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Abstract. In this paper, we make an exhaustive study of the third order linear

operators u′′′+Mu, u′′′+Mu′ and u′′′+Mu′′ coupled with (k, 3−k)-conjugate

boundary conditions, where k = 1, 2. We obtain the optimal intervals on which
the Green’s functions are of one sign. The main tool is the disconjugacy theory.

As an application of our results, we develop a monotone iteration method to

obtain positive solutions of the nonlinear problem u′′′ + Mu′′ + f(t, u) = 0,
u(0) = u′(0) = u(1) = 0.

1. Introduction. Third-order differential equations arise in an important number
of physical problems, such as the deflection of a curved beam having a constant or
varying cross section, three layer beam, electromagnetic waves and gravity-driven
flows [7]. The existence and multiplicity of solutions of boundary value problems of
nonlinear third-order differential equations have been studied by many authors in
the last three decades, see [1], [2], [5], [8]-[15] and the references therein.

Positivity of linear operators plays a very important role in the study of the
corresponding nonlinear problems. It is well-known that the second order operator

u′′ + ru, u ∈ {v ∈ C2[0, 1] | v(0) = v(1) = 0} (1)

is positive if and only if

r < π2.

Recently, Cabada and Enguiça [3] showed that the fourth order operator

u′′′′ + ru, u ∈ {v ∈ C4[0, 1] | v(0) = v(1) = v′(0) = v′(1) = 0} (2)

is nonnegative if and only if −ρ41 ≤ r ≤ ρ40, where

ρ1 ≈ 4.73004, ρ0 ≈ 5.553.

However, relatively little is known about the third order linear operators u′′′+Mu.
It is the purpose of this paper to make an exhaustive study of the several third

order linear operators coupled with (k, 3−k)-conjugate boundary conditions, where
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k = 1, 2. We will determine the optimal interval of M in which the sign of Green’s
functions are of one sign:

L1u = u′′′ +Mu, u ∈ {v ∈ C3[0, 1] | v(0) = v′(0) = v(1) = 0},
L2u = u′′′ +Mu′, u ∈ {v ∈ C3[0, 1] | v(0) = v′(0) = v(1) = 0},
L3u = u′′′ +Mu′′, u ∈ {v ∈ C3[0, 1] | v(0) = v′(0) = v(1) = 0},
L4u = u′′′ +Mu, u ∈ {v ∈ C3[0, 1] | v(0) = v(1) = v′(1) = 0},
L5u = u′′′ +Mu′, u ∈ {v ∈ C3[0, 1] | v(0) = v(1) = v′(1) = 0},
L6u = u′′′ +Mu′′, u ∈ {v ∈ C3[0, 1] | v(0) = v(1) = v′(1) = 0}.

As an application of our results on linear problems, we develop a monotone iteration
method to show the existence of positive solutions of the nonlinear problem

u′′′ +Mu′′ + f(t, u) = 0, t ∈ (0, 1),

u(0) = u′(0) = u(1) = 0,
(3)

where f ∈ C([0, 1]× R,R) satisfies some suitable conditions.
The rest of this paper is arranged as follows: In Section 2, we state some prelim-

inary results about disconjugacy. In Section 3, we state and prove our results on
the sign of Green’s function of third-order linear operators via disconjugacy theory,
and obtain the optimal intervals on which the Green’s functions are of one sign.
Finally in Section 4, we apply our results on linear problems to develop a monotone
method for (3).

2. Preliminaries. Disconjugacy theory is crucial for study the positivity of linear
differential operators. Since the required results are somewhat scattered in [4], [6],
we give some details here.

Definition 2.1 ([4], Page 1). Let pk ∈ C[a, b] for k = 1, · · · , n. A linear differential
equation of order n

Ly ≡ y(n) + p1(t)y(n−1) + · · ·+ pn(t)y = 0 (4)

is said to be disconjugate on an interval [a, b] if every nontrivial solution has less
than n zeros on [a, b], multiple zeros being accounted according to their multiplicity.

Definition 2.2 ([4]). The functions y1, · · · , yn ∈ Cn[a, b] are said to form a
Markov system if the n Wronskians

Wk := W [y1, · · · , yk] =

∣∣∣∣∣∣
y1 · · · yk
· · · · · · · · ·

y
(k−1)
1 · · · y

(k−1)
k

∣∣∣∣∣∣ , (k = 1, · · · , n) (5)

are positive throughout on [a, b].

