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In this paper, a vegetation model with spatial diffusion is investigated. By linear analysis,
we give the critical values of the wavenumber of the emerging patterns. Moreover, through
a detailed analysis in two spatial dimensions, the pattern formation mechanisms of steady
state patterns are obtained dependent on the quantity of rainfall. The mechanisms of pat-
tern formation suggest that rainfall plays an important role in the formation of vegetation.
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1. Introduction

In the past several decades, climatic changes and human activity have been leading to an unprecedented loss of habitats
and species in ecosystems [8,15,25]. One of the most important problems is vegetation degradation. However, vegetation
plays an very important role in the ecological environment. On one hand, it can prevent water loss and soil erosion, assim-
ilate carbon dioxide and release oxygen from atmosphere to maintain the human beings and animals and contribute to the
slowing of global warming, beautify the urban environment, protect us from sandstorms and so on. On the other hand,
whether a change in vegetation pattern can indicate the loss or gain of resilience in real ecosystems is an good research ques-
tion and needs to be better understood [19].

Vegetation pattern, have been extensively investigated by arid and semi-arid land ecologists [1,2,27,28]. The dominating
driving forces in arid and semi-arid lands are lack of water and plant competition over water resources [29]. The view of
vegetation patches as a pattern formation phenomenon involving symmetry breaking is supported by recent mathematical
models that identify vegetation patterns with instabilities of uniform vegetation states [11,13,16,17]. As a result, this issue is
usually treated in terms of determined reaction–diffusion models [11,13,16,17].

In particular, the vegetation equations modeled by Klausmeier [13] plays an important role in the study on vegetation
patterns. The reason is that he firstly revealed the relationship between water and plant competition over water resources
by a simple mathematical model, and discovered that striped patterns can grow lying along the contours of gentle slopes.
From then on, many ecologists pay more attention to this model and the expanded versions of models which can also depict
the interaction between water availability and plant growth. Sherratt studied the model by using linear stability and bifur-
cation analysis, and received the formulae of the wavelength and migration speed [20]. Moreover, nonlinear dynamics and
pattern bifurcations in this model are also investigated [21]. They found that patterns exist for a wide range of rainfall levels
and patterns with a variety of different wavelengths are stable.

However, Klausmeier’s model only can explain the stripe pattern, and fails to account for spotted, hole and labyrinth pat-
tern. Instead of investigating its model, we will give some analysis of the vegetation model which is presented by Meron
et al. [18]. We want to check whether spotted, hole and labyrinth pattern can arise and see how rainfall has effect on the
2011 Published by Elsevier Inc. All rights reserved.
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spatial patterns of the vegetation. The paper is organized according to the following orders: in Section 2, we present a veg-
etation model and interpret the biological meaning of these parameters. Mathematical analysis is given to obtain the critical
wavenumber. In Section 3, we reveal the effect of rainfall on the spatial dynamics. Finally, some conclusions and discussion
are given.

2. Model and bifurcation analysis

We firstly pay attention to the following model [18]:
Table 1
Parame

Sym

G
S
C
M
I
R
F
DB

DW

b

@B
@t
¼ GW

1þ SW
B� CB2 �MBþ DBr2B; ð1aÞ

@W
@t
¼ P � Ið1� RBÞW � FW2Bþ DWr2ðW � ABÞ; ð1bÞ
where B and W represent the biomass density and the ground water density, respectively. The term ðGW=ð1þ SWÞÞB de-
scribes plant growth at a constant rate, G=S, for saturated soil, and at a rate that grows linearly with W for dry soil. The term
�MB accounts for mortality and grazing, and the quadratic term �CB2 represents saturation due to limited nutrients. P and
term �Ið1� RNÞW represent precipitation and a loss of source. Local up-take of water by plants is described by the term
�FW2N [10]. The parameters R and A describe the positive feedback effects of water and biomass. r2 ¼ @2=@x2 þ @2=@y2

is the usual Laplacian operator in two-dimensional space. DB and DW are the diffusion coefficients. The meaning of the
parameters can be found in Table 1.

