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SUMMARY
In this paper, the definition of generalized symmetric
Gough–Stewart parallel manipulators is presented. The
concept of dynamic isotropy is proposed and the singular
values of the bandwidth matrix are introduced to evaluate
dynamic isotropy and solved analytically. Considering the
payload’s mass-geometry characteristics, the formulations
for completely dynamic isotropy are derived in close
form. It is proven that a generalized symmetric Gough–
Stewart parallel manipulator is easer to achieve dynamic
isotropy and applicable in engineering applications. An
optimization procedure based on particle swarm optimization
is proposed to obtain better dexterity and large singularity-
free workspace, which guarantees the optimal solution and
gives mechanically feasible realization.

KEYWORDS: Parallel manipulators; Generalized symmet-
ric Gough–Stewart; Dynamic isotropy; Optimal design; PSO.

1. Introduction
Gough–Stewart parallel manipulators have been employed
in a wide variety of areas, such as manipulation,
matching, control, tracking, and haptic force feedback.
However, due to highly nonlinear, highly time-varying, and
highly dynamic coupling, it is hardly to realize precision
pointing, motion planning, control scheme, calibration,
and compensation, especially in many high-precision
applications, including laser weapon pointing, scanning
microscopes, and integrated circuit fabrication. In general,
decoupled and isotropic measure is usually considered as one
of the desired performance. Designing a parallel robot that
is isotropic in one pose or over its full workspace is often
considered as a design objective.1 Isotropic manipulators
are also generally considered as designs with optimum
dexterity.2

Isotropy can be categorized into kinematic isotropy,
static isotropy, and dynamic isotropy. Kinematic isotropy
implies the ability of the manipulator end-effector to move
equally well in all spatial directions, while static isotropy
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concerns the ability of resisting forces and moments. In
the past research, kinematic isotropy and static isotropy
have been studied in-depth.3–6 The algebraic formulations
were derived by symbolic computations and obtained
a family of configurations in closed form,5–6 but it is
a little difficult to deduce the formulation, owing to
the complexity of the structure, and the limitation of
calculation methods. Orthogonal performance implies that a
Gough–Stewart parallel manipulator is decoupled. McInroy
et al. explored various properties of the Jacobian in order to
achieve the optimum design of orthogonal Gough–Stewart
parallel manipulators.7–12 Jafari et al. proposed an analytical
description of the set of all such manipulators and developed
a method allowing the choice of optimal geometries among
all the possible geometries.8 Yi et al. presented a novel
method for generating classes of orthogonal Gough–Stewart
parallel manipulators with an even number of struts.9–11

Their method gives more flexibility and still achieves
isotropic manipulators. However, it is not easy to solve
for the complete set of solutions in their work. Tsai
et al. have got a large number of isotropy generators
by solving the nonlinear equations analytically.12 They
have proposed optimal design methods and developed 6-
DOF fully symmetric parallel manipulators or redundant
manipulators with different shapes or different types of
kinematic chains.13–15 However, a natural length scale during
the kinematic isotropy or static isotropy design is lack due
to the fact that the Jacobian elements are not dimensionally
homogenous, and some researchers have tried to overcome
this problem using length scales.16–17 It does limit the
applications some.

In the previous work, they assumed that the motion
reference point coincides with the geometric center of
the movable platform or the mass-center of the payload,
i.e., they did not consider the mass-center’s influence and
the mathematical description was omitted discovering the
relationships between geometry of the manipulator, mass-
center, and inertia parameters of the payload. McInroy et al.
found several geometries and gave examples of three
kinds of the mass-center distribution when obtaining an
isotropic configuration.7 How to hunt and design an optimal
manipulator for a given payload or special mass-center
requirement? Does it exist that an analytical expression
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can describe the relationships between geometry of the
manipulator and mass-center of the payload? What is more,
the structure can be optimized with desired performances
in the previous work. However, we prefer to focus on
the dynamic response of a parallel manipulator in real
applications. Theoretically, kinematic isotropy and static
isotropy both have relations to geometry of the manipulator
and stiffness of the struts. Unfortunately, theses two
performance measures cannot be used to evaluate the
response of control system. The relative design routine
is discrete from the view of practice. The designs of
the structure optimum and the control system should be
integrated rather than they are departed from each other. A
new measure should be introduced to bridge the gap.

When a standard Gough–Stewart parallel manipulator is
expected to achieve complete isotropy, the strictly physical
restriction for the payload exists: IZZ = 4IXX = 4IYY .18–19

In practice, it is hardly to be satisfied for a real payload. Even
if studied in single degree of freedom in the laboratory, it may
require laborious work and tedious procedures as reported
in literature.19 Could this restriction be loosen or broken
down so that the real payload is valid and the manipulator is
mechanical feasible?