Lemma 2.3 ([4], Theorem 3 in Page 94). The equation (4) has a Markov funda-
mental system of solutions on [a, b] if and only if it is disconjugate on [a, b].

Suppose (4) is disconjugate on [a, b]. Let f be a continuous function on [a, b].
Let k be a positive integer. Then the two-point boundary value problem

Ly = f(t), t ∈ (a, b), (6)

y(i)(a) = 0, i = 0, 1, · · · , k − 1,

y(j)(b) = 0, j = 0, 1, · · · , n− k − 1
(7)
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has a unique solution y. The solution can be represented in the form

y(t) =

∫ b

a

G(t, s)f(s)ds,

where the Green’s function G(t, s) is defined by the properties
(1) as a function of t, G(t, s) is a solution of (4) on [a, s) and on (s, b] and satisfies

the n boundary conditions (7);
(2) as a function of t, G(t, s) and its first n − 2 derivatives are continuous at

t = s, while
G(n−1)(s+ 0, s)−G(n−1)(s− 0, s) = 1.

Lemma 2.4. Suppose (4) is disconjugate on [a, b]. Then

(−1)n−kG(t, s) > 0, a < s < b, a < t < b. (8)

Proof. It is a immediate consequence of [[4], Theorem 11 in Page 106]. See also [[6],
Theorem 0.13].

Definition 2.5 ([4], Page 99). Suppose that the equation (4) is not disconjugate
on [a, b]. Let η(a) be the supremum of all c > a such that (4) is discojugate on
[a, c]. We call η(a) the first right conjugate of a.

For k ∈ {1, · · · , n}, let yk(t, a) be the unique solution of the initial value problem

Ly ≡ y(n) + p1(t)y(n−1) + · · ·+ pn(t)y = 0, (9)

y
(n−k)
k (a) = 1, y

(n−j)
k (a) = 0 (j = 1, · · ·n; j 6= k). (10)

We denote by

W [y1, · · · , yk](t, a) :=

∣∣∣∣∣∣
y1(a, t) · · · yk(a, t)
· · · · · · · · ·

y
(k−1)
1 (a, t) · · · y

(k−1)
k (a, t)

∣∣∣∣∣∣ (11)

the Wronskian of y1(a, t), · · · , yk(a, t).

Definition 2.6 ([4], Page 99). Let w(a) be the least s > a in [a, b], if one exists,
at which one of the Wronskian W1(s, a), · · · ,Wn−1(s, a) vanishes.

Remark 1. It may be note that Wn(s, a), s ∈ [a, b] never vanish because the
solutions y1, · · · , yn are linearly independent.

Lemma 2.7 ([4], Page 99). η(a) = w(a).

Remark 2. It is easy to check that if we replace yk(t, a), k ∈ {1, · · · , n} with the
solutions zk(t, a) of the problem

Lz ≡ z(n) + p1(t)z(n−1) + · · ·+ pn(t)z = 0, (12)

z
(n−k)
k (a) = dk > 0, z

(n−j)
k (a) = 0 (j = 1, · · ·n; j 6= k), (13)

where dk ∈ (0,∞) are constants, k ∈ {1, · · · , n}. Then the conclusion of Lemma
2.7 is still true. In fact, zk(t, a) = dkyk(t, a), so

W [y1, · · · , yk](t, a) = cW [z1, · · · , zk](t, a)

for some constant c > 0.
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3. Sign of Green’s function of third-order linear problems.

3.1. Disconjugacy for the equations u′′′ + Mu = 0. From Definition 2.1, it is
easy to verify that for M ∈ R,

u′′′ +Mu = 0 is disconjugate on [0, 1] ⇐⇒ u′′′ −Mu = 0 is disconjugate on [0, 1].
(14)

In fact, u(t) is the solution of the equation u′′′(t) + Mu(t) = 0, t ∈ [0, 1], if and
only if u(1− t) is the solution of v′′′(t)−Mv(t) = 0, t ∈ [0, 1]. Moreover, τ ∈ [0, 1]
is a zero of u(t) in [0, 1] if and only if 1− τ ∈ [0, 1] is a zero of u(1− t) in [0, 1]. So
the number of zeros of the two functions u(t) and u(1 − t) in [0, 1] must be same.
Therefore, (14) is valid.

