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Abstract The dynamical behavior of a general n-di-
mensional delay differential equation (DDE) around
a 1:3 resonant double Hopf bifurcation point is ana-
lyzed. The method of multiple scales is used to obtain
complex bifurcation equations. By expressing com-
plex amplitudes in a mixed polar-Cartesian represen-
tation, the complex bifurcation equations are again ob-
tained in real form. As an illustration, a system of two
coupled van der Pol oscillators is considered and a set
of parameter values for which a 1:3 resonant double
Hopf bifurcation occurs is established. The dynamical
behavior around the resonant double Hopf bifurcation
point is analyzed in terms of three control parameters.
The validity of analytical results is shown by their con-
sistency with numerical simulations.

Keywords Multiple scales · Resonance · Double
Hopf bifurcation · Time delay

1 Introduction

The method of multiple scales (MMS) [1] is a power-
ful tool for the analysis of dynamical interaction phe-
nomena occurring in weakly nonlinear systems un-
der internal and/or external resonance conditions [2].
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It has been used to reduce a multidimensional dy-
namical system into a lower-dimensional equivalent
system which captures all the qualitative aspects of
the original system behaviors [3]. Using the mixed
(i.e., polar and Cartesian) form, the method leads to
the standard normal form equations which are suit-
able to analyze the stability of incomplete solutions
(i.e. solutions in which some amplitudes identically
vanish) [4]. These standard normal form equations
have been used to analyze nonresonant double Hopf
bifurcation [5], codimension-three 1:2 and 1:3 reso-
nant double Hopf bifurcation [6], 1:1 resonant dou-
ble Hopf bifurcation [7], and multiple-Hopf bifurca-
tions [8]. These works have successfully solved the
problem of resonant double Hopf bifurcation without
time delay. As an extension of the method introduced
by Luongo et al. [6], we will investigate the dynamical
behaviors of a general n-dimensional delay differen-
tial equation around a 1:3 resonant double Hopf bifur-
cation point.

As we know, time delay always exists and plays
an important role in dynamical systems. Therefore, it
is very essential to introduce time delay into dynam-
ical systems. In fact, nonlinear differential equations
with time delay have been studied in various scien-
tific fields, and some publications on this topic are
cited in [9, 10]. Some authors have begun to investi-
gate the dynamical behavior of the systems with time
delay near a resonant double Hopf bifurcation. Camp-
bell and LeBlanc [11] used center manifold analysis to
investigate a 1:2 resonant double Hopf bifurcation in
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a DDE. Xu [12] developed an efficient method (PIS)
for studying weak resonant double Hopf bifurcation in
nonlinear systems with delayed feedbacks. Recently,
the MMS has been directly applied to the systems with
time delay [13–17] and used to study small perturba-
tion of a harmonic oscillator by a small term with a
large delay [18].

The outline of this paper is as follows. In Sect. 2,
based on the MMS, a useful method is developed and
used to analyze a 1:3 resonant double Hopf bifurcation
of a dynamical system with time delay. Employing this
method, complex bifurcation equations are obtained in
real form. In Sect. 3, as an example, we consider two
van der Pol oscillators with delay coupling and ana-
lyze the dynamical behaviors around a 1:3 resonant
double Hopf bifurcation point. In Sect. 4, the discus-
sion and conclusion are given.

2 Multiple scales analysis for 1:3 resonant double
Hopf bifurcation

An n-dimensional, dynamical system with time delay
is considered, governed by the following equation of
motion:

ẋ = F(x,xτ ,μ), (1)

where x ∈ Rn is the state variable depending on a set
μ ∈ Rm of control parameter vector and xτ = x(t − τ)

where τ is time delay. Without loss of generality, it is
assumed that (1) admits the trivial equilibrium solution
x = 0 for any value of μ. According to the bifurcation
theory, a 1:3 resonant double Hopf bifurcation satis-
fies three conditions among two eigenvalues, namely,
Reλ1 = Reλ2 = 0, Imλ2 = 3 Imλ1 [6]. Therefore, the
critical values μc = (μ1c,μ2c) ∈ R2 and τ = τc ∈ R

are taken.
It is assumed that μ1 = μ1c + μ1ε , μ2 = μ2c +

μ2ε and τ = τc + τε . The point O = (x = 0,με =
(μ1ε,μ2ε) = 0, τε = 0) is a 1:3 resonant double Hopf
bifurcation point. Then the following conditions must
be satisfied for the Jacobian matrix at O

F0
x := ∂F(x,xτ ,με)

∂x

∣
∣
∣
∣
x=0,xτ =0,με=0

,

F0
xτ

:= ∂F(x,xτ ,με)

∂xτ

∣
∣
∣
∣
x=0,xτ =0,με=0

.

