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A GENERALIZATION OF OSTROWSKI INEQUALITY ON TIME

SCALES FOR k POINTS

WENJUN LIU AND QUÓ̂C ANH NGÔ

Abstract. In this paper we first generalize the Ostrowski inequality on time
scales for k points and then unify corresponding continuous and discrete ver-
sions. We also point out some particular Ostrowski type inequalities on time
scales as special cases.

1. introduction

In 1938, A. Ostrowski proved the following interesting integral inequality which
has received considerable attention from many researchers [10, 11, 12, 14, 15].

Theorem 1. Let f : [a, b] → R be continuous on [a, b] and differentiable in
(a, b) and its derivative f ′ : (a, b) → R is bounded in (a, b), that is, ‖f ′‖∞ :=
sup

t∈(a,b)

|f ′(x)| < ∞. Then for any x ∈ [a, b], we have the inequality:

∣

∣

∣

∣

∣

∣

b
∫

a

f(t)dt − f(x)(b − a)

∣

∣

∣

∣

∣

∣

≤

(

(b − a)2

4
+

(

x −
a + b

2

)2
)

‖f ′‖∞.

The inequality is sharp in the sense that the constant 1
4 cannot be replaced by a

smaller one.

The development of the theory of time scales was initiated by Hilger [8] in 1988
as a theory capable to contain both difference and differential calculus in a con-
sistent way. Since then, many authors have studied the theory of certain integral
inequalities or dynamic equations on time scales. For example, we refer the reader
to [1, 4, 5, 7, 13, 16, 17, 18]. In [5], Bohner and Matthews established the following
so-called Ostrowski inequality on time scales.

Theorem 2 (See [5], Theorem 3.5). Let a, b, x, t ∈ T, a < b and f : [a, b] → R be
differentiable. Then

∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t − f(x)(b − a)

∣

∣

∣

∣

∣

∣

≤ M
(

h2(x, a) + h2(x, b)
)

, (1)

where h2(·, ·) is defined by Definition 7 below and M = supa<x<b |f
∆(x)|. This

inequality is sharp in the sense that the right-hand side of (1) cannot be replaced by
a smaller one.
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In the present paper we shall first generalize the above Ostrowski inequality on
time scales for k points x1, x2, · · · , xk and then unify corresponding continuous and
discrete versions. We also point out some particular Ostrowski type inequalities on
time scales as special cases.

2. Time scales essentials

Now we briefly introduce the time scales theory and refer the reader to Hilger
[8] and the books [2, 3, 9] for further details.

Definition 1. A time scale T is an arbitrary nonempty closed subset of real num-
bers.

Definition 2. For t ∈ T, we define the forward jump operator σ : T → T by
σ(t) = inf {s ∈ T : s > t} , while the backward jump operator ρ : T → T is defined
by ρ(t) = sup {s ∈ T : s < t} . If σ(t) > t, then we say that t is right-scattered, while
if ρ(t) < t then we say that t is left-scattered.

Points that are right-scattered and left-scattered at the same time are called
isolated. If σ(t) = t, the t is called right-dense, and if ρ(t) = t then t is called
left-dense. Points that are both right-dense and left-dense are called dense.

Definition 3. Let t ∈ T, then two mappings µ, ν : T → (0, +∞) satisfying

µ (t) := σ(t)−t, ν (t) := t − ρ(t)

are called the graininess functions.

We now introduce the set T
κ which is derived from the time scales T as follows.

If T has a left-scattered maximum t, then T
κ := T−{t}, otherwise T

κ := T.
Furthermore for a function f : T → R, we define the function fσ : T → R by
f σ(t) = f(σ(t)) for all t ∈ T.

Definition 4. Let f : T → R be a function on time scales. Then for t ∈ T
κ,

we define f ∆(t) to be the number, if one exists, such that for all ε > 0 there is a
neighborhood U of t such that for all s ∈ U

∣

∣f σ(t)−f (s) − f ∆(t) (σ(t)−s)
∣

∣ ≤ ε |σ(t)−s| .

We say that f is ∆-differentiable on T
κ provided f ∆(t) exists for all t ∈ T

κ.