Let m1 be the smallest positive solution of the equation

1

3
e−m − 1

3
e

m
2 cos

√
3m

2
+

√
3

3
e

m
2 sin

√
3m

2
= 0. (15)

Then

m1 ≈ 4.23321.

Theorem 3.1. For every M ∈ (−m3
1,m

3
1), the equation

u′′′(t) +Mu(t) = 0 (16)

is disconjugate on [0, 1]. Moreover, the result is optimal.

Proof. By (14), we only need to deal with the case that M = m3 ≥ 0, i.e.

u′′′(t) +m3u(t) = 0. (17)

We will divide two cases to prove the conclusion.
Case 1 m > 0.
From Lemma 2.7 and Remark 2, we consider the initial value problem(IVP)

u′′′ +m3u = 0,

u(j)(0) = 0, j 6= 3− k,

u(3−k)(0) = m3−k,

where k = 1, 2, 3. Denote the unique solution of the above problem by uk. Then

u1(t) =
1

3
e−mt − 1

3
e

m
2 t cos

√
3mt

2
+

√
3

3
e

m
2 t sin

√
3mt

2
;

u2(t) = −1

3
e−mt +

1

3
e

m
2 t cos

√
3mt

2
+

√
3

3
e

m
2 t sin

√
3mt

2
;

u3(t) =
1

3
e−mt +

2

3
e

m
2 t cos

√
3mt

2
.

Obviously, we have W1[u1](0) = 0,W2[u1, u2](0) = 0. In order to construct a
Markov system for (17) on [0, 1], we have to replace t with t + σ in uk, where
σ ∈ (0, 1) is a small constant to be determined later. Define

y1(t) = u1(t+ σ), y2(t) = −u2(t+ σ), y3(t) = u3(t+ σ), (18)

we claim that {yk(t)}3k=1 form a Markov system if m ∈ (0,m1) and σ is small
enough.
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In fact, for t ∈ [0, 1],

W1[y1](t) =
1

3
e−m(t+σ) − 1

3
e

m
2 (t+σ) cos

√
3m(t+ σ)

2
+

√
3

3
e

m
2 (t+σ) sin

√
3m(t+ σ)

2
;

W2[y1, y2](t) = m
[1

3
em(t+σ) − 1

3
e−

m
2 (t+σ) cos

√
3m(t+ σ)

2

−
√

3

3
e−

m
2 (t+σ) sin

√
3m(t+ σ)

2

]
;

W3[y1, y2, y3](t) = m3.

It follows from (15) that there exists σ ∈ (0, 1) such that

W1[y1](t) > 0, W2[y1, y2](t) > 0, W3[y1, y2, y3](t) > 0, t ∈ [0, 1].

Now, from the Definition 2.6 and Lemma 2.7, m1 should be the smallest positive
number of the zeros of W1(1) = 0 and W2(1) = 0. By computing, W2(1) > 0, and
consequently, m1 is the smallest positive zero of W1(1) = 0.

Case 2 m = 0
In this case, for each fixed k ∈ {1, 2, 3}, let vk be the unique solution of the initial

value problem

v′′′ = 0,

v(j)(0) = 0, j 6= 3− k,

v(3−k)(0) = 1.

Then

v1(t) =
1

2
t2; v2(t) = t; v3(t) = 1.

Applying the similar method to construct Markov system (18), let us define

z1(t) = v1(t+ σ), z2(t) = −v2(t+ σ), z3(t) = v3(t+ σ),

where σ ∈ (0, 1) is a small constant. Then

W1[z1](t) =
1

2
(t+ σ)2 > 0; W2[z1, z2](t) =

1

2
(t+ σ)2 > 0; W3[z1, z2, z3](t) = 1

(19)
for any t ∈ [0, 1]. From (19), it follows that the functions {z1, z2, z3} form a
Markov fundamental system of solutions of (17) on [0, 1] if m = 0 and σ ∈ (0, 1) is
small enough.

Hence, for every M ∈ (−m3
1,m

3
1), the equation (16) is disconjugate on [0, 1].

Moreover, from Lemma 2.7, it follows that the result is optimal.

3.2. Disconjugacy for the equations u′′′ + Mu′ = 0. Let m2 be the smallest
positive solution of the equation

cosm− 1 = 0.

Then

m2 = 2π.