In order to minimize the number of parameters involved in the model system it is extremely useful to write the system in
non-dimensionalized form. Although there is no unique method of doing this, it is often a good idea to relate the variables to
some key relevant parameters. Follow the method in Ref. [18], and take
b ¼ C
I

B; w ¼ F
C

W; ex ¼ Iffiffiffiffiffiffi
DB
p x; ð2aÞ

et ¼ It; c ¼ C
IF

G; r ¼ C
F

S; l ¼ M
I
; ð2bÞ

p ¼ I
C

R; d ¼ DW

DB
; b ¼ IF

C2 A; ð2cÞ
we arrive at the following equations containing dimensionless quantities:
@b
@t
¼ cw

1þ rw
b� b2 � lbþr2b; ð3aÞ

@w
@t
¼ p� ð1� qbÞw�w2bþ dr2ðw� bbÞ: ð3bÞ
To study the turing instability, it is important to consider the local dynamics of the system obtained by setting the spatial
derivatives equal to zero. The corresponding non-spatial model is
db
dt
¼ cw

1þ rw
b� b2 � lb ¼ f ðb;wÞ; ð4aÞ

dw
dt
¼ p� ð1� qbÞw�w2b ¼ gðb;wÞ: ð4bÞ
We are concerned the dynamics in the region b P 0 and w P 0. By considering the nullclines f ¼ 0; g ¼ 0, linear stability
analysis reveals that model (4) has the following uniform stationary solutions:
ter values used in the numerical simulation and nonlinear analysis are from the study of [10,18].

bol Value Unit Comments

0.04 mm�1 yr�1 Plant growth rate
0.01 mm�1 Plant inhibition rate
4 m2/kg yr Saturation rate due to limited resource
0.8 yr�1 Mortality and grazing rate
4 yr�1 Loss rate of water due to evaporation and drainage
1.5 mm2 kg�1 Increased rate of water due to plant
0.025 m4/kg2 yr Local up-take of water by plants

5� 10�4 m2 yr�1 Diffusion coefficient of the plant

5� 10�2 m2 yr�1 Diffusion coefficient of the water

3 – –
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(i) E1 ¼ ð0; pÞ, which corresponds to bare soil;
(ii) E� ¼ ðb�;w�Þ, which corresponds a uniform vegetation state, and
ðlr� cÞðw�Þ3 þ C2ðw�Þ2 þ C1w� þ p ¼ 0; ð5aÞ

b� ¼ cw�

1þ rw�
� l; ð5bÞ
where
C1 ¼ pr� ql� 1; ð6aÞ
C2 ¼ l� r� qlrþ qc: ð6bÞ
From the biological point of view, we are interested in studying the stability behavior of the interior equilibrium point E�,
and the Jacobian matrix J is given by
J ¼
@f
@b

@f
@w

@g
@b

@g
@w

 !
jðb� ;w�Þ ¼

a11 a12

a21 a22

� �
;

where
a11 ¼
cw�

1þ rw�
� 2b� � l; a12 ¼

cb�

ð1þ rw�Þ2
;

and
a21 ¼ qw� � ðw�Þ2; a22 ¼ qb� � 1� 2b�w�:
Turing instability requires that the stable, homogeneous steady state is driven unstable by the interaction of the dynamics
and diffusion of the species [22–24]. And the condition for the uniform steady state to be stable for the corresponding or-
dinary differential Eqs. (4a) and (4b) is given by
a11 þ a22 < 0 ð7Þ
and
a11a22 � a12a21 > 0: ð8Þ
To linearize system (3) around E� for small space- and time-dependent perturbations, we let
bð r!; tÞ ¼ b� þ bðr; tÞ; ð9aÞ
wð r!; tÞ ¼ w� þwðr; tÞ: ð9bÞ
where bðr; tÞ � b�; wðr; tÞ � w� and r ¼ ðX;YÞ is spatial vector in two dimensions. We start by assuming solutions of the
form
bðr; tÞ
wðr; tÞ