Definition 5. A mapping f : T → R is called rd-continuous (denoted by Crd)
provided if it satisfies

(1) f is continuous at each right-dense point or maximal element of T.
(2) The left-sided limit lim

s→t−
f (s) = f (t−) exists at each left-dense point t of

T.

Remark 1. It follows from Theorem 1.74 of Bohner and Peterson [2] that every
rd-continuous function has an anti-derivative.

Definition 6. A function F : T → R is called a ∆-antiderivative of f : T → R

provided F∆(t) = f(t) holds for all t ∈ T
κ. Then the ∆-integral of f is defined by

b
∫

a

f (t)∆t = F (b) − F (a) .
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Proposition 1. Let f, g be rd-continuous, a, b, c ∈ T and α, β ∈ R. Then

(1)
b
∫

a

(

αf(t) + βg(t)
)

∆t = α
b
∫

a

f(t)∆t + β
b
∫

a

g(t)∆t,

(2)
b
∫

a

f(t)∆t = −
a
∫

b

f(t)∆t,

(3)
b
∫

a

f(t)∆t =
c
∫

a

f(t)∆t +
b
∫

c

f(t)∆t,

(4)
b
∫

a

f(t)g∆(t)∆t = (fg)(b) − (fg)(a) −
b
∫

a

f∆(t)g(σ(t))∆t,

(5)
a
∫

a

f(t)∆t = 0.

Definition 7. Let hk : T
2 → R, k ∈ N0 be defined by

h0 (t, s) = 1 for all s, t ∈ T

and then recursively by

hk+1 (t, s) =

t
∫

s

hk (τ, s) ∆τ for all s, t ∈ T .

3. The generalized Ostrowski inequality on time scales

Throughout this section, we suppose that T is a time scale and an interval means
the intersection of real interval with the given time scale. We are in a position to
state our main result.

Theorem 3. Suppose that

(1) a, b ∈ T, Ik : a = x0 < x1 < · · · < xk−1 < xk = b is a division of the
interval [a, b] for x0, x1, . . . , xk ∈ T;

(2) αi ∈ T (i = 0, . . . , k + 1) is ”k + 2” points so that α0 = a, αi ∈ [xi−1, xi]
(i = 1, . . . , k) and αk+1 = b;

(3) f : [a, b] → R is differentiable.

Then we have
∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −

k
∑

i=0

(αi+1 − αi)f(xi)

∣

∣

∣

∣

∣

∣

≤ M

k−1
∑

i=0

(

h2(xi, αi+1) + h2(xi+1, αi+1)
)

, (2)

where
M = sup

a<x<b

|f∆(x)|.

This inequality is sharp in the sense that the right-hand side of (2) cannot be replaced
by a smaller one.

To prove Theorem 3, we need the following Generalized Montgomery Identity.

Lemma 1 (Generalized Montgomery Identity). Under the assumptions of Theorem
3, we have

k
∑

i=0

(αi+1 − αi)f(xi) =

b
∫

a

fσ(t)∆t +

b
∫

a

K(t, Ik)f∆(t)∆t, (3)
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where

K(t, Ik) =























t − α1, t ∈ [a, x1),
t − α2, t ∈ [x1, x2),
· · · · · ·

t − αk−1, t ∈ [xk−2, xk−1),
t − αk, t ∈ [xk−1, b).

(4)

Proof. Integrating by parts and applying Proposition 1, we have

b
∫

a

K(t, Ik)f∆(t)∆t =

k−1
∑

i=0

xi+1
∫

xi

K(t, Ik)f∆(t)∆t

=

k−1
∑

i=0

xi+1
∫

xi

(t − αi+1)f
∆(t)∆t

=

k−1
∑

i=0



(xi+1 − αi+1)f(xi+1) − (xi − αi+1)f(xi) −

xi+1
∫

xi

fσ(t)∆t





=
k−1
∑

i=0



(αi+1 − xi)f(xi) + (xi+1 − αi+1)f(xi+1) −

xi+1
∫

xi

fσ(t)∆t





=(α1 − a)f(a) +

k−1
∑

i=1

(αi+1 − xi)f(xi) +

k−2
∑

i=0

(xi+1 − αi+1)f(xi+1)