Theorem 3.2. For every m ∈ (0,m2), the equation

u′′′(t) +m2u′(t) = 0 (20)

is disconjugate on [0, 1]. Moreover, the result is optimal.
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Proof. For each fixed k ∈ {1, 2, 3}, let uk be the unique solution of the initial value
problem

u′′′ +m2u′ = 0,

u(j)(0) = 0, j 6= 3− k,

u(3−k)(0) = m3−k.

Then
u1(t) = 1− cos(mt);

u2(t) = sin(mt);

u3(t) = 1.

Applying the similar method to construct Markov system (18), let us define

y1(t) = u1(t+ σ), y2(t) = −u2(t+ σ), y3(t) = u3(t+ σ),

where σ ∈ (0, 1) is a small constant. Then

W1[y1](t) = 1− cos(m(t+ σ)) > 0;

W2[y1, y2](t) = m[1− cos(m(t+ σ))] > 0;

W3[y1, y2, y3](t) = m3 > 0

(21)

for any t ∈ [0, 1]. From (21), it follows that the functions {y1, y2, y3} form a
Markov system of solutions of (20) on [0, 1] if 0 < m < m2 and σ ∈ (0, 1) is small
enough.

Hence, for every m ∈ (0,m2), the equation (20) is disconjugate on [0, 1]. More-
over, from Lemma 2.7, it follows that the result is optimal.

Theorem 3.3. For every m ∈ (0,∞), the equation

u′′′(t)−m2u′(t) = 0 (22)

is disconjugate on [0, 1]. Moreover, the result is optimal.

Proof. For each fixed k ∈ {1, 2, 3}, let vk be the unique solution of the initial value
problem

v′′′ −m2v′ = 0,

v(j)(0) = 0, j 6= 3− k,

v(3−k)(0) = m3−k.

Then
v1(t) = cosh(mt)− 1;

v2(t) = sinh(mt);

v3(t) = 1.

Applying the similar method to construct Markov system (18), let us define

z1(t) = v1(t+ σ), z2(t) = −v2(t+ σ), z3(t) = v3(t+ σ),

where σ ∈ (0, 1) is a small constant. Then

W1[z1](t) = cosh(m(t+ σ))− 1 > 0;

W2[z1, z2](t) = m[cosh(m(t+ σ))− 1] > 0;

W3[z1, z2, z3](t) = m3 > 0

(23)
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for any t ∈ [0, 1]. From (23), it follows that the functions {z1, z2, z3} form a
Markov system of solutions of (22) on [0, 1] if m ∈ (0,∞) and σ ∈ (0, 1) is small
enough.

Hence, for everym ∈ (0,∞), the equation (22) is disconjugate on [0, 1]. Moreover,
from Lemma 2.7, it follows that the result is optimal.

Note that Theorem 3.2 and Theorem 3.3 remains valid for m = 0, it has been
proved in Case 2 of Theorem 3.1, so for every M ∈ (−∞, 2π), the equation u′′′ +
Mu′ = 0 is disconjugate on [0, 1]. Moreover, the interval of M ∈ (−∞, 2π) is
optimal.

3.3. Disconjugacy for the equations u′′′+Mu′′ = 0. Applying the same method
to get (14) with obvious changes, we may get that for M ∈ R,

u′′′+Mu′′ = 0 is disconjugate on [0, 1] ⇐⇒ u′′′−Mu′′ = 0 is disconjugate on [0, 1].
(24)

Let m3 be the smallest positive solution of the equation

me−m + e−m − 1 = 0.

Then
m3 =∞. (25)

Theorem 3.4. For every M ∈ (−∞,∞), the equation

u′′′(t) +Mu′′(t) = 0 (26)

is disconjugate on [0, 1]. Moreover, the result is optimal.

Proof. Obviously, in the case M = 0, the conclusion holds as in Case 2 of Theorem
3.1. By (24), we only need to deal with the case that M = m > 0, i.e.

u′′′(t) +mu′′(t) = 0. (27)

For each fixed k ∈ {1, 2, 3}, let uk be the unique solution of the initial value
problem

u′′′ +mu′′ = 0,

u(j)(0) = 0, j 6= 3− k,

u(3−k)(0) = m3−k.

Then
u1(t) = e−mt +mt− 1;

u2(t) = mt;

u3(t) = 1.