In this paper, we will propose the concept of dynamic
isotropy and derive the analytical formulations for complete
dynamic isotropy to generate a class of the generalized
symmetric parallel manipulators. Factually, the analytical
algorithm does not guarantee the optimal solution or give
possible realization. We will present a systematical design
procedure based on particle swarm optimization (PSO) to
obtain better dexterity, large singularity-free workspace,
and without interactions among elements. Compared to the
previous work, our optimal design procedure is based on the
derived formulations and is not a purely numerical solution.

2. Dynamic Isotropy Measures

2.1. Architecture description
To solve the problems and testify our ideas, we focus
on a more generalized class of Gough–Stewart parallel
manipulators. For completeness, we give the following
definition.

Definition 1: A parallel manipulator consists of a movable
platform, a fixed base, and six struts, each with a linear
actuator. The struts are partitioned into two groups: the first
group with strut 1, 3, 5 and the second group with strut 2, 4, 6.
The attached points of each strut are uniformly spaced on the
circumferences of two circles on the movable platform and
the fixed base, respectively. The three struts in each group
are rotational symmetry and repeat every 120◦. The parallel
manipulators with this kind of configurations are defined as
generalized symmetric Gough–Stewart parallel manipulators
(GSGSPMs).

The architecture of a GSGSPM is shown in Fig. 1. It can be
described by nine parameters at neutral position: ra1, ra2, rb1,
rb2, H , α1, α2, β1, and β2. ra1 and rb1 denote the outer radii of
the circles of the group with 1, 3, 5 of the movable platform
and the fixed base, respectively. ra2 and rb2 denote the outer
radii of the circles of the group with 2, 4, 6 of the movable

Fig. 1. The architecture and coordinate definition of a GSGSPM.

platform and the fixed base, respectively. The angles between
the adjacent joint points of the strut 1, 2 and the X-axis are
represented by α1, α2, β1, and β2. H denotes the height of
GSGSPMs at neutral position. When ra1 = ra2, rb1 = rb2,
L1 = L2, and α2 − β2 = − (α1 − β1), the manipulator
satisfies mirror symmetry and belongs to a standard Gough–
Stewart parallel manipulator.

According to the definition, two circles of each group are
restricted in a common planar surface. In ref. [13], Tsai et al.
studied the more general case in which four circles cannot be
coplanar. The coplanar configuration is more mechanically
feasible in practical applications. Therefore, the definition
has fewer limitations, while it is approved in real
areas.

With reference to Fig. 1, the body frame {P} with origin
OP and the inertial frame {B} with origin OB are embedded
in the movable platform and the fixed base, respectively.
Let B

P R denote the rotation matrix of the body frame {P}
relative to the inertial frame {B}. Denoting the upper joint
points by PA in frame {P} and the lower joint points by
BB in frame {B}, the inverse Jacobian matrix J−1 can be
constructed directly by the unit vectors along struts. In
this paper, the inverse Jacobian is considered to be of full
rank. Otherwise, some constraints should be enforced to
maintain kinematic stability. If the motion reference point
of the platform does not coincide with the mass-center of
the payload, the inverse Jacobian matrix J−1 should be
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written as

J−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT
1

(
B
PR(PA1−Pρc) × e1

)T

eT
2

(
B
PR(PA2−Pρc) × e2

)T

eT
3

(
B
PR(PA3−Pρc) × e3

)T

eT
4

(
B
PR(PA4−Pρc) × e4

)T

eT
5

(
B
PR(PA5−Pρc) × e5

)T

eT
6

(
B
PR(PA6−Pρc) × e6

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where the mass-center vector relative to the motion reference
point is denoted by ρc in frame {B} and Pρc in frame {P}
with ρc = B

P RPρc + Cp,
Pρc = [Px Py Pz]T. Cp is the

motion reference point with Cp = [0 0 H ]T. ei denotes the
unit vector in direction of the ith actuator, which can be
described by

ei = (
B
P RP Ai + Cp − BBi

)/
Li, (2)

where Li is the length of the ith strut.
Considering that a GSGSPM is symmetric with two

rotational strut groups, a relationship must exist between
the length of the strut 1 and the one of the strut 2, denoted
by ρL1 = L2. The configurations can be placed into two
categorizes including the family that all strut lengths are equal
if ρ = 1 and another family that they are alternate equal. The
kinematic constraint ρL1 = L2 by no means reflects any
limitation the above deduced formulations, instead that it
only affect the complexity of the problem. Of course, this is
in spite of extensive searches using various methods.

2.2. Concept of dynamic isotropy
In this paper, we assume that the movable platform and the
fixed base are rigid bodies. Using an elastic model for the
variations of the joint variables as functions of the forces
applied to the strut,21 the stiffness matrix K of a GSGSPM
in task space can be described by

K = khJ−TJ−1, (3)

where kh is the elastic stiffness of the strut.
In many application fields, the mass and inertia of the

movable platform are preponderant compared with the mass
and inertia of the struts. The frame can be also selected
to coincide with the orientation of the principle axes of
the payload. Let Mt denote the mass-inertia matrix of the
payload, then Mt should be diagonal. Multiplying Eq. (3) by
the inverse mass-inertia matrix M−1

t results into

M−1
t K =

⎡
⎣ 1

m
I3×3 0

0 I−1
c

⎤
⎦ khJ−TJ−1, (4)

where I3×3 is an identity matrix. m denotes the translational
inertia mass. Ic is the rotational mass-inertia matrix expressed
in frame {B}, Ic = diag( Ixx Iyy Izz ).