 !
¼

l1

l2

� �
ekteiðkXXþkYYÞ;
where k is the growth rate of perturbation in time t;l1 and l2 represent the amplitudes, kX or kY is the wave number of the
solutions, and i represents imaginary number. The characteristic equation of the system (3) is
ðH � kIÞ b

w

 !
¼ 0; ð10Þ
where
H ¼
a11 � ðk2

X þ k2
YÞ a12

a21 þ dbðk2
X þ k2

YÞ a22 � dðk2
X þ k2

YÞ

 !
: ð11Þ
We substitute k2 ¼ k2
X þ k2

Y and derive the results for the two-dimensional case from one-dimensional formulation. As a
result, we have characteristic polynomial of the original problem:
k2 � trkkþ Dk ¼ 0; ð12Þ
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where
Fig. 1.
c ¼ 1:6
trk ¼ a11 þ a22 � ðdþ 1Þk2
;

Dk ¼ a11a22 � a12a21 � ðda11 þ a22 þ dba12Þk2 þ dk4
: ð13Þ
The root of (12) can be obtained by the following form:
kk ¼
1
2

trk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2

k � 4Dk

q� �
: ð14Þ
It is easy to see that trk < a11 þ a22. And thus we can conclude that for attractors and saddles a change of stability coin-
cides with a change of the sign of Dk. By direct calculation, one can find that a change of sign in Dk occurs when k takes the
critical values:
k2
1;2 ¼

ðda11 þ a22 þ dba12Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðda11 þ a22 þ dba12Þ2 � 4dða11a22 � a12a21Þ

q
2d

: ð15Þ
Furthermore, we have that
Dk < 0() k1 < k < k2: ð16Þ
If both k1 and k2 exist and have positive values, they limit the range of instability for a local stable equilibrium. And this
range is called as the Turing space. In order to see this space, we plot the dispersion relation corresponding to several values
of one parameter while keeping the others fixed, see Fig. 1. Here, we set c ¼ 1:6; r ¼ 1:6; l ¼ 0:2; q ¼ 1:5; d ¼ 100; b ¼ 3
and vary p (The values of parameters can be found in Table 1.). It can be seen from this figure that when p is decreased, the
available Turing modes ½ReðkÞ > 0� increase, and all available modes are enhanced further.
A

B

These graphs illustrate the eigenvalues of the spatial model (3) at positive equilibrium point E� . Parameter values are used:
; r ¼ 1:6; l ¼ 0:2; q ¼ 1:5. (A) p ¼ 0:6; (B) p ¼ 0:4.
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3. Spatial patterns

In this section, we rely on numerical integration of the model of Eq. (3). We consider here spatiotemporal evolution of this
system when the system lies within the regime of Turing domain. To solve differential equations by computers, one has to
discretize the space and time of the problem. That is to say that transforming an infinite-dimensional to a finite-dimensional
form. The two-dimensional space is solved in a discrete domain with M � N lattice sites. The spacing between each lattice
point is defined by the lattice constant Dh ¼ 1. And, the time evolution is solved by using the Euler method and Dt ¼ 0:001.

The snapshots of the spatial patterns obtained at different time are shown in Fig. 2. It is evident that the initial random
distribution ðt ¼ 0Þ is gradually replaced by black hole patterns ðt ¼ 300Þ. The emergence of black hole patterns are formed
by interaction of the vegetation and water, spread and eventually self-organize into a beautiful manifestation of pattern
formation.
Fig. 2. Two-dimensional spatial patterns biomass generated by Eq. (3). Parameters values are used as: c ¼ 1:6; r ¼ 1:6; l ¼ 0:2; q ¼ 1:5; d ¼ 100; b ¼ 3
and p ¼ 0:6. (A) t ¼ 0; (B) t ¼ 50; (C) t ¼ 80; (D) t ¼ 100; (E) t ¼ 180; (F) t ¼ 300.
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Fig. 3. Two-dimensional spatial patterns biomass generated by Eq. (3). Parameters values are used as: c ¼ 1:6; r ¼ 1:6; l ¼ 0:2; q ¼ 1:5; d ¼ 100; b ¼ 3,
and p ¼ 0:4.