Applying the similar method to construct Markov system (18), let us define

y1(t) = u1(t+ σ), y2(t) = −u2(t+ σ), y3(t) = u3(t+ σ),

where σ ∈ (0, 1) is a small constant. Then

W1[y1](t) = e−m(t+σ) +m(t+ σ)− 1 > 0;

W2[y1, y2](t) = −m[m(t+ σ)e−m(t+σ) + e−m(t+σ) − 1] > 0;

W3[y1, y2, y3](t) = m3 > 0

(28)

for any t ∈ [0, 1]. From (28), it follows that the functions {y1, y2, y3} form a
Markov system of solutions of (27) on [0, 1] if 0 < m < ∞ and σ ∈ (0, 1) is small
enough.
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Hence, for every M ∈ (−∞,∞), the equation (26) is disconjugate on [0, 1].
Moreover, from Lemma 2.7, it follows that the result is optimal.

3.4. Sign of Green’s functions. Now, we are in the position to study the sign of
Green’s function Gj associated Lj , j = 1, · · · , 6.

In the case k = 2 and n = 3, (7) reduces to

u(0) = u′(0) = u(1) = 0.

In the case k = 1 and n = 3, (7) reduces to

u(0) = u(1) = u′(1) = 0.

Now, from Theorem 3.1-3.4 and Lemma 2.4, we deduce that

Theorem 3.5. (1) Let M ∈ (−m3
1,m

3
1). Then G1(t, s) < 0, G4(t, s) > 0, (t, s) ∈

(0, 1)× (0, 1);
(2) Let M ∈ (−∞,m2

2). Then G2(t, s) < 0, G5(t, s) > 0, (t, s) ∈ (0, 1)× (0, 1);
(3) Let M ∈ (−∞,∞). Then G3(t, s) < 0, G6(t, s) > 0, (t, s) ∈ (0, 1)× (0, 1).

The Green’s functions Gj can be explicitly given via the method introduced in
[[4], 105-106].

Theorem 3.6. (1) Let m ∈ (−m1,m1). Then the Green’s function of the problem

u(3)(t) +m3u(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = u(1) = 0
(29)

can be explicitly given by

G1(t, s) =

{
K1(t, s), 0 ≤ t ≤ s ≤ 1,
K2(t, s), 0 ≤ s ≤ t ≤ 1,

where

K1(t, s) =
[− 1

3e
−m(1−s)+ 1

3e
m
2 (1−s) cos

√
3
2 m(1− s))−

√
3
3 e

m
2 (1−s) sin

√
3
2 m(1− s))]

m2[ 13e
−m− 1

3e
m
2 cos

√
3m
2 +

√
3
3 e

m
2 sin

√
3m
2 ]

× [
1

3
e−mt − 1

3
e

m
2 t cos

√
3mt

2
+

√
3

3
e

m
2 t sin

√
3mt

2
],

K2(t, s) =
1

m2[ 13e
−m − 1

3e
m
2 cos

√
3m
2 +

√
3
3 e

m
2 sin

√
3m
2 ]

×
{1

9
e−mte

m
2 (1−s)[cos

√
3

2
m(1− s)−

√
3 sin

√
3

2
m(1− s)]

+
1

9
e−me

m
2 (t−s)[

√
3 sin

√
3

2
m(t− s)− cos

√
3

2
m(t− s)]

+
1

9
e−m(1−s)e

m
2 t[cos

√
3

2
mt−

√
3 sin

√
3

2
mt]

+
1

9
e

m
2 e−m(t−s)[− cos

√
3

2
m+

√
3 sin

√
3

2
m]

− 4

9
e

m
2 e

m
2 (t−s) sin

√
3

2
ms sin

√
3

2
m(1− t)]

}
.

The Green’s function of the problem

u(3)(t) +m3u(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = u(1) = 0
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can be explicitly given by

G4(t, s) =

{
K3(t, s), 0 ≤ t ≤ s ≤ 1,
K4(t, s), 0 ≤ s ≤ t ≤ 1,

where

K3(t, s) =
1

m2[ 13e
m − 1

3e
−m

2 cos
√
3m
2 −

√
3
3 e
−m

2 sin
√
3m
2 ]

×
{
− 1

9
emse−

m
2 (1−t)[

√
3 sin

√
3

2
m(1− t) + cos

√
3

2
m(1− t)]

+
1

9
eme−

m
2 (s−t)[

√
3 sin

√
3

2
m(s− t) + cos

√
3

2
m(s− t)]