In fact, the stiffness of the struts conditions the
manipulator’s stiffness. M−1

t K implies the natural

frequencies in task space. To evaluate the dynamic
characteristics, we present a new definition.

Generally, square roots of the eigenvalues of Eq. (4)
represent the natural frequency in task space.

Definition 2: M−1
t K describes the frequency coupling of

different degrees of freedom of a GSGSPM. From the view
of the control in practice, if kh is not the elastic stiffness of
the strut but the real stiffness of the close-loop control of the
strut, M−1

t K implies the bandwidth or response performance.
Thus, M−1

t K can be defined as the bandwidth matrix, denoted
by Fbw. If Fbw is a scaling identity matrix, then a GSGSPM
is orthogonal and isotropic and Fbw is said to be defined as
dynamic isotropy.

It is feasible to design a GSGSPM so that bandwidths of the
struts are partially or fully equal by choosing an appropriate
mechanical structure or by some control strategies, at
least for some poses. The dynamic isotropy considers the
mass geometry characteristics, different from the previous
researches. The dynamic isotropy is valuable for practical
applications and possibly bridges a gap in the structure
optimization and the control system design.

2.3. Dynamic isotropy indices and measures
Bhattacharya uses the average of the minimal eigenvalue to
qualify the stiffness of a robot over a given workspace.20 In
this paper, the singular values of the bandwidth matrix Fbw,
denoted by λ, are used as indices to evaluate the dynamic
isotropy. Considering that GSGSPMs applied in many fields,
such as flight simulation, force/torque sensor, and micro
manipulator, often work at about neutral position, so local
measures are used to evaluate dynamic isotropy.

The minimal singular value is a bottleneck to limit the
performance of control system, so the first measure should
be larger than a specified value

η1 = σmin = min{λ}. (5)

Additionally, in order to ensure the uniformity of the
bandwidth, we propose another measure for dynamic
isotropy as

η2 =
√

σmax

σmin
=

√
max{λ}
min{λ} . (6)

3. Analytical Formulation of Dynamic Isotropy

3.1. Symbolic expression of the bandwidth matrix and
orthogonal conditions
The mass distribution of the payload is symmetrically at
X–O–Y plane when the principle inertia axes are adjusted to
coincide with X-axis and Y-axis of the frame without any bias,
then Pρc = [0 0 Pz]T. Simply extending and summarizing

Eq. (4), Fbw can be written in forms of Fbw = [ A3×3
1
m

C3×3

I−1
c C3×3 B3×3

].
The submatrix A3×3 is

A3×3 =
6∑

i=1

eieT
i . (7)
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Notice that e1eT
1 and e2eT

2 are both symmetric, then they
are both diagonal. Therefore, A3×3 is a symmetric matrix.
Similarly, the submatrices satisfy

A3 × 3 =

⎡
⎢⎣

�1 0 0

0 �1 0

0 0 �3

⎤
⎥⎦ , B3 × 3 =

⎡
⎢⎣

�4 0 0

0 �5 0

0 0 �6

⎤
⎥⎦ ,

C3×3 =

⎡
⎢⎣

C11 −C12 0

C12 C11 0

0 0 −C33

⎤
⎥⎦ , (8)

where

�1 = 3kh

2mL2
1L

2
2

(
L2

2

(
L2

1 − H 2
) + L2

1

(
L2

2 − H 2
))

,

�2 = �1 = 3kh

2mL2
1L

2
2

(
L2

2

(
L2

1 − H 2
) + L2

1

(
L2

2 − H 2
))

,

�3 = 3khH
2

mL2
1L

2
2

(
L2

1 + L2
2

)
,

�4 = 3kh

2IxxL
2
1L

2
2

(
H 2r 2

b1L
2
2 + H 2r 2

b2L
2
1 + 	1(Pz − H )2

+ 2	2(Pz − H )
)
,

�5 = 3kh

2IyyL
2
1L

2
2

(
H 2r 2

b1L
2
2 + H 2r 2

b2L
2
1 + 	1(Pz − H )2

+ 2	2(Pz − H )
)
,

�6 = 3kh

IzzL
2
1L

2
2

(
L2

2r
2

a1r
2

b1 sin2(α1 − β1)

+ L2
1r

2
a2r

2
b2 sin2(α2 − β2)

)
,

C11 = 3khH

2L2
1L

2
2

	3,

C12 = 3kh

2L2
1L

2
2

(	1(Pz − H ) + 	2),

C33 = 3khH

L2
1L

2
2

	3,

	1 = L2
2

(
L2

1 − H 2
) + L2

1

(
L2

2 − H 2
)
,

	2 = −L2
2Hrb1

(
rb1 − ra1 cos (α1 − β1)

)
− L2

1Hrb2
(
rb2 − ra2 cos (α2 − β2)

)
,

	3 = − (
L2

2ra1rb1 sin (α1 − β1) + L2
1ra2rb2 sin (α2 − β2)

)
.