(2)

(C.1) The matrix F0
x + F0

xτ
e−λτ has two pairs of

purely imaginary eigenvalues λ1,3 = ±iω1,
λ2,4 = ±iω2 and ω2 = 3ω1 and all the remain-
ing eigenvalues λh (h ≥ 5) lie on the left side
of the complex plane. Then the right pj and left
qj (j = 1,2) eigenvectors of λ1,3 and λ2,4 are
solutions of the following equations:

(

F0
x + F0

xτ
e−iωj τ − iEωj

)

pj = 0,

((

F0
x + F0

xτ
eiωj τ

)T + iEωj

)

qj = 0,
(3)

where E is the identity matrix, p3 = p̄1, p4 =
p̄2, q3 = q̄1 and q4 = q̄2. Right and left eigen-
vectors are orthonormal, i.e., qH

i pi = 1, (i =
1,2), where H denotes the transpose conjugate.

(C.2) The critical eigenvalues λ1,3 = α1(μ1ε,μ2ε, τε)

+ iω1(μ1ε,μ2ε, τε) and λ2,4 = α2(μ1ε,μ2ε, τε)

+ iω2(μ1ε,μ2ε, τε) satisfy the transversality
condition, αj (0,0,0) = 0 (j = 1,2) and
ω2(0,0,0) = 3ω1(0,0,0) at point O .

In the parameter space (μ1ε,μ2ε, τε), αj (μ1ε,μ2ε,

τε) = 0 (j = 1,2) are the critical surfaces which
bound the regions of linear stability of trivial solution.
A double Hopf bifurcation occurs at the intersection
of the two critical surfaces and a 1:3 resonant double
Hopf bifurcation occurs at the point of the intersection
of α1 = 0, α2 = 0 and ω2 = 3ω1.

In the following, the multiple scale method will be
used to investigate the dynamical behavior around the
double Hopf bifurcation point.

According to the MMS, a mono-parametric family
of solution of the type is as follows:

x = x(ε, Tk, . . .), (4)

where Tk = εkt (k = 0,1,2, . . .) and ε � 1.
1:3 internal resonances are associated with third-

order effects, then the solutions do not dependent on
the time scale T1. Therefore, we assume a two scales
expansion of the solution of (1)

x(t) = εx1(T0, T2) + ε2x2(T0, T2)

+ ε3x3(T0, T2) + O
(

ε4), (5)

while the vector parameters are ordered as

μ1ε = ε2μ̂1ε, μ2ε = ε2μ̂2ε, τε = ε2τ̂ε. (6)
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The delay term in (1) can be further expanded as

x(t − τ) = εx1
(

T0 − τc − ε2τ̂ε, T2 − ε2τc − ε4τ̂ε

)

+ ε2x2
(

T0 − τc − ε2τ̂ε, T2 − ε2τc − ε4τ̂ε

)

+ ε3x3
(

T0 − τc − ε2τ̂ε, T2 − ε2τc − ε4τ̂ε

)

+ · · ·
= εx1(T0 − τc, T2) + ε2x2(T0 − τc, T2)

+ ε3[−τ̂εD0x1(T0 − τc, T2)

− τcD2x1(T0 − τc, T2)

+ x3(T0 − τc, T2)
] + O

(

ε4), (7)

where Dk = ∂/∂Tk .
By substituting (5), (6), and (7) into (1), expanding

F as well and equating separately coefficients of like
powers of ε, the following perturbative equations are
obtained

D0x1 − F0
xx1 − F0

xτ
x1τ = 0, (8)

D0x2 − F0
xx2 − F0

xτ
x2τ

= 1

2
F0

xxx2
1 + F0

xxτ
x1x1τ + 1

2
F0

xτ xτ
x2

1τ , (9)

D0x3 − F0
xx3 − F0

xτ
x3τ

= F0
xμε

x1μ̂ε + 1

6
F0

xxxx3
1 + F0

xxx1x2 + F0
xτ με

x1τ μ̂ε

+ 1

2
F0

xxxτ
x2

1x1τ + 1

2
F0

xxτ xτ
x1x2

1τ + F0
xxτ

x1τ x2

+ 1

6
F0

xτ xτ xτ
x3

1τ + F0
xxτ

x1x2τ + F0
xτ xτ

x1τ x2τ

− τcF0
xτ

D2x1τ − τεF0
xτ

D0x1τ − D2x1, (10)

where F0
xμε

= ∂2F(0,0,0)
∂x∂με

, F0
xτ με

= ∂2F(0,0,0)
∂xτ ∂με

and sim-
ilarly for higher-order derivatives. xjτ = xj (T0 −
τc, T2), j = 1,2,3.

Equation (8) has the following general solution:

x1 = A1(T2)p1e
iω1T0 + A2(T2)p2e

iω2T0 + c.c., (11)

where Aj (j = 1,2) are complex constants, pj are the
right eigenvectors of F0

x + F0
xτ

e−iωj τc associated with
the eigenvalues iωj and c.c. stands for the complex
conjugate of the preceding terms.

