The influence of different hidden neurons on the ANN
performance.

ANNa Training set Prediction set

R2 RMSE R2 RMSE

10-3-1 0.787 0.230 0.774 0.289
10-4-1 0.723 0.248 0.802 0.251
10-5-1 0.753 0.234 0.853 0.216
10-6-1 0.856 0.181 0.893 0.194
10-7-1 0.794 0.214 0.854 0.220
10-8-1 0.723 0.253 0.780 0.222
10-9-1 0.701 0.259 0.801 0.203
10-10-1 0.780 0.225 0.824 0.247
10-11-1 0.778 0.219 0.752 0.276
10-12-1 0.747 0.237 0.788 0.227

aNumber of inputs-hidden-outputs neurons.
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ed versus observed values pMIC from the GA-ANN is
shown in Figure 3. The improvements of GA-ANN model
over conventional PLS and ANN are shown in Table 4.

For classification, the RMSE (train), R2 (train), Q2, and
F are listed in the following: GA-ANN gives the best re-
sults (0.1647, 0.8761, 0.8286, and 50.9114); ANN shows
good results (0.1807, 0.8556, 0.7738, and 42.6615); and PLS
shows poor results (0.2509, 0.7039, 0.6373, and 17.1161).
For prediction, the RMSE and R2 for the prediction set are
listed in the following: GA-ANN gives the best results
(0.1594 and 0.9565); ANN shows good results (0.1943 and
0.8931); and PLS provides a poor result (0.2265 and
0.7465).

The RMSE for the training set of linear model is larger
than 0.25, the RMSEs (train) of the nonlinear models are
all smaller than 0.2, the Q2 of linear model is smaller than
0.7, and the F of linear model is smaller than 20, which in-
dicates that the nonlinear model is better than the linear
model during the training process. For the prediction abili-
ty, the RMSE (perd) of the best linear and nonlinear mod-
el is 0.1594 and 0.2265, respectively, which indicates that
the predictive ability of the best nonlinear model is better

than that of the best linear model. The reason is that the
predictor variables of the carbapenem analogs data are
nonlinearly correlated with response variables. Because
the GA-ANN optimized ANN connection weights, the
prediction performance is considerably improved and the
result of GA-ANN is better than ANN. However, the neu-
ral-network approach is especially suitable for analyzing
complex nonlinear relationships between the outputs and
inputs. The result of ANN is better than PLS.

4 Drug Design

b-Lactams antibiotics (penicillins and cephalosporins) are
still widely used in the treatment of infectious diseases.
The important pharmacophores (structural features re-
sponsible for molecule�s biological activity) in these antibi-
otics are bicyclic molecules: cephams/cephems and pe-
nams/penems as shown in Figure 4. These pharmaco-
phores contain b-lactams ring.

Penem derivatives substituted in various ways at any
one or more of positions 3 and 6 were proposed previously,
such as the carbon atom at position 1 has been replaced by
a nitrogen atom (niapenems) [57], by an oxygen atom (ox-
apenems) [58], or by a sulfur atom (thiapenems) [59, 60].
To design novel penem derivatives with good antimicrobi-
al activities, the classical bioisosterism strategy is applied
without any chemical experiments [61]. The carbon atom
at position 1 of the carbapenems is substituted by N, O, S,
and the group of C-2 is unchanged which is used in carba-
penem study (Figure 4). Therefore, we have 83 novel nia-
penem, oxapenem, and thiapenem derivatives, respective-
ly.

The antimicrobial activities against MRSA of novel nia-
penem, oxapenem, and thiapenem derivatives can be pre-
dicted without any biological experiments. The steps are
the following: first, the compounds were constructed and
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Figure 3. Correlation between experimental pMIC and GA-
ANN predicted pMIC for the training set and prediction set.

Table 4. The results of GA-ANN, BPNN, and PLS.

Model PLS ANN GA-ANN

R2 (train) 0.704 0.856 0.876
Q2 0.637 0.774 0.829
F 17.116 42.662 50.911
SD (train) 0.391 0.388 0.376
RMSE (train) 0.251 0.181 0.165
R2 (pred) 0.747 0.893 0.957
RMSE (pred) 0.227 0.194 0.159
SD (pred) 0.358 0.309 0.296 Figure 4. Substructures of cephams, cephems, penams, and pe-

nems.
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Table 5. The calculated antibacterial activities of niapenems, thiapenems, and oxapenems.