λ∗
4 =

√
�4 =

√
3kh√
2Ixx

H

√
r 2
a2r

2
b1 + r 2

a1r
2

b2 − 2ra1rb1ra2rb2 cos ((α1 − β1) − (α2 − β2))

L1

√
ρ2

(
L2

1 − H 2
) + (

ρ2L2
1 − H 2

) , (16)

In linear algebra, a matrix is symmetric, if and only
if, it has an orthonormal basis of eigenvectors. It must
have an only real orthogonal matrix P, consisting of the
orthonormal basis of eigenvectors such that P−1KP is
a diagonal matrix. A diagonal matrix multiplied by a
diagonal matrix is also a diagonal matrix, so M−1

t P−1KP =
P−1FbwP = diag(λ1, λ2, λ3, λ4, λ5, λ6). It implies that
the translational and rotational motions of the manipulator are
decoupled. Consequently, we obtain the following theorem.

Theorem 1: The diagonal matrix constructed by the primary
diagonal elements of Fbw is a unique characteristic matrix
of the decoupled manipulator. The manipulator with this
property is called an orthogonal GSGSPM.

According to this theorem, the sub matrix C3×3 is a zero
matrix. Two conditions must be met

	3 = −(
L2

2ra1rb1 sin (α1 − β1)

+ L2
1ra2rb2 sin (α2 − β2)

) = 0, (9)

	1(Pz − H ) + 	2 = 0. (10)

Factually, these two conditions are the kinematic
orthogonal constraints. Rewriting Eqs. (9) and (10) yields

sin (α1 − β1) = − ra2rb2

ρ2ra1rb1
sin (α2 − β2), (11)

P ∗
Z =

− ρ2ra1(ra1 − rb1 cos(α1 − β1)) + ra2 (ra2 − rb2 cos (α2 − β2))

ρ2
(
L2

1 − H 2
) + (

ρ2L2
1 − H 2

) H.

(12)

With respect to Eq. (12), a compliance center exists
consequentially for any GSGSPMs. At the compliance
center, a GSGSPM is uncoupled. It may be useful
for micromanipulators or parallel machine. If additional
articulation attached on the manipulator, the inertia would
be changed such that it is possible to make the manipulator
orthogonal at a single configuration. Especially, the
micromanipulator will have desired local performance due
to quite small workspace.

3.2. Indices of dynamic isotropy
When a GSGSPM is orthogonal, the singular values of Fbw

can be derived directly as

λ∗
1 =

√
�1 =

√
3kh√

2mρL1

√
ρ2

(
L2

1 − H 2
) + (

ρ2L2
1 − H 2

)
,

(13)

λ∗
2 =

√
�2 =

√
3kh√

2mρL1

√
ρ2

(
L2

1 − H 2
) + (

ρ2L2
1 − H 2

)
,

(14)

λ∗
3 =

√
�3 =

√
3khH√
mρL1

√
1 + ρ2, (15)
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λ∗
5 =

√
�5 =

√
3kh√
2Iyy

×
H

√
r 2
a2r

2
b1 + r 2

a1r
2

b2 − 2ra1rb1ra2rb2 cos ((α1 − β1) − (α2 − β2))

L1

√
ρ2

(
L2

1 − H 2
) + (

ρ2L2
1 − H 2

) ,

(17)

λ∗
6 =

√
�6 =

√
3kh√

IzzL1L2

×
√

L2
2r

2
a1r

2
b1 sin2 (α1 − β1) + L2

1r
2

a2r
2

b2 sin2 (α2 − β2)

=
√

3khra1rb1 |sin(α1 − β1)|√
IzzL1

√
1 + ρ2. (18)

3.3. Conditions for complete isotropy
Since all the struts are arranged around two circles
symmetrically, the translational manipulability in the X–
Y direction is naturally isotropic, λ∗

1 = λ∗
2. The rotational

manipulability in the X–Y direction is isotropic only when
Ixx = Iyy . For complete isotropy, the indices share a common
value as below

λ∗
1 = λ∗

2 = λ∗
3 = λ∗

4 = λ∗
5 = λ∗

6 =
√

2

√
kh

m
. (19)

The height at neutral position, denoted by HISO, can be
obtained from Eqs. (13) and (15)

HISO =
√

2ρ2

3 + ρ2

√
r2
a1 + r2

b1 − 2ra1rb1 cos (α1 − β1)

=
√

2

1 + 3ρ2

√
r2
a2 + r2

b2 − 2ra2rb2 cos(α2 − β2). (20)

The compliance center can be given by

P ∗
Z = − 3 + ρ2

4ρ2(1 + ρ2)

× ρ2ra1 (ra1 − rb1 cos (α1 − β1)) + ra2(ra2 − rb2 cos (α2 − β2))(
r2
a1 + r2

b1 − 2ra1rb1 cos (α1 − β1)
) HISO,

or P ∗
Z = −

√
2(3 + ρ2)

4ρ(1 + ρ2)

× ρ2ra1 (ra1 − rb1 cos (α1 − β1)) + ra2(ra2 − rb2 cos (α2 − β2))√
r2
a1 + r2

b1 − 2ra1rb1 cos (α1 − β1)
.