Substituting (11) into (9), we obtain

D0x2 − F0
xx2 − F0

xτ
x2τ

=
(

1

2
F0

xxp2
1 + F0

xxτ
p2

1e
−iω1τc + 1

2
F0

xτ xτ
p2

1e
−2iω1τc

)

× A2
1e

2iω1T0 +
(

1

2
F0

xxp2
2 + F0

xxτ
p2

2e
−iω2τc

+ 1

2
F0

xτ xτ
p2

2e
−2iω2τc

)

A2
2e

2iω1T0 +
(

1

2
F0

xxp1p̄1

+ F0
xxτ

p1p̄1e
iω1τc + 1

2
F0

xτ xτ
p1p̄1

)

A1Ā1

+
(

1

2
F0

xxp2p̄2 + F0
xxτ

p2p̄2e
iω2τc + 1

2
F0

xτ xτ

× p2p̄2

)

A2Ā2 + [

F0
xxp1p2 + F0

xxτ

(

p1p2e
−iω1τc

+ p1p2e
−iω2τc

) + F0
xτ xτ

p1p2e
−i(ω1+ω2)τc

]

× A1A2e
i(ω1+ω2)T0

+ [

F0
xxp̄1p2 + F0

xxτ

(

p̄1p2e
iω1τc + p̄1p2e

−iω2τc
)

+ F0
xτ xτ

p̄1p2e
i(ω1−ω2)τc

]

× Ā1A2e
i(ω2−ω1)T0 + c.c. (12)

Solving (12), it yields

x2 = A2
1z11e

2iω1T0 + A2
2z22e

2iω2T0 + A1Ā1z11̄

+ A2Ā2z22̄ + A1A2z12e
−i(ω1+ω2)T0

+ Ā1A2z1̄2e
i(ω2−ω1)T0 + c.c., (13)

where the vectors zrs’s and zrs̄’s (r, s = 1,2) ∈ Cn are
obtained by solving (32) in Appendix A.

Substituting (11) and (13) into (10) and eliminating
the secular terms, we can obtain the equations includ-
ing D2A1 and D2A2. Eliminating the coefficients of
D2A1 and D2A2 by using the left eigenvectors and
reabsorbing the parameter ε [6], the following bifur-
cation equations are determined:

Ȧ1 = C1μμεA1 + C111̄A
2
1Ā1 + C1̄1̄2Ā

2
1A2

+ C122̄A1A2Ā2,

Ȧ2 = C2μμεA2 + C111A
3
1 + C11̄2A1Ā1A2

+ C222̄A
2
2Ā2,

(14)

where the expressions of the coefficients Cijk and
Ciμμε are reported in Appendix B.
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To express the bifurcation equations in real form, a
mixed form representation for the complex amplitudes
is introduced

A1 = 1

2
aeiθ , A2 = 1

2
(u + iv)ei3θ . (15)

Substituting (15) into (14) and separating the real
and imaginary parts in (14), the generalized ampli-
tudes and phase modulation equations are drawn

ȧ = aR1 + 1

4
R111̄a

3 + 1

4
R1̄1̄2a

2u − 1

4
I1̄1̄2a

2v

+ 1

4
R122̄au2 + 1

4
R122̄av2,

aθ̇ = aI1 + 1

4
I111̄a

3 + 1

4
R1̄1̄2a

2v + 1

4
I1̄1̄2a

2u

+ 1

4
I122̄av2 + 1

4
I122̄au2,

u̇ = 3vθ̇ + uR2 − vI2 + 1

4
R111a

3 + 1

4
R11̄2a

2u

− 1

4
I11̄2a

2v + 1

4
R222̄u

3 + 1

4
R222̄uv2

− 1

4
I222̄u

2v − 1

4
I222̄v

3,

v̇ = −3uθ̇ + vR2 + uI2 + 1

4
I111a

3 + 1

4
R11̄2a

2v

+ 1

4
I11̄2a

2u + 1

4
I222̄u

3 + 1

4
I222̄uv2

+ 1

4
R222̄u

2v + 1

4
R222̄v

3,

(16)

where Ri = Re(Ciμμε), Ii = Im(Ciμμε), Rijk =
Re(Cijk) and Iijk = Im(Cijk). If a �= 0, from (162),
θ̇ can be expressed as a function of a, u, v. Substitut-
ing θ̇ into (163) and (164), a set of three bifurcation
equations in standard normal form is obtained.

ȧ = aR1 + 1

4
R111̄a

3 + 1

4
R1̄1̄2a

2u − 1

4
I1̄1̄2a

2v

+ 1

4
R122̄au2 + 1

4
R122̄av2,

u̇ = 3vI1 + 3

4
I111̄a

2v + 3

4
R1̄1̄2av2 + 3

4
I1̄1̄2auv

+ 3

4
I122̄v

3 + 3

4
I122̄u

2v + uR2 − vI2

+ 1

4
R111a

3 + 1

4
R11̄2a

2u − 1

4
I11̄2a

2v

+ 1

4
R222̄u

3 + 1

4
R222̄uv2 − 1

4
I222̄u

2v (17)

− 1

4
I222̄v

3,

v̇ = −3uI1 − 3

4
I111̄a

2u − 3

4
R1̄1̄2auv − 3

4
I1̄1̄2au2

− 3

4
I122̄uv2 − 3

4
I122̄u

3 + vR2 + uI2

+ 1

4
I111a

3 + 1

4
R11̄2a

2v + 1

4
I11̄2a

2u + 1

4
I222̄u

3

+ 1

4
I222̄uv2 + 1

4
R222̄u

2v + 1

4
R222̄v

3.