No. Experimental pMIC of carbapenems Calculated pMIC

Niapenems Thiapenems Oxapenems

A-1 3.486 3.848 3.669 2.601
A-2 3.466 3.850 3.659 2.622
A-3 3.787 3.925 3.700 2.800
A-4 3.527 4.669 4.459 3.563
A-5 3.547 4.385 4.288 4.206
A-6 3.510 4.493 4.444 3.234
B-7 3.587 2.705 2.741 1.458
B-8 3.903 4.578 4.584 3.097
B-9 4.122 9.251 9.065 7.868
B-10 3.932 4.331 4.184 2.949
B-11 4.233 4.357 4.222 2.942
B-12 3.888 4.003 3.869 10.052
B-13 4.489 4.250 4.074 2.832
B-14 4.505 4.356 4.200 3.040
B-15 3.918 4.338 4.178 3.009
B-16 4.191 4.058 3.923 2.762
B-17 3.605 4.232 4.190 2.942
B-18 4.222 4.184 4.255 2.839
B-19 4.558 4.656 4.603 3.390
B-20 4.558 4.887 4.875 21.151
B-21 4.234 4.211 4.122 2.936
B-22 4.209 4.018 3.986 2.658
B-23 4.756 3.835 3.783 2.360
B-24 3.832 3.997 3.971 2.464
B-25 4.186 4.215 3.953 2.398
B-26 4.148 4.001 4.003 4.594
B-27 4.212 4.345 4.299 3.106
B-28 4.554 4.631 4.507 21.050
B-29 4.528 4.773 4.777 3.564
B-30 4.528 4.761 4.703 21.191
B-31 4.830 4.877 4.868 3.529
B-32 4.926 4.817 4.802 3.546
B-33 4.843 4.620 4.544 3.258
B-34 4.540 4.801 4.646 3.348
B-35 4.838 4.833 4.780 3.680
B-36 4.528 4.657 4.475 3.374
B-37 4.557 4.876 4.730 3.717
B-38 4.871 4.933 4.814 3.927
B-39 4.558 3.417 3.388 2.236
B-40 4.841 4.504 4.449 3.177
B-41 4.571 4.411 4.338 3.214
B-42 4.872 5.016 4.913 3.764
B-43 4.872 5.050 4.850 3.643
B-44 4.583 5.289 5.212 4.035
B-45 4.895 4.548 4.465 3.475
B-46 4.854 4.526 4.368 3.466
B-47 4.829 4.504 4.450 3.196
B-48 4.829 4.844 4.680 3.519
B-49 5.129 4.000 4.028 20.596
B-50 4.829 4.529 4.533 20.987
B-51 4.228 4.140 3.986 2.711
B-52 4.529 4.767 4.599 3.090
B-53 4.525 4.799 4.634 3.320
B-54 4.826 4.775 4.565 3.388
B-55 4.826 4.928 4.776 3.560
B-56 4.558 4.662 4.527 3.075
B-57 4.859 4.736 4.606 3.367
B-58 4.570 4.868 4.670 3.791
B-59 4.859 3.574 3.567 20.216
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minimized using SYBYL. The initial structures were mini-
mized using molecular mechanics with the MMFF94 force
field until the RMS of potential energy is smaller than
0.001 kcal/mol. Second, 10 descriptors (FPSA1, FNSA1,
FNSA2, HA, Eele, Hform, log P, DMZ, S,5cCH) were calculat-
ed and then used to predict the antimicrobial activities
against MRSA of novel penem derivatives with the GA-
ANN model constructed above. All of them had a relative-
ly high regression coefficient (B), a high value of VIP, and
no significant intercorrelation. Therefore, we can use the
calculated descriptors to predict activities of novel penem
derivatives without the need to synthesize and test them
by experiments. Third, we utilize GA-ANN to predict the
antimicrobial activities. Here, the input layer is changed
by the calculated descriptors in the second step. And the
output values are the antimicrobial activities of novel com-
pounds. The calculated values are shown in Table 5.

As can be seen from Table 5, the antibiotic activities of
niapenems and thiapenems are better than oxapenems.
The reason for this is that the antibiotic activities of niape-
nems and thiapenems are similar to the carbapenems. As
for oxapenem derivatives, there are only 4th, 72nd, 77th,
78th, and 79th compounds that show similar antibiotic ac-
tivities to the carbapenems.