(21)

The complete isotropy condition can be summarized
resulting from Eqs. (13) and (15) and Eqs. (16)

and (18).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Izz

Ixx

= 4(1 + ρ2)2

× r2
a1r

2
b1 sin2(α1 − β1)

r2
a2r

2
b1 + r2

a1r
2
b2 − 2ra1rb1ra2rb2 cos ((α1 − β1) − (α2 − β2))

,

Izz

m
= 3 + ρ2

2

r2
a1r

2
b1 sin2(α1 − β1)

r2
a1 + r2

b1 − 2ra1rb1 cos (α1 − β1)
,

ρ2
(
r2
a1 + r2

b1 − 2ra1rb1 cos (α1 − β1)
)

3 + ρ2

= r2
a2 + r2

b2 − 2ra2rb2 cos (α2 − β2)

1 + 3ρ2
.

(22)

Let p = ra1
rb1

, q = ra2
rb2

, and n = ra2
ra1

, then q

np
= rb1

rb2
. Subs-

tituting them in Eq. (21), we can obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin (α1 − β1)

− sin (α2 − β2)
= n2p

ρ2q
or

p

q
= ρ2 sin (α1 − β1)

−n2 sin (α2 − β2)
,

P ∗
Z = −

√
2(3 + ρ2)

4ρ(1 + ρ2)

×
ρ2(p2 − p cos(α1 − β1)) + (

n2p2 − n2 p2

q
cos(α2 − β2))√

p2 + 1 − 2p cos (α1 − β1)
rb1.

(23)

Similarly, Eq. (22) can be summarized as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Izz

Ixx

= 4(1 + ρ2)2

n2

sin2(α1 − β1)

1 +
(

p

q

)2

− 2

(
p

q

)
cos ((α1 − β1) − (α2 − β2))

,

or
Izz

Ixx

= 4(1 + ρ2)2

n2

× sin2(α1 − β1)

1 +
(

ρ2 sin (α1 − β1)

−n2 sin (α2 − β2)

)2

− 2

(
ρ2 sin (α1 − β1)

−n2 sin (α2 − β2)

)
cos ((α1 − β1) − (α2 − β2))

,

Izz

m
= 3 + ρ2

2

p2 sin2(α1 − β1)

p2 + 1 − 2p cos (α1 − β1)
r2
b1,

ρ2(p2 + 1 − 2p cos (α1 − β1))

3 + ρ2
=

n2p2 + n2p2

q2
− 2

n2p2

q
p cos (α2 − β2)

1 + 3ρ2
.

(24)

Analyzing Eqs. (23) and (24), we can find a fact that Izz

Ixx

only depends on ρ, n, (α1 − β1), and (α2 − β2) while Izz

m

depends on ρ and the parameters of the group 1. Therefore,
the derived close-form expressions describe strictly the
relationship between the structure parameters and the mass
geometry characteristics. That is, if given a payload, a
configuration can be directly determined. When α2 − β2 =
− (α1 − β1), ra1 = ra2, and rb1 = rb2, the configuration is
a standard Gough–Stewart parallel manipulator. Obviously,
Izz = 4Ixx = 4Iyy exists substituting the relations in
Eq. (24).

Theorem 2: A GSGSPM is easer to achieve dynamic iso-
tropy than a standard Gough–Stewart parallel manipulator,
even to remove the strict constraint Izz = 4Ixx = 4Iyy . The
compliance center of a GSGSPM can be also changed on a
larger scale.
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Fig. 2. (Colour online) The isotropic GSGSPMs: (a) 2C–2C GSGSPMs with ρ �= 1; (b) 1C–2C GSGSPMs with n = 1 and ρ = 1.

Proof 1: Exacting a special case with (α1 − β1) = −(α2 −
β2) and p

q
= ρ2 sin(α1−β1)

−n2 sin(α2−β2) = 1, then ρ = n. Substituting them
in Eq. (24), we can obtain

Izz

Ixx

= (1 + ρ2)

ρ2

2

. (25)

Eq. (25) shows that Izz

Ixx
is a function with minimum value.