In order to obtain (17), we assume that a �= 0, but
by observing (17), we find that a = 0 still admits
(17). If we assume that a1 = |A1| = a, a2 = |A2| =√

u2 + v2, from (17), we obtain that

ȧ1 = R1a1 + 1

4
R111̄a

3
1 + 1

4
R1̄1̄2a

2
1u − 1

4
I1̄1̄2a

2
1v

+ 1

4
R122̄a1a

2
2,

a2ȧ2 = uu̇ + vv̇

= R2a
2
2 + 1

4
R111a

3
1u + 1

4
I111a

3
1v

+ 1

4
R11̄2a

2
1a2

2 + 1

4
R222̄a

4
2 .

(18)

Equation (18) admits the trivial solution a1 =
a2 = 0. However, nontrivial steady-state solutions are
possible causing monomodal or bimodal solutions.
Monomodal solution occurs when one of the two
model amplitudes vanishes. Thus, if a2 = 0, namely,
u = v = 0, (182) is identically satisfied, while (181)

leads to

a10 =
√

− 4R1

R111̄
.

Similarly, if a1 = 0, (181) is identically satisfied, while
(182) leads to

a20 =
√

− 4R2

R222̄
.

Finally, if a1 and a2 are different from zero, a bimodal
(quasiperiodic) solution exists. From (181) and (182),
we have

1

4
a1u = 1

4a2
1(R1̄1̄2I111 + R111I1̄1̄2)
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× (−R111̄I111a
4
1 − 4R1T111a

2
1

− R122̄I111a
2
1a2

2 − R11̄2I1̄1̄2a
2
1a2

2

− 4R2I1̄1̄2a
2
2 − R222̄I1̄1̄2a

4
2

)

,

1

4
a1v = 1

4a2
1(R1̄1̄2I111 + R111I1̄1̄2)

× (

R111R111̄a
4
1 + 4R1R111a

2
1

+ R111R122̄a
2
1a2

2 − R11̄2R1̄1̄2a
2
1a2

2

− 4R2R1̄1̄2a
2
2 − R222̄R1̄1̄2a

4
2

)

.

By applying the relationship u2 + v2 = a2
2 , we get

(
1

4
a1u

)2

+
(

1

4
a1v

)2

= 1

16
a2

1a2
2 . (19)

By instituting 1
4a1u and 1

4a1v into (19), we can ob-
tain the relationship of a1 and a2, then we can get the
region in which the bimodal (quasiperiodic) solution
exists.

3 An example

In this section, as a sample, we investigate the dynam-
ics of two van der Pol oscillators with time delay cou-
pling [19]. Our work is motivated by applications to
laser dynamics and the coupling of microwave oscil-
lators. The motion of this system is governed by the
following delay differential equations:

ÿ1 + ω2
10y1 + βẏ1 + γy2

1 ẏ1 = αẏ2(t − τ),

ÿ2 + ω2
20y2 + βẏ2 + γy2

2 ẏ2 = αẏ1(t − τ).
(20)

Letting x1 = y1, x2 = ẏ1, x3 = y2 and x4 = ẏ2, (20)
can be rewritten as

ẋ1 = x2,

ẋ2 = −ω2
10x1 − βx2 + αx4(t − τ) − γ x2

1x2,

ẋ3 = x4,

ẋ4 = −ω2
20x3 − βx4 + αx2(t − τ) − γ x2

3x4.

(21)

Linearizing (21) at O(0,0,0,0), we obtain

ẋ1 = x2,

ẋ2 = −ω2
10x1 − βx2 + αx4(t − τ),

ẋ3 = x4,

ẋ4 = −ω2
20x3 − βx4 + αx2(t − τ).

(22)

The characteristic equation corresponding to (22) is

(

λ2 + βλ + ω2
10

)(

λ2 + βλ + ω2
20

) = (

αλe−λτ
)2

. (23)

Supposing that λ1,3 = ±iω (ω > 0) is one pair eigen-
values of (23), then λ2,4 = ±3iω are also one pair
eigenvalues of (23). Substituting λ = iω into (23), we
have
(

ω2
10 − ω2)(ω2

20 − ω2) − β2ω2

+ iβω
(

ω2
10 + ω2

20 − 2ω2)

= −α2ω2 cos 2ωτ + α2ω2 sin 2ωτ.

Separating the real and imaginary parts, we derive that
(

ω2
10 − ω2

)(

ω2
20 − ω2

) − β2ω2

= −α2ω2 cos 2ωτ,

βω
(

ω2
10 + ω2

20 − 2ω2
) = α2ω2 sin 2ωτ.