− 1

9
em(1−t)e−

m
2 s[cos

√
3

2
ms+

√
3 sin

√
3

2
ms]

+
1

9
e−

m
2 em(s−t)[cos

√
3

2
m+

√
3 sin

√
3

2
m]

+
4

9
e−

m
2 e−

m
2 (s−t) sin

√
3

2
m(1− s) sin

√
3

2
mt
}
,

and

K4(t, s) =
[ 13e

ms − 1
3e
−m

2 s cos
√
3
2 ms−

√
3
3 e
−m

2 s sin
√
3
2 ms]

m2[ 13e
m − 1

3e
−m

2 cos
√
3m
2 −

√
3
3 e
−m

2 sin
√
3m
2 ]

×
[1
3
em(1−t)− 1

3
e−

m
2 (1−t) cos

√
3m(1−t)

2
−
√

3

3
e−

m
2 (1−t) sin

√
3m(1−t)

2

]
.

(2) Let M ∈ (−∞,m2
2). If M = m2 ∈ (0,m2

2), then the Green’s function of the
problem

u(3)(t) +m2u′(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = u(1) = 0

can be explicitly given by

G2(t, s)=

{
sin(ms)[sinm−sin(mt)−sinm(1−t)]+(cos(mt)−cosm)(1−cos(ms))

m2(1−cosm) , 0 ≤ s ≤ t ≤ 1,
[cosm(1−s)−1](1−cos(mt))

m2(1−cosm) , 0 ≤ t ≤ s ≤ 1.

The Green’s function of the problem

u(3)(t) +m2u′(t) = 0, t ∈ (0, 1),

u(0) = u(1) = u′(1) = 0

can be explicitly given by

G5(t, s)=

{
[1−cosm(1−t)](1−cos(ms))

m2(1−cosm) , 0 ≤ s ≤ t ≤ 1,
sin(mt)[sin(ms)+sinm(1−s)−sinm]+(cosm−cos(ms))(1−cos(mt))

m2(1−cosm) , 0 ≤ t ≤ s ≤ 1.

If M = −m2 < 0, then the Green’s function of the problem

u(3)(t)−m2u′(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = u(1) = 0
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can be explicitly given by

G2(t, s)=

{
sinh(ms)[sinh(mt)+sinhm(1−t)−sinhm]+(coshm−cosh(mt))(cosh(ms)−1)

m2(coshm−1) , s ≤ t,
[1−coshm(1−s)](cosh(mt)−1)

m2(coshm−1) , t ≤ s.

The Green’s function of the problem

u(3)(t)−m2u′(t) = 0, t ∈ (0, 1),

u(0) = u(1) = u′(1) = 0

can be explicitly given by

G5(t, s)=

{
[coshm(1−t)−1](cosh(ms)−1)

m2(coshm−1) , s ≤ t,
sinh(mt)[sinhm−sinh(ms)−sinhm(1−s)]+(cosh(ms)−coshm)(cosh(mt)−1)

m2(coshm−1) , t ≤ s.

(3) Let M ∈ (−∞,∞). Then the Green’s function of the problem

u(3)(t) +mu′′(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = u(1) = 0

can be explicitly given by

G3(t, s) =

{
K5(t, s) 0 ≤ s ≤ t ≤ 1,
K6(t, s) 0 ≤ t ≤ s ≤ 1,

where

K5(t, s) =
1

e−m+m−1

[
(m2s−m2+m)e−m(t+s)+(mt−1)[m+m2(s−1)]e−ms

−me−m(1+t) +m(1−mt)e−m
]
,

K6(t, s) =
1

e−m +m− 1

[
(m2s−m2 +m)e−m(t+s) +m3s(t− 1)e−ms

+ (m2 −m)e−mt + [m2(t− s)−m]e−m(1+s) + (m−m2t)e−m
]
.

The Green’s function of the problem

u(3)(t) +mu′′(t) = 0, t ∈ (0, 1),

u(0) = u(1) = u′(1) = 0

is

G6(t, s) =

{
K7(t, s) 0 ≤ s ≤ t ≤ 1,
K8(t, s) 0 ≤ t ≤ s ≤ 1,

where

K7(t, s) =
1

e−m(1 +m)− 1

[
(m2s+m)e−m(t+s) + [m2(t− s)−m]e−ms

− (m2 +m)e−m(1+t) +m3t(s− 1)e−m(1+s) + [m+m2(1− t)]e−m
]
,

K8(t, s) =
1

e−m(1+m)−1

[
(m2s+m)e−m(t+s)−me−mt+(m2s+m)(mt−m−1)

× e−m(1+s) + [m2(1− t) +m]e−m
]
.