When ρ = 1,
(

Izz

Ixx

)
min = 4. When ρ < 1 or ρ > 1, then

Izz > 4Ixx and Izz > 4Iyy . Therefore, we can deduce that a
GSGSPM can remove the strict constraint Izz = 4Ixx = 4Iyy

when achieving complete isotropy than a standard Gough–
Stewart parallel manipulator. Similarly, it can be proven that
it is reachable that Izz < 4Iyy . Therefore, the compliance
center of a GSGSPM can be also changed on a larger scale.
Remark: If a standard Gough–Stewart parallel manipulator
is expected to achieve complete dynamic isotropy, Izz =
4Ixx = 4Iyy must be met. In practice, it is hardly to be
realized because of the strictly physical restriction. However,
it is mechanical and feasible for a GSGSPM. Unfortunately,
Ixx = Iyy is a necessary restriction so that to satisfy complete
isotropy of rotational motions. However, it is easer to assure
Ixx = Iyy in engineering applications.

4. Optimal Design of a Class of GSGSPMs with
Dynamic Isotropy

4.1. Type synthesis
On the basis of the derived mathematical descriptions, a
class of complete dynamic isotropic GSGSPMs can be

synthesized. According to numbers of circles on the movable
platform and the fixed base, we can categorize GSGSPMs
into three families, denoted by iC–jC. For example, 2C–2C
GSGSPMs represent two circles on the movable platform
and two ones on the fixed base.

• Family 1: 2C–2C GSGSPMs
GSGSPMs with a configuration n = ra1

ra2
�= 1 and q

n2p
=

rb1
rb2

�= 1 are called as 2C–2C GSGSPMs. According to the
value of ρ, we categorize the geometry in two classes,
including ρ = 1 and ρ �= 1.

If ρ = 1, Eq. (24) is given by

Izz

Ixx

= 16

n2

× sin2(α1 − β1)

1+
(

sin (α1 − β1)

−n2 sin (α2 − β2)

)2

− 2

(
sin (α1 − β1)

−n2 sin (α2 − β2)

)
cos ((α1 − β1) − (α2 − β2))

.

(26)

By choosing the design variables, we can get complete
dynamic isotropic GSGSPMs, as shown in Fig. 2(a),
similar to the manipulators designed by Yi et al. It is
a kind of the class dynamic isotropic GSGSPMs with

sin(α1−β1)
− sin(α2−β2) = ra2rb2

ρ2ra1rb1
and ρ �= 1.

• Family 2: 1C–2C GSGSPMs
This family requires either n = ra1

ra2
= 1 or q

n2p
= rb1

rb2
= 1,

that is, the family of 1C–2C GSGSPMs and the family
of 2C–1C GSGSPMs are in equipollence. Each family of
them can be also categorize the geometry in two classes,
including ρ = 1 and ρ �= 1.
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If n = 1 and q

n2p
= rb1

rb2
�= 1 and ρ = 1, it is a class of the

family of 1C–2C GSGSPMs. Eq. (24) is given by

Izz

Ixx

=

× 16 sin2(α1 − β1)

1 +
(

sin (α1 − β1)

− sin (α2 − β2)

)2

− 2

(
sin (α1 − β1)

− sin (α2 − β2)

)
cos ((α1 − β1) − (α2 − β2))

.

(27)

If n �= 1 and q

np
= rb1

rb2
= 1 and ρ = 1, it is a class of the

family of 2C–1C GSGSPMs. Substituting in to Eq. (27)
yields

Izz

Ixx

= 16 sin2(α1 − β1)

1 + n2 − 2n cos ((α1 − β1) − (α2 − β2))
. (28)

Fig. 2(b) is a kind of 1C–2C GSGSPMs with n = 1(ra1 =
ra2) and ρ = 1 (L1 = L2). Therefore, sin(α1−β1)

− sin(α2−β2) = rb2
rb1

.
• Family 3: 1C–1C GSGSPMs

A Gough–Stewart parallel manipulator with rotational
symmetric geometry belongs to this family, that is,
the strut lengths are not all equal but alternate equal.
Therefore, the conditions are n = ra1

ra2
= 1, q

np
= rb1

rb2
= 1,

and ρ �= 1. It implies that this family only includes one
class. sin(α1−β1)

− sin(α2−β2) = 1
ρ2 , and Izz

Ixx
can be described as

Izz

Ixx

= 2(1 + ρ2)2 sin2(α1 − β1)

1 − cos ((α1 − β1) − (α2 − β2))
.

(29)

4.2. Optimal design approach
The derived analytical formulations could be used to give a
new optimal design of a GSGSPM. The structure parameters
of a GSGSPM involve the layout angles of struts α1 −
β1 and α2 − β2, the size of the fixed base platform rb1

and several dimensionless parameters, including ρ, p, q,

and n. To ensure a feasible mechanism with compact
structure, the design variables should be limited within
the spaces of 0◦ < α1 − β1 ≤ 120◦, 0◦ < α2 − β2 ≤ 120◦,
rb1min ≤ rb1 ≤ xrb1max , ρmin ≤ ρ ≤ ρmax, 0 < p ≤ 5, 0 ≤ q ≤
5, and 0 ≤ n ≤, respectively. Because rb1 ≤ rb2, q

np
≤ 1. The

optimization problem can be described as follows:

• Objective function: Eqs. (23) and (24) are satisfied as
possible.