(24)

Similarly, substituting λ = 3iω into (23) and separat-
ing the real and imaginary parts, we have
(

ω2
10 − 9ω2)(ω2

20 − 9ω2) − 9β2ω2

= −9α2ω2 cos 6ωτ, (25)

3βω
(

ω2
10 + ω2

20 − 18ω2) = 9α2ω2 sin 6ωτ.

From (24), we obtain that
[(

ω2
10 − ω2)(ω2

20 − ω2) − β2ω2]2

+ [

βω
(

ω2
10 + ω2

20 − 2ω2)]2 = (

α2ω2)2
. (26)

Similarly, from (27), we get that

[(

ω2
10 − 9ω2)(ω2

20 − 9ω2) − 9β2ω2]2

+ [

3βω
(

ω2
10 + ω2

20 − 18ω2)]2 = (

9α2ω2)2
. (27)

Noticing that cos 3ωτ = (cosωτ)3 −3 cosωτ(sinωτ)2,
we have

9β2ω2 − (ω2
10 − 9ω2)(ω2

20 − 9ω2)

9α2ω2

=
(

β2ω2 − (ω2
10 − ω2)(ω2

20 − ω2)

α2ω2

)3

− 3

(
β2ω2 − (ω2

10 − ω2)(ω2
20 − ω2)

α2ω2

)

×
(

βω(ω2
10 + ω2

20 − 2ω2)

α2ω2

)2

. (28)
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44 W. Wang, J. Xu

Fig. 1 The eigenvalues of system (21) at point (βc,αc, τc) =
(0,1.00664,1.5233) with ω10 = 1.1 and ω10 = 2.9

Fixing ω10 = 1.1 and ω10 = 2.9 and solving the (26),
(27), and (28), we can obtain that ω = 1.03118, β = 0,
α = 1.00664. Substituting this values into (26) and
(27), we have

sin 2ωτ = 0, cos 2ωτ = −1,

sin 6ωτ = 0, cos 6ωτ = −1.
(29)

It follows that

2ωτ = π + 2jπ, j = 0,1,2, . . . , (30)

then

τ = π + 2jπ

2ω
, j = 0,1,2, . . . . (31)

Then a 1:3 resonant double Hopf bifurcation maybe
occur at point (βc,αc, τc) = (0,1.00664,1.5233)

where j = 0. In order to verify the eigenvalue con-
dition, we show all the eigenvalues of system (21)
in Fig. 1. We can see that system (21) has two
pairs of purely imaginary eigenvalues and all the re-
maining eigenvalues λh (h ≥ 5) have negative parts
at bifurcation point. Then the point (βc,αc, τc) =
(0,1.00664,1.5233) is a 1:3 resonant double Hopf bi-
furcation point with the frequencies ω1 = 1.03118 and
ω2 = 3ω1.

In order to obtain the neighboring solutions derived
from such double Hopf bifurcation point with 1:3 res-
onance, we let β = βc + βε , α = αc + αε , τ = τc + τε ,
where βε , αε and τε are very small. Then (20) can be
rewritten as

ẋ1 = x2,

ẋ2 = −ω2
10x1 − βεx2 + αcx4(t − τ)

+ αεx4(t − τ) − γ x2
1x2,

ẋ3 = x4,

ẋ4 = −ω2
20x3 − βεx4 + αcx2(t − τ)

+ αεx2(t − τ) − γ x2
3x4.

Then

F0
x :=

⎛

⎜
⎜
⎝

0 1 0 0
−ω2

10 0 0 0
0 0 0 1
0 0 −ω2

20 0

⎞

⎟
⎟
⎠

,

F0
xτ

:=

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 αc

0 0 0 0
0 αc 0 0

⎞

⎟
⎟
⎠

.

Using (3), we obtain that

p1 =
(

1, iω1,
ω2

10 − ω2
1

αcω1
,
i(ω2

10 − ω2
1)

αc

)

,

p2 =
(

1, iω2,
ω2

2 − ω2
10

αcω2
,
i(ω2

2 − ω2
10)

αc

)

,

q1 = e1

(

− iω2
10

ω1
,1,− i(α2

c − ω2
1 + ω2

10)

αc

,
ω2

10 − ω2
1

αcω1

)

,

q2 = e2

(

− iω2
10

ω2
,1,

i(α2
c − ω2

2 + ω2
10)

αc

,
ω2

2 − ω2
10

αcω1

)

,

where

e1 = iα2
cω1

2[α2
cω

2
10 + (ω2

10 − ω2
1)

2] ,

e2 = iα2
cω2

2[α2
cω

2
10 + (ω2

10 − ω2
2)

2] .

Therefore, if we let βε = ε2β̂ε , αε = ε2α̂ε and τε =
ε2τ̂ε and use the same procedure as in the previous sec-
tion, we can get Cjμμε and Cijk . Substituting Cjμμε

and Cijk into (17), three bifurcation equations in real
form are obtained.