Fig. 4. Two-dimensional spatial patterns biomass generated by Eq. (3) at t ¼ 800 with different values of p. Parameters values are used as:
c ¼ 1:6; r ¼ 1:6; l ¼ 0:2; d ¼ 100; b ¼ 3 and q ¼ 1:5. (A) p ¼ 0:3; (B) p ¼ 0:25; (C) p ¼ 0:2.
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Fig. 5. Steady state profiles of vegetation computed in space using Eq. (17). Parameter values are used: c ¼ 1:6; r ¼ 1:6; l ¼ 0:2; q ¼ 1:5; d ¼ 100 and
b ¼ 3. (A) p ¼ 0:3; (B) p ¼ 0:25; (C) p ¼ 0:2.
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A more precise temporal evolution of regular Turing pattern in the system can be visualized by means of the time series
plot, as shown in Fig. 3. The temporal development of the spatially averaged values of the biomass density shows that in the
first intervals of simulations these values change fast as the time increases. One can see that at t � 50, the density reaches a
constant value and the mean value of the vegetation increases slower. At this time, the pattern formation has almost com-
pletely evolved. And the system has reached its steady state when t > 100.

However, the above results pertain to a fixed value of p, and thus it is of interest to investigate the impact of other values
of p on pattern formation as well. In Fig. 4, we show the typical snapshots of the spatial grid obtained for different values of p
after a long simulation time. As p decreases, labyrinth pattern, coexistence of spotted and striped pattern and spotted pattern
only emerge successively.
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To understand the evolution mechanism in space, we exploit the method of spatial dynamics, which was found to be an
effective method exploring the multiplicity of steady state solutions [14,4,5,9,30,31]. To do so, we set @b=@t ¼ @w=@t ¼ 0 and
rewrite (3) as a set of four first-order ordinary equations
db
dx
¼ u; ð17aÞ

du
dx
¼ � cw

1þ rw
bþ b2 þ lb; ð17bÞ

dw
dx
¼ v ; ð17cÞ

dv
dx
¼
�pþ ð1� qbÞwþw2bþ bd � cw

1þrw bþ b2 þ lb
� �

d
; ð17dÞ
where space is now treated as a time-like variable. In Fig. 5, it shows that, for different p, the model always exhibits space
oscillation. And for larger p, the amplitude of the oscillation is larger.

4. Discussion and conclusion

In this paper, we investigated a vegetation model in reaction–diffusion form. By performing both mathematical analysis
and numerical simulations, we obtained rich spatial dynamics. Moreover, we found that, when p changes, hole, labyrinth,
coexistence of spotted and striped and spotted pattern only emerge successively. In a word, rainfall plays an important in
forming the vegetation patterns. In [18], they just do numerical simulations to account for vegetation patterns. However,
in this paper, we give not only simulations results but also detailed analysis. Moreover, we provide the space evolution
for different values of p.

Spatial self-organization is not imposed on any system but emerges from fine-scale interactions owing to internal causes.
This process is key to understanding ecological stability and diversity [19]. Although more work is required, it seems that
some vegetation models have many different kinds of regular spatiotemporal patterns. As a result, we can predict that
the regular spatiotemporal patterns indicate that the ecosystems are more resilient to disturbance and resistant to global
environmental change [19]. On the other hand, further studies are necessary to reveal which types of spatial patterns are
the early-warning signals for the desert [12].

It should be noted that, in our model simulations, we have considered all the parameters as constants. However, vegeta-
tion and water are sometimes considered to be strongly influenced by seasonal factors such as weather and climatic condi-
tions [6,7]. As a result, all the parameters can show temporal and spatial variations. In particular, some can be both stochastic
and show significant seasonal variations [3,26], which will become a subject of future research.
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