• Optimal variables: α1 − β1, α2 − β2, rb1, ρ, p, q, and n.
Note that the number of free variables is different for each
class and any one of α1 − β1, α2 − β2, ρ, p, q, and n can
be calculated by the others.

• Subject to: 0◦ < α1 − β1 ≤ 120◦, 0◦ < α2 − β2 ≤ 120◦,
rb1min ≤ rb1 ≤ rb1max , ρmin ≤ ρ ≤ ρmax, 0 < p ≤ 5, 0 ≤
q ≤ 5, 0 ≤ n ≤ 1, and q

np
≤ 1.

The iterative design procedures are listed as follows:

(a) Choose a family that is suitable for practical application.

(b) For the payload’s center of mass criteria and inertial
parameters, considering other constraints to determine
rb1, ρ, p, q, n, α1 − β1, and α2 − β2.

An optimal design can determine a solution by defining a
cost function weighted by free parameters. It is favored in the
robotics literature. However, for 1C–1C family, the number
of free parameters is four including rb1, α1 − β1, α2 − β2,

and p, and the number of governing equations is five. It is
impossible to satisfy the inertial parameters and the given
compliance center if they come into opposition.

(c) According to the requirements of isotropy conditions,
calculate HISO.

(d) To meet the task requirements, for example, dexterity,
singularity and workspace, it is unavoidable to verify
whether satisfy other performance measures. Further, it is
necessary to ensure the mechanical feasibility, including
the intersections among components. In mathematics,
the intersections among components can be verified
by calculating the angles between the unit vector
of the struts and the axes of the joints. We have
developed an environment of motion visualization to
verify that configuration is mechanically valid. If some
modifications are needed, return to step (b), and then,
start next iteration.

This design is a multiple objectives and constrained
optimization problem. It can be solved via a direct search
method, such as the well-known Nelder-Mead simplex
algorithm. However, this traditional routine heavily depends
on good starting points. On the other hand, as a global method
based on natural evolution, the genetic algorithm (GA) can
be applied to solve a variety of optimization problems. The
PSO, proposed by Kennedy and Eberhart23, is a population-
based stochastic optimization method inspired by the social
behavior of swarm intelligence. PSO searches for optima by
exploiting a population of potential solutions and probing
the search space. PSO exchanges information between
individuals, called particles, of the population, called swarm.
Each particle adjusts its direction toward its own best position
and toward the best previous position encountered by any
other particles in the search space, which converges in
optimal region of the searching. Compared to the GA, the
PSO has no evolutionary operators in terms of crossover
and mutation, and from the viewpoint of programming,
the advantages of PSO are easy implementation and fewer
adjustable parameters. The PSO costs a longer calculation
time and possesses a better convergence rate than the GA
procedure.22 In our optimization procedure, the mechanical
feasibility of the obtained configuration is more important
for real applications in condition that a longer computational
time is available. Therefore, we prefer to use the PSO
approach.

In the PSO, regarding a D-dimensional search space and a
swarm consisting of N particles, the ith particle is represented
by a D-dimensional vector Xi = (xi1, xi1, · · · , xiD), the
velocity of this particle is Vi = (νi1, νi1, · · · , νiD), and
the best position is recorded and represented as Pi =
(pi1, pi1, · · · , piD), which corresponds to a set of the optimal
variables. For GSGSPMs optimization, the max dimensions
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of the optimization problem are 6, 5, and 5 for three families,
respectively. The particles are manipulated according
to the following equations (the superscripts denote the
iteration):

Vj+1
i = wVj

i + c1r1
[
Pj

i − Xj

i

] + c2r2
[
Pj

g − Xj

i

]
, (30)

Xj+1
i = Xj

i + Vj+1
i , (31)

where w is the inertia weight, c1 and c2 are positive constants
called the cognitive and social parameters, respectively, r1

and r2 are random numbers uniformly distributed between
0 and 1. PSO technique has proven to be efficient for
unconstrained and constrained optimization problems and
easy implementation. In this paper, it is employed for the
optimization of GSGSPMs.

Factually, the optimized manipulators are developed by
a local dynamic isotropic measure. The obtained designs,
however, might have worse dexterity, smaller workspace, or
singular points among the reachable workspace. From a view
of practice, passive joint limits and link interactions must be
considered. These evaluations belong to global measures.
Therefore, a grid-scanning process via numerical algorithm
should be employed.

4.3. Examples and discussions on optimization results
In flight simulation, it is necessary to decouple motions
and ensure the bandwidth uniform in order to replicate
the given motions and provide the pilots motion cueing.
Hence, it is an optimal design with dynamic isotropy. We
use the payload inertial parameters of the Delft SIMONA
motion system (configuration C) referring literature,23 ρc =
[ 0 0 0.45 ] Tm, m = 4300 Kg, Ic = diag(4100, 4000, 6700)
Kg·m2. Clearly, it is impossible to achieve complete isotropy
because of Ixx �= Iyy . Therefore, η2 is equal to 1.025 using
our algorithm, better than standard Gough–Stewart parallel
manipulators extensively applied in flight simulation. We
choose family 1 and family 2 to find solution due to their
feasibility.