In the following, our analysis is performed around
the bifurcation point (0,1.00664,1.5233). For (20),
one is usually interested in the effects of variations of
either the delay τ or the feedback α. Therefore, we as-
sume that β̂ε is fixed at 0, then we analyze the effects
of variations of τ̂ε and α̂ε in the (τ̂ε, α̂ε)-plane. As
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Fig. 2 The cross-section
and phase portraits for 1:3
resonant double Hopf
bifurcation: (a) the
cross-section at β̂ε = 0;
Fig. (I) to (VI): phase
portraits in regions (I)
to (VI); (i) and (ii): two
selected paths along which
the bifurcation diagrams are
drawn

shown in Fig. 2, the classification and phase-portraits
for 1:3 resonant double Hopf bifurcation are given.
Hopf bifurcations for the state variables x appear as
divergence bifurcations for the amplitude variables
(a1, a2). The critical boundaries labeled as D1 and D2

have been represented in Fig. 2(a). The (τ̂ε, α̂ε)-plane
is divided into six regions and the number and the sta-
bility of analytical solutions in regions (I)–(VI) are
displayed by a1 versus a2. As shown in Fig. 2, there is
a stable trivial solution E0(0,0) in region (I) which is
an amplitude death region. With (τ̂ε, α̂ε) changing into
region (II), the trivial solution loses its stability and a
stable solution E1(a10,0) appears. When (τ̂ε, α̂ε) en-
ters into region (III), the solutions (0,0) and (a10,0)

still exist, and a unstable solution E2(0, a20) appears.
In region (IV), a stable nontrivial solution E3(a12, a22)

appears together with two unstable solutions (a10,0)
and (0, a20). In region (V), there are three solutions
(0,0), (a10,0) and (0, a20). In contrast with the situ-
ation in region (III), the solution (0, a20) is stable and
(a10,0) is unstable. In region (VI), the solution (a10,0)
disappears and the solution (0, a20) become stable so-
lution.

In order to have a clearer picture of the analyt-
ical predictions, in Fig. 2(a), two straight paths are
considered, along which the bifurcation diagrams of
the amplitudes a1 and a2 are built up. Along path (i)
(τ̂ε = −0.5), a bifurcation takes place at point A and a
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Fig. 3 Bifurcation
diagrams along paths (i)
and (ii) for the 1:3
resonance

stable branch E1 arises, then another unstable branch
E2 bifurcates from (0,0) at point B. At point C, E1

loses its stability and an stable branch E3 occurs. At
point D, E3 collapses with E2, then E3 disappears and
E2 becomes stable (Fig. 3(i)). Along path (ii) (α̂ε = 6),
in contrast to the former path, the parameter α̂ε is fixed
and the parameter τ̂ε is varied. The relevant bifurcation
diagrams are displayed in Fig. 3(ii). The equilibrium
paths E1 and E2 bifurcate from point H and E, respec-
tively, are both unstable. At point F, E2 bifurcates and
its stability changes, then an stable branch E3 occurs
at point F and disappears at point G. The results are in
accord with those of previous analytical predictions.

In Fig. 4, numerical simulations for the original
system in the plane of α − τ are given. Six regions
responding to the six regions in Fig. 2 are divided.
In regions I, the origin is stable. In regions II and III,
there is a stable periodic solution with a frequency ω1

responding to the monomodal solution E1(a10,0) in
the region II and III of Fig. 2(a). In regions V and VI,
a stable periodic solution with frequency ω2 respond-
ing to the monomodal solution E2(0, a20) in the re-
gion V and VI of Fig. 2(a) exists. In region IV, a stable
quasiperiodic solution exists. Obviously, the results of
numerical simulations are in accord with those of the
analysis in Fig. 2.

In this paper, there are three control parameters α, β
and τ . In the following, the effects of the third control
parameter on (21) will be shown. By fixing α̂ε = 0,

the dynamical behavior around the bifurcation point
are classified in the plane of β̂ε − τ̂ε (Fig. 5). In Fig. 5,
we can find that there are different dynamical behavior
when the parameter β̂ε changes into different region.
Therefore, β̂ε is a bifurcation parameter. In addition,
some numerical simulation results in the plane of β −
τ of original system are given in Fig. 6. The results
of numerical simulations are in accord with those of
analytical predications. Some interesting phenomena
such as amplitude death, periodic solution, and period
three solution occur. In Fig. 7, the Poincaré map in
region IV in Fig. 6 is given. The Poincaré map has
three points and it means that the system has a period
three solution.