+ (b − αk)f(b) −

b
∫

a

fσ(t)∆t

=(α1 − a)f(a) +

k−1
∑

i=1

(αi+1 − αi)f(xi) + (b − αk)f(b) −

b
∫

a

fσ(t)∆t

=

k
∑

i=0

(αi+1 − αi)f(xi) −

b
∫

a

fσ(t)∆t,

i.e., (3) holds. �

Proof of Theorem 3. By applying Lemma 1, we get

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −

k
∑

i=0

(αi+1 − αi)f(xi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b
∫

a

K(t, Ik)f∆(t)∆t

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

k−1
∑

i=0

xi+1
∫

xi

K(t, Ik)f∆(t)∆t

∣

∣

∣

∣

∣

∣

≤

k−1
∑

i=0

xi+1
∫

xi

|K(t, Ik)|
∣

∣f∆(t)
∣

∣∆t ≤ M

k−1
∑

i=0

xi+1
∫

xi

|t − αi+1|∆t
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=M

k−1
∑

i=0





αi+1
∫

xi

(αi+1 − t)∆t +

xi+1
∫

αi+1

(t − αi+1)∆t





=M

k−1
∑

i=0

(

h2(xi, αi+1) + h2(xi+1, αi+1)
)

.

To prove the sharpness of this inequality, let f(t) = t, x0 = a, x1 = b, α0 = a,

α1 = b, α2 = b. It follows that M = 1. Starting with the left-hand side of (2), we
have

∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −

k
∑

i=0

(αi+1 − αi)f(xi)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b
∫

a

σ(t)∆t −
(

(b − a)a + (b − b)b
)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b
∫

a

(σ(t) + t)∆t −

b
∫

a

t∆t − (b − a)a

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b
∫

a

(t2)∆∆t −

b
∫

a

t∆t − (b − a)a

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(b − a)a −

b
∫

a

t∆t

∣

∣

∣

∣

∣

∣

.

Starting with the right-hand side of (2), we have

M

k−1
∑

i=0

(h2(αi+1, xi) + h2(αi+1, xi+1)) =h2(x0, α1) + h2(x1, α1)

=h2(a, b) + h2(b, b)

=

∫ a

b

(t − b)∆t +

∫ b

b

(t − b)∆t

=

∫ a

b

t∆t −

∫ a

b

b∆t

=b(b − a) −

∫ b

a

t∆t.

Therefore in this particular case
∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −

k
∑

i=0

(αi+1 − αi)f(xi)

∣

∣

∣

∣

∣

∣

≥ M

k−1
∑

i=0

(

h2(αi+1, xi) + h2(αi+1, xi+1)
)

and by (2) also
∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −
k
∑

i=0

(αi+1 − αi)f(xi)

∣

∣

∣

∣

∣

∣

≤ M

k−1
∑

i=0

(

h2(αi+1, xi) + h2(αi+1, xi+1)
)

.

So the sharpness of the inequality (2) is shown. �
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If we apply the inequality (2) to different time scales, we will get some well-known
and some new results.

Corollary 1 (Continuous case). Let T = R. Then our delta integral is the usual
Riemann integral from calculus. Hence,

h2 (t, s) =
(t − s)

2

2
, for all t, s ∈ R.

This leads us to state the following inequality
∣

∣

∣

∣

∣

b
∫

a

f(t)∆t −

k
∑

i=0

(αi+1 − αi)f(xi)

∣

∣

∣

∣

∣

≤M

(

1

4

k−1
∑

i=0

(xi+1 − xi)
2 +

k−1
∑

i=0

(

αi+1 −
xi + xi+1

2

)2
)

,

(5)

where M = sup
a<x<b

|f ′(x)| and the constant 1
4 in the right-hand side is the best

possible.

Remark 2. The inequality (5) is exactly the generalized Ostrowski inequality shown
in [6].

Corollary 2 (Discrete case). Let T = Z, a = 0, b = n. Suppose that

(1) Ik : 0 = j0 < j1 < · · · < jk−1 < jk = n is a division of [0, n] ∩ Z for
j0, k1, . . . , jk ∈ Z;

(2) pi ∈ Z (i = 0, . . . , k + 1) is ”k + 2” points so that p0 = 0, pi ∈ [ji−1, ji] ∩ Z

(i = 1, . . . , k) and pk+1 = n;
(3) f(k) = xk.