Finally, it is worth remarking that the intervals in Theorem 3.5 are optimal. This
can be deduced from the following
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Theorem 3.7. (1) Let m∗ ∈ (m1,∞) be such that u′′′ + m∗3u = 0 has no right
conjugate point in (m1

m∗ , 1), i.e. η(m1

m∗ ) ≥ 1. Then for m ∈ (m1,m
∗) and s ∈ (m1

m , 1),
we have

Gi
( m
m1

, s
)

= 0,
d

dt
Gi
( m
m1

, s
)
6= 0, i = 1, 4.

(2) Let m̂ ∈ (m2,∞) be such that u′′′+ m̂2u′ = 0 has no right conjugate point in
(m2

m̂ , 1), i.e. η(m2

m̂ ) ≥ 1. Then for m ∈ (m2, m̂) and s ∈ (m2

m , 1),

Gj
(m2

m
, s
)

= 0,
d

dt
Gj
(m2

m
, s
)
6= 0, j = 2, 5.

Proof. We only show that the results are valid for the Green’s function G1 of (29).
The other cases can be treated by the same method.

To show G1 changes its sign in [0, 1] × [0, 1], it is enough to show that K1(t, s)
changes its sign on {(t, s) ∈ [0, 1] × [0, 1] | t ≤ s}. Since m ∈ (m1,m

∗) and s ∈
(m1

m , 1), it follows from (15) that

G1(
m1

m
, s) =

[− 1
3e
−m(1−s)+ 1

3e
m
2 (1−s) cos

√
3
2 m(1−s))−

√
3
3 e

m
2 (1−s) sin

√
3
2 m(1−s))]

m2[ 13e
−m − 1

3e
m
2 cos

√
3m
2 +

√
3
3 e

m
2 sin

√
3m
2 ]

× [
1

3
e−m1 − 1

3
e

m1
2 cos

√
3m1

2
+

√
3

3
e

m1
2 sin

√
3m1

2
] = 0.

Since

∂G1

∂t
(
m1

m
, s) =

[− 1
3e
−m(1−s)+ 1

3e
m
2 (1−s) cos

√
3
2 m(1−s))−

√
3
3 e

m
2 (1−s) sin

√
3
2 m(1−s))]

m[ 13e
−m− 1

3e
m
2 cos

√
3m
2 +

√
3
3 e

m
2 sin

√
3m
2 ]

× [−1

3
e−m1 +

1

3
e

m1
2 cos

√
3m1

2
+

√
3

3
e

m1
2 sin

√
3m1

2
] 6= 0,

it follows that G1(t, s) must change its sign in any small neighborhood of
(
m1

m , s
)
.

4. Some applications. As applications of the results in previous sections, let us
consider the existence of positive solutions of the nonlinear third-order boundary
value problem

u′′′(t) +Mu′′(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u(1) = 0.
(30)

Definition 4.1. We say that α ∈ C3[0, 1] is a lower solution of (30) if α satisfies

α′′′(t) +Mα′′(t) + f(t, α(t)) ≥ 0, 0 < t < 1,

α(0) ≤ 0, α′(0) ≤ 0, α(1) ≤ 0.
(31)

We say that β ∈ C3[0, 1] is an upper solution of (30) if β the reversed inequalities
of the definition of lower solution.

Lemma 4.2. Let h ∈ C([0, 1], [0,∞)), r1, r2, r3 ≥ 0 are constants. For every fixed
M ∈ (−∞,∞), if u ∈ C3[0, 1] and satisfies

u′′′(t) +Mu′′(t) + h(t) = 0, t ∈ (0, 1),

u(0) = r1, u
′(0) = r2, u(1) = r3.

(32)

Then u ≥ 0 on [0, 1].
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Proof. It’s easy to verify that such a u can be given by the expression

u(t) =

∫ 1

0

(−1)G3(t, s)h(s)ds+R(t), t ∈ [0, 1],

where

R(t) =

{
r1 + r2t+

r3 − r1 − r2
e−M +M − 1

[e−Mt +Mt− 1], M 6= 0, t ∈ [0, 1],

r1 + r2t+ (r3 − r2 − r1)t2, M = 0, t ∈ [0, 1],

and G3(t, s) is the Green’s function of L3.
From Theorem 3.5, G3(t, s) ≤ 0, (t, s) ∈ [0, 1]× [0, 1]. Now we only need to prove

R(t) ≥ 0, t ∈ [0, 1].