4 Conclusion

We have proposed an analytical method to investigate
a general n-dimensional delay differential equations
undergoing a 1:3 resonant double Hopf bifurcation. By
using MMS and truncating the analysis at the ε3-order,
first-order bifurcation equations are obtained. In order
to obtain a set of three bifurcation equations in stan-
dard normal form equations, a mixed polar-Cartesian
representation for the amplitudes is used. Then the rel-
evant complex bifurcation equations are recast in real
form. By analyzing the bifurcation equations, the dy-
namical behaviors of the original system are obtained.
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Fig. 4 The cross-section
and phase portraits for (21)
when β = 0, Fig. (I) to
(VI): the phase portraits in
regions (I) to (VI)

As an example, a pair of coupled van der Pol oscil-
lators are studied. For a suitable choice of three control
parameters, a 1:3 resonant double Hopf bifurcation
can occur. By varying the set of control parameters,
the dynamical behaviors of the system in the neigh-
borhood of the bifurcation point are investigated. By
employing the software package AUTO [20], the bi-
furcation diagrams are obtained by fixing two of the
three control parameters. Then the dynamical behav-
iors arising from the bifurcation are classified quali-
tatively in a two-parameter cross-section. The results
show the rich dynamical behaviors including the am-
plitude death, periodic solution, quasiperiodic solu-
tion and period three solution. In order to verify the
theoretical results, the Runge–Kutta scheme is adopt

to produce the numerical results. The comparison be-
tween analytical predictions and numerical results re-
veals a qualitatively excellent agreement.

Acknowledgements This research is supported by the State
Key Program of National Natural Science of China under Grant
No. 11032009 and the National Science Foundation for Distin-
guished Young Scholars of China under Grant No. 10625211.

Appendix A

The vectors zrs’s and zrs̄’s (r, s = 1,2) ∈ Cn appear-
ing in (13) are obtained by solving the following equa-
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Fig. 5 The cross-section
and phase portraits for 1:3
resonant double Hopf
bifurcation: (a) the
cross-section at α̂ε = 0;
Fig. (I) to (VI): phase
portraits in regions (I)
to (VI)

tions:

(

2iω1E − F0
x − F0

xτ
e−2iω1τc

)

z11

= 1

2
F0

xxp2
1 + F0

xxτ
p2

1e
−iω1τc + 1

2
F0

xτ xτ
p2

1e
−2iω1τc ,

(

2iω2E − F0
x − F0

xτ
e−2iω2τc

)

z22

= 1

2
F0

xxp2
2 + F0

xxτ
p2

2e
−iω2τc + 1

2
F0

xτ xτ
p2

2e
−2iω2τc ,

(−F0
x − F0

xτ

)

z11̄

= 1

2
F0

xxp1p̄1 + F0
xxτ

p1p̄1e
iω1τc + 1

2
F0

xτ xτ
p1p̄1,

(−F0
x − F0

xτ

)

z22̄

= 1

2
F0

xxp2p̄2 + F0
xxτ

p2p̄2e
iω1τc + 1

2
F0

xτ xτ
p2p̄2,

(32)

(

iω1E + iω2E − F0
x − F0

xτ
e−i(ω1+ω2)τc

)

z12

= F0
xxp1p2 + F0

xxτ

(

p1p2e
−iω1τc + p1p2e

−iω2τc
)

+ F0
xτ xτ

p1p2e
−i(ω1+ω2)τc ,

(−iω1E + iω2E − F0
x − F0

xτ
ei(ω1−ω2)τc

)

z1̄2

= F0
xxp̄1p2 + F0

xxτ

(

p̄1p2e
iω1τc + p̄1p2e

−iω2τc
)

+ F0
xτ xτ

p̄1p2e
i(ω1−ω2)τc .
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Fig. 6 The cross-section
and phase portraits for (21)
when α = 1.00664, Fig. (I)
to (VI): the phase portraits
in regions (I) to (VI)

Fig. 7 The Poincaré map in region IV in Fig. 6

Appendix B

The coefficients Cijk and Ciμμε appearing in (14) are

C1μμε = 1

M1
qH

1

(

F0
xμμ̂εp1 + F0

xτ με
μ̂εp1e

−iω1τc

− iω1τ̂εF0
xτ

p1e
−iω1τc

)

,

C111̄ = 1

M1
qH

1

[
1

2
F0

xxxp2
1p̄1 + F0

xx(p1z̄11̄ + z11p̄1

+ z11̄p1) + 1

2
F0

xxxτ

(

2p2
1p̄1e

−iω1τc

+ p2
1p̄1e

iω1τc
) + F0

xxτ

(

p1z̄11̄e
−iω1τc

+ z11p̄1e
iω1τc + z11̄p1e

−iω1τc
)
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+ 1

2
F0

xxτ xτ

(

2p2
1p̄1 + p2

1p̄1e
−2iω1τc

)

+ 1

2
F0

xτ xτ xτ
p2

1p̄1e
−iω1τc + F0

xxτ

(

p1z̄11̄

+ z11p̄1e
−2iω1τc + z11̄p1

)

+ F0
xτ xτ

(

p1z̄11̄e
−iω1τc + z11p̄1e

−iω1τc

+ z11̄p1e
−iω1τc

)
]

,

C1̄1̄2 = 1

M1
qH

1

[
1

2
F0

xxxp2p̄2
1 + F0

xx(z̄11p2 + z1̄2p̄1)

+ 1

2
F0

xxxτ

(

2p2p̄2
1e

iω1τc + p2p̄2
1e

−iω2τc
)