Then, we have
∣

∣

∣

∣

∣

∣

n
∑

j=1

xj −
k
∑

i=0

(pi+1 − pi)xji

∣

∣

∣

∣

∣

∣

≤M

(

1

4

k−1
∑

i=0

(ji+1 − ji)
2 +

k−1
∑

i=0

(

pi+1 −
ji + ji+1

2

)2

+

k−1
∑

i=0

(

pi+1 −
ji + ji+1

2

)

)

for all i = 1, n, where M = sup
i=1,··· ,n−1

|∆xi| and the constant 1
4 in the right-hand

side is the best possible.

Proof. It is known that

hk (t, s) =

(

t − s

k

)

, for all t, s ∈ Z.

Therefore,

h2 (ji, pi+1) =

(

ji − pi+1

2

)

=
(ji − pi+1)(ji − pi+1 − 1)

2

and

h2 (ji+1, pi+1) =

(

ji+1 − pi+1

2

)

=
(ji+1 − pi+1)(ji+1 − pi+1 − 1)

2
.

The conclusion is obtained by some easy calculation. �
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Corollary 3 (Quantum calculus case). Let T = qN0 , q > 1, a = qm, b = qn with
m < n. Suppose that

(1) Ik : qm = qj0 < qj1 < · · · < qjk−1 < qjk = qn is a division of [qm, qn] ∩ qN0

for j0, k1, . . . , jk ∈ N0;
(2) qpi ∈ qN0 (i = 0, . . . , k + 1) is ”k + 2” points so that qp0 = qm, qpi ∈

[qji−1 , qji ] ∩ qN0 (i = 1, . . . , k) and qpk+1 = qm;
(3) f : [qm, qn] → R is differentiable.

Then, we have

∣

∣

∣

∣

∣

qn

∫

qm

fσ(t)∆t −
k
∑

i=0

(qpi+1 − qpi)f
(

qji

)

∣

∣

∣

∣

∣

≤
2M

1 + q

k−1
∑

i=0

((

qji −
1+q
2 (qpi + qpi+1)

2

)2

+

2
(

q2pi + q2pi+1

)

− (1+q

2 )2 (qpi + qpi+1)
2

4
+ q2ji(q − 1)

)

,

where

M = sup
qm<t<qn

∣

∣

∣

∣

f(qt) − f(t)

(q − 1)(t)

∣

∣

∣

∣

and the constant 1
4 in the right-hand side is the best possible.

Proof. In this situation, one has

hk (t, s) =
k−1
∏

ν=0

t − qνs
ν
∑

µ=0
qµ

, for all t, s ∈ qN0 .

Therefore,

h2

(

qji , qpi+1
)

=

(

qji − qpi+1

) (

qji − qpi+1+1
)

1 + q

and

h2

(

qji+1 , qpi+1
)

=

(

qji+1 − qpi+1

) (

qji+1 − qpi+1+1
)

1 + q
.

The conclusion is easy obtained by some simple calculation. �

4. Some particular Ostrowski type inequalities on time scales

In this section we point out some particular Ostrowski type inequalities on time
scales as special cases, such as: rectangle inequality on time scales, trapezoid in-
equality on time scales, mid-point inequality on time scales, Simpson inequality on
time scales, averaged mid-point-trapezoid inequality on time scales and others.

Throughout this section, we always assume T is a time scale; a, b ∈ T with a < b;
f : [a, b] → R is differentiable. We denote

M = sup
a<x<b

|f∆(x)|.
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Proposition 2. Suppose that α ∈ [a, b] ∩ T. Then we have the sharp rectangle
inequality on time scales

∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −
(

(α − a)f(a) + (b − α)f(b)
)

∣

∣

∣

∣

∣

∣

≤ M
(

h2(a, α) + h2(b, α)
)

. (6)

Proof. We choose k = 1, x0 = a, x1 = b, α0 = a, α1 = α and α2 = b in Theorem 3
to get the result. �

Remark 3. (a) If we choose α = b in (6), we get the sharp left rectangle in-
equality on time scales

∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t − (b − a)f(a)

∣

∣

∣

∣

∣

∣

≤ Mh2(a, b). (7)

(b) If we choose α = a in (6), we get the sharp right rectangle inequality on
time scales

∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t − (b − a)f(b)

∣

∣

∣

∣

∣

∣

≤ Mh2(a, b). (8)

(c) If we choose α = a+b
2 in (6), we get the sharp trapezoid inequality on time

scales
∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −
f(a) + f(b)

2
(b − a)

∣

∣

∣

∣

∣

∣

≤ M

(

h2

(

a,
a + b

2

)

+ h2

(

b,
a + b

2

))

. (9)

Proposition 3. Suppose that x ∈ [a, b] ∩ T, α1 ∈ [a, x] ∩ T, α2 ∈ [x, b] ∩ T. Then
we have the sharp inequality on time scales

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −
(

(α1−a)f(a) + (α2 − α1)f(x) + (b − α2)f(b)
)

∣

∣

∣

∣

∣

≤M
(

h2(a, α1) + h2(x, α1) + h2(x, α2) + h2(b, α2)
)

.

(10)

Proof. We choose k = 2, x0 = a, x1 = x, x2 = b and αi (i = 0, 3) is as in Theorem
3 to get the result. �

Remark 4. (a) If we choose α1 = a and α2 = b in Proposition 3, we get exactly
Theorem 2. Therefore, Theorem 3 is a generalization of Theorem 3.5 in [5].

(b) If we choose x = a+b
2 in (1), we get the sharp mid-point inequality on time

scales
∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t − f

(

a + b

2

)

(b − a)

∣

∣

∣

∣

∣

∣

≤ M

(

h2

(

a + b

2
, a

)

+ h2

(

a + b

2
, b

))

. (11)



A GENERALIZATION OF OSTROWSKI INEQUALITY ON TIME SCALES FOR k POINTS 9

Corollary 4. Suppose that α1 = 5a+b
6 ∈ T, α2 = a+5b

6 ∈ T, and x ∈
[

5a+b
6 , a+5b

6

]

∩
T. Then we have the sharp inequality on time scales

∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −
b − a

3

(

f(a) + f(b)

2
+ 2f(x)

)

∣

∣

∣

∣

∣

∣

≤M

(

h2

(

a,
5a + b

6

)

+ h2

(

x,
5a + b

6

)

+ h2

(

x,
a + 5b

6

)

+ h2

(

b,
a + 5b

6

))

.

(12)

Remark 5. If we choose x = a+b
2 in (12), we get the sharp Simpson inequality on

time scales
∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −
b − a

3

(

f(a) + f(b)

2
+ 2f

(

a + b

2

))

∣

∣

∣

∣

∣

∣

≤M

(

h2

(

a,
5a + b

6

)

+ h2

(

a + b

2
,
5a + b

6

)

+ h2

(

a + b

2
,
a + 5b

6

)

+ h2

(

b,
a + 5b

6

))

.

Corollary 5. Suppose that α1 ∈
[

a, a+b
2

]

∩T and α2 ∈
[

a+b
2 , b

]

∩T. Then we have
the sharp inequality on time scales

∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −

(

(α1 − a)f(a) + (α2 − α1)f

(

a + b

2

)

+ (b − α2)f(b)

)

∣

∣

∣

∣

∣

∣

≤M

(

h2(a, α1) + h2

(

a + b

2
, α1

)

+ h2

(

a + b

2
, α2

)

+ h2(b, α2)

)

.

(13)

Remark 6. If we choose α1 = 3a+b
4 and α2 = a+3b

4 in (13), we get the sharp averaged
mid-point-trapezoid inequality on time scales
∣

∣

∣

∣

∣

∣

b
∫

a

fσ(t)∆t −
b − a

2

(

f(a) + f(b)

2
+ f

(

a + b

2

))

∣

∣

∣

∣

∣

∣

≤M

(

h2

(

a,
3a + b

4

)

+ h2

(

a + b

2
,
3a + b

4

)

+ h2

(

a + b

2
,
a + 3b

4

)

+ h2

(

b,
a + 3b

4

))

.
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