In fact, for M ∈ (−∞,∞) and M 6= 0, it’s clear to see that

R(t) = r1

(
1− e−Mt +Mt− 1

e−M +M − 1

)
+ r2

(
t− e−Mt +Mt− 1

e−M +M − 1

)
+ r3

e−Mt +Mt− 1

e−M +M − 1
,

0 ≤ e−Mt+Mt−1
e−M+M−1 ≤ 1, and t− e−Mt+Mt−1

e−M+M−1 ≥ 0, for t ∈ [0, 1]. It follows that R(t) ≥ 0

for t ∈ [0, 1].
If M = 0, we have

R(t) = r1(1− t2) + r2t(1− t) + r3t2 ≥ 0 for t ∈ [0, 1].

Thus, u ≥ 0, t ∈ [0, 1].

Theorem 4.3. For every fixed M ∈ (−∞,∞), suppose that f ∈ C([0, 1] × R,R)
and α, β are respectively a lower and upper solutions of (30), which satisfy α ≤ β
and

f(t, u1) ≤ f(t, u2), α(t) ≤ u1(t) ≤ u2(t) ≤ β(t), t ∈ [0, 1]. (33)

Then there exist two monotone sequences {αn} and {βn}, nondecreasing and non-
increasing, respectively, with α0 = α and β0 = β, which converge uniformly to the
extremal solutions of the problem (30) in [α, β].

Proof. Let T : C[0, 1]→ C[0, 1] as follows

Tu(t) =

∫ 1

0

(−1)G3(t, s)f(s, u(s))ds, t ∈ [0, 1].

Then T is a completely continuous operator such that Tu is the unique solution of
the problem (30). Now, we divide the proof into three steps.

Step 1. We show
T (K) ⊂ K, (34)

where K = {u ∈ C[0, 1] |α ≤ u ≤ β} is a nonempty bounded closed subset in
C[0, 1].

In fact, for u ∈ K, set w = Tu(t). From the definitions of α, β and K, we have
that

(β − w)′′′(t) +M(β − w)′′(t) + [f(t, β(t))− f(t, u(t))] ≤ 0,

(β − w)(0) ≥ 0, (β − w)′(0) ≥ 0, (β − w)(1) ≥ 0.
(35)

Using Lemma 4.2, we get that β ≥ w. Analogously we can prove that w ≥ α. Thus,
(34) holds.

Step 2. Let u1 = Tη1, u2 = Tη2, where η1, η2 ∈ K satisfy α ≤ η1 ≤ η2 ≤ β. We
show

u1 ≤ u2.
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In fact, let v := u2 − u1, it from Theorem 3.5 and (33) follows that

v(t) = Tη2 − Tη1 =

∫ 1

0

G3(t, s)[f(t, η1)− f(t, η2)] ≥ 0.

Step 3. The sequences {αn} and {βn} are obtained by recurrence: α0 = α, β0 =
β, αn = Tαn−1, βn = Tβn−1, n = 1, 2, · · · . From the results of Step 1 and Step 2,
we have

α = α0 ≤ α1 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β0 = β. (36)

Moreover, from the definition of T , we have

α′′′n +Mα′′n + f(t, αn−1) = 0, t ∈ (0, 1),

αn(0) = α′n(0) = αn(1) = 0,
(37)

and

β′′′n +Mβ′′n + f(t, βn−1) = 0, t ∈ (0, 1),

βn(0) = β′n(0) = βn(1) = 0.
(38)

By combining (36) and (37), we can easily get that there is Cα depending only on α
but not on n or t, such that |αn| ≤ Cα, so we know that {αn} is bounded in C[0, 1].
Similarly, {βn} is bounded in C[0, 1]. Now, by using the fact that {αn} and {βn}
are bounded in C[0, 1], we can conclude that {αn} and {βn} converge uniformly to
the extremal solutions in [0, 1] of the problem (30).

Remark 3. Using the same argument, with obvious changes, we may develop the
monotone method for nonlinear problems associated with Lj for j = 1, 2, 4, 5, 6.
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