A major goal in pharmaceutical research is to design
molecules that interact with specific biochemical pathways
in living systems. A corresponding area in drug design
aims at developing small organic molecules with a high af-

finity of binding against a given receptor. When a proper
superposition of a set of ligands is available, the relevant
chemical features of the ligands can be readily extracted in
order to derive a pharmacophore model. In turn, the
chemical features can be used to search for possible inhibi-
tors in a ligand database. There are several superposition
programs such as DISCO [62], GASP [63], and CATA-
LYST [64]. In this research, the five penem compounds
(the 7th, 9th, 20th, 60th, and 80th compounds) are selected
for molecular superposition in SYBYL. The molecular su-
perposition can be seen from Figures 5 and 6.

To distinguish the penem derivatives in Figure 5, the
white atom at position 1 represents carbapenems, mean-
while the blue, red, and yellow atoms at position 1 repre-
sent niapenems, oxapenems, and thiapenems, respectively
(Figure 4). The carbapenem is selected as a template mole-
cule, and the others are superposed on it. In Figure 5, the
effect of superposition of a set of carbapenems, niapenems,
oxapenems, and thiapenems is poor. Compared to the anti-
microbial activities of carbapenems, the other three pe-
nems derivatives show high deviation (as shown in Ta-
ble 5). In Figure 6, the niapenems and thiapenems show
good superpose on carbapenems. As a result, the antimi-
crobial activities are similar to the carbapenems, and the
deviation of pMIC is only 0.3. In contrast to the niapenems
and thiapenems, the effect of superposition of carbapenem
and oxapenem derivatives is poor. Therefore, the devia-
tion of antimicrobial activities is 17.00 (as shown in Ta-
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Table 5. (cont.)

No. Experimental pMIC of carbapenems Calculated pMIC

Niapenems Thiapenems Oxapenems

B-60 4.257 4.803 4.765 21.155
B-61 4.544 4.472 4.464 21.101
B-62 4.845 4.758 4.765 21.519
B-63 4.541 4.418 4.295 3.118
B-64 4.842 4.727 4.678 3.298
B-65 4.855 4.646 4.466 3.106
B-66 4.552 3.635 3.522 2.071
A-67 3.448 3.587 3.440 2.221
A-68 3.749 3.725 3.568 2.055
A-69 3.425 4.318 4.168 4.073
A-70 3.402 4.007 3.747 2.046
A-71 3.797 3.969 3.843 2.367
C-72 4.069 3.908 3.768 4.222
C-73 4.692 4.053 3.913 3.966
C-74 4.995 4.277 4.180 4.497
C-75 4.426 4.303 4.148 3.887
C-76 4.112 4.550 4.413 3.174
C-77 4.751 4.306 4.152 4.411
C-78 4.165 4.491 4.268 4.014
C-79 4.731 4.835 4.726 4.775
B-80 4.871 4.917 4.924 21.437
B-81 4.871 4.935 4.956 21.414
B-82 4.571 4.302 4.326 20.969
B-83 4.259 4.071 3.949 2.518
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ble 5). We can conclude that QSAR studying and super-
posing a set of ligands may be an effective tool for drug de-
sign.

5 Conclusion

In this paper, the QSAR models PLS, ANN, and GA-
ANN are employed to study the antibacterial activities of
carbapenem derivatives. GA-ANN is potentially useful in
predicting QSAR properties of chemical agents. The GA-
ANN approach effectively optimizes ANN connection
weights, and ANN which captures nonlinear relationships
among predictor variables as well as with response varia-
bles through high-dimension feature mapping. Compared
with the PLS, ANN has a better prediction performance.
The linear regression model is found to be statistically val-
id.

To design novel penem derivatives with good antimicro-
bial activities, we apply classical bioisosterism strategy to
design new structures and predict their antibacterial activi-
ties using the built QSAR model without any chemical or
biological experiments. The antibacterial activities are re-
lated to compounds conformation. The niapenems and
thiapenems show good superpose on carbapenems, and
the antimicrobial activities are similar to the carbapenems.
So QSAR studying and superposing a set of ligands may
be an effective tool for drug design.
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