Considering the requirements of mounting space and
workspace, additional constraints are introduced, including
H > 1.5 m and rb1 > 3 m or rb2 > 3 m. In PSO, the
population size is assigned as 30 and the maximum
generation number is set to 500. The acceleration constants
are set to c1 = 1.2 and c2 = 1.2, respectively. In addition,
the initial and final values of inertia weight are assigned as
0.8 and 0.2, respectively. If N is set to a greater number, the
computational time will be longer while the convergence
values will change a little between two neighboring. As
far as the termination criterions should be proposed for
the optimization procedure, one criterion is the maximum
number of iterations without change (10), and another one
is the termination tolerances (1.0E-6). The evolutions of
behavioral variables are shown in Fig. 3, including three
configurations.

The optimizations are convergent as listed in Tables I
and II.

In view of the optimized results in Table II, we can
observe that the configuration No. 3 has too large size to
implement mechanically. Compared the configurations No.

Fig. 3. (Colour online) The evolutions of behavioral variables
of (a) configurations No. 1, (b) configurations No. 2, and (c)
configurations No. 3.
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Table I. Optimized results form PSO.

No. α1 − β1[◦] α2 − β2[◦] rb1 (m) ρ p q n Family type

1 13.9515 −86.3218 3.7090 1.0352 0.5092 0.5334 0.5208 2C–2C
2 14.6276 −88.9803 3.7052 1 0.4817 0.4998 0.5119 2C–2C
3 4.0844 −135.0049 3.0168 7.9397 0.5040 0.0794 1 1C–2C

Table II. Structure parameters of the optimized configurations.

No. α1[◦] β1[◦] α2[◦] β2[◦] ra1 (m) rb1 (m) ra2 (m) rb2 (m) L1 (m) L2 (m) H (m)

1 15.3467 1.39515 −86.3218 0 1.8886 3.7090 0.9835 1.8439 2.3852 2.4691 1.4007
2 16.0904 1.46276 −88.9803 0 1.9140 3.7052 0.9798 1.9605 2.6648 2.6650 1.5385
3 4.0844 0 −135.0 0 1.5205 3.0168 1.5205 19.1584 2.5654 20.3685 2.0782

1 and No. 2, the later is preferable because its struts are all
uniform and realized easily for structure design and control
system. In addition, the obtained designs should be check
whether worse dexterity, smaller workspace, singular points,
or link interactions among the reachable workspace exist.
Therefore, we evaluate these performances via numerical
algorithm. In general case, a reachable workspace is a better
comparison index. For simplicity, all the workspace graphs
are determined by the constant orientation of the movable
platform with no rotations. In order to evaluate dexterity in
the global workspace, the condition number of the Jacobian,
κ = ||J||||J−1||, is also calculated via numerical solution.
The obtained results of three configurations are given in
Figs. 4–6, respectively.

Generally, three optimized results all satisfy the
specifications. The third geometry is worse than the first and
the second due to higher position, worse kinematic symmetry,
and dexterity. The second geometry is more mechanically

feasible than the first because its struts in two groups are
all with the same length. This design example shows that an
optimal routine could be realized based on the dynamic iso-
tropy measure. Through a GGSPM is more complicate than a
standard Gough–Stewart parallel manipulator, it can achieve
almost the same performances as the latter and is more flex-
ible due to the loosened physical restriction for the payload.

5. Conclusion
In this paper, we propose the concept of dynamic isotropy and
used it as an optimum measurement to bridge the structure
design and the control system design. The decoupled
conditions and dynamic isotropy conditions are discussed
and expressed analytically in close form without time-
consuming numerical solution. The analytical formulations
can be used to design dynamic isotropic GSGSPMs and be
expected to help the designers in improving the dexterity

Fig. 4. (Colour online) 2C–2C configuration with ρ �= 1: (a) reachable workspace shape; (b) condition number distribution.

Fig. 5. (Colour online) 2C–2C configuration with ρ = 1: (a) reachable workspace shape; (b) condition number distribution.
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Fig. 6. (Colour online) 1C–2C configuration with ρ �= 1: (a) reachable workspace shape; (b) condition number distribution.

of GSGSPMs. Furthermore, we present an optimal design
routine based on PSO, which evaluates and verifies dexterity,
singularity-free workspace, and mechanical feasibility to
meet the special requirements.

Compared to the previous work, dynamic isotropy is
more reasonable and systematical, which considers the
relationships between geometry of the manipulator, mass-
center and inertia parameters of the payload, and the response
of the control system. All expressions are analytical and
natural. What is more, we have found that a GSGSPM is
easer to achieve isotropy than a standard Gough–Stewart
parallel manipulator. It is significant for some special tasks
requiring high precision and better dexterity, including laser
weapon pointing and scanning microscopes.

Our future work includes investigating and extending this
routine to more general parallel manipulators, for example,
unsymmetrical parallel manipulators.
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