+ F0
xxτ

(

z̄11p2e
−3iω1τc + z1̄2p̄1e

iω1τc
)

+ 1

2
F0

xxτ xτ

(

2p2p̄2
1e

−2iω1τc + p2p̄2
1e

2iω1τc
)

+ 1

2
F0

xτ xτ xτ
p2p̄2

1e
−iω1τc

+ F0
xxτ

(

p2z̄11e
2iω1τc + z1̄2p̄1e

−2iω1τc
)

+ F0
xτ xτ

(

p2z̄11e
−iω1τc + z1̄2p̄1e

−iω1τc
)
]

,

C122̄ = 1

M1
qH

1

[

F0
xxxp1p2p̄2 + F0

xx(z̄22̄p1 + z̄1̄2p2

+ z12p̄2 + z22̄p1) + 1

2
F0

xxxτ

(

2p1p2p̄2e
−iω1τc

+ 2p1p2p̄2e
iω2τc + 2p1p2p̄2e

−iω2τc
)

+ F0
xxτ

(

z̄22̄p1e
−iω1τc + z̄1̄2p2e

−3iω1τc

+ z12p̄2e
3iω1τc + z22̄p1e

−iω1τc
)

+ 1

2
F0

xxτ xτ

(

2p1p2p̄2 + 2p1p2p̄2e
2iω1τc

+ 2p1p2p̄2e
−4iω1τc

) + F0
xτ xτ xτ

p1p2p̄2e
−iω1τc

+ F0
xxτ

(

z̄22̄p1 + z̄1̄2p2e
2iω1τc + z12p̄2e

−4iω1τc

+ z22̄p1
)+F0

xτ xτ

(

z̄22̄p1e
−iω1τc + z̄1̄2p2e

−iω1τc

+ z12p̄2e
−iω1τc + z22̄p1e

−iω1τc
)
]

, (33)

C2μμε = 1

M2
qH

2

(

F0
xμε

μ̂εp2 + F0
xτ με

μ̂εp2e
−iω2τc

− iω2τ̂εF0
xτ

p2e
−iω2τc

)

,

C111 = 1

M2
qH

2

[
1

6
F0

xxxp3
1 + F0

xxp1z11 + 1

2
F0

xxxτ

× p3
1e

−iω1τc + F0
xxτ

p1z11
(

e−iω1τc + e−2iω1τc
)

+ 1

2
F0

xxτ xτ
p3

1e
−2iω1τc + 1

6
F0

xτ xτ xτ
p3

1e
−3iω1τc

+ F0
xτ xτ

p1z11e
−3iω1τc

]

,

C11̄2 = 1

M2
qH

2

[

F0
xxxp1p2p̄1 + F0

xx(z̄11̄p2 + z12p̄1

+ z11̄p2 + z1̄2p1) + 1

2
F0

xxxτ

(

2p1p2p̄1e
−iω2τc

+ 2p1p2p̄1e
iω1τc + 2p1p2p̄1e

−iω1τc
)

+ F0
xxτ

(

z̄11̄p2e
−3iω1τc + z12p̄1e

iω1τc

+ z11̄p2e
−3iω1τc + z1̄2p1e

−iω1τc
)

+ 1

2
F0

xxτ xτ

(

2p1p2p̄1 + 2p1p2p̄1e
−2iω1τc

+ 2p1p2p̄1e
−4iω1τc

) + F0
xτ xτ xτ

p1p2p̄1e
−3iω1τc

+ F0
xxτ

(

z̄11̄p2 + z12p̄1e
−4iω1τc + z11̄p2

+ z1̄2p1e
−2iω1τc

) + F0
xτ xτ

(

z̄11̄p2e
−3iω1τc

+ z12p̄1e
−iω1τc + z11̄p2e

−3iω1τc

+ z1̄2p1e
−3iω1τc

)
]

,

C222̄ = 1

M2
qH

2

[
1

2
F0

xxxp2
2p̄2 + F0

xx(z̄22̄p2 + z22p̄2

+ z22̄p2) + 1

2
F0

xxxτ

(

2p2
2p̄2e

−iω2τc

+ p2
2p̄2e

iω2τc
) + F0

xxτ

(

z̄22̄p2e
−3iω1τc

+ z22p̄2e
3iω1τc + z22̄p2e

−3iω1τc
)

+ F0
xxτ xτ

(

p2
2p̄2e

−6iω1τc + p2
2p̄2

)

+ 1

2
F0

xτ xτ xτ
p2

2p̄2e
−3iω1τc + F0

xxτ

(

z̄22̄p2

+ z22p̄2e
−6iω1τc + z22̄p2

)

+ F0
xτ xτ

(

z̄22̄p2e
−3iω1τc + z22p̄2e

−3iω1τc

+ z22̄p2e
−3iω1τc

)
]

,

qH
1

(

τcF0
xτ

e−iω1τc + E
)

p1 = M1,

qH
2

(

τcF0
xτ

e−iω2τc + E
)

p2 = M2.
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