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Abstract. In this paper, we consider the properties of the vacuum states for

weak solutions to one-dimensional full compressible Navier-Stokes system with

viscosity and heat conductivities for general equation of states. Under weak
conditions on initial data, we prove that if there is no vacuum initially then

the vacuum states do not occur in a finite time. In particular, the temperature

variation has no immediate effects on the formation of the vacuum. There
are no assumptions on density in large sets. Furthermore, we prove that two

initially non interacting vacuum regions will never touch in the future.

1. Introduction and main result. The full compressible Navier-Stokes system
in one-dimensional space expresses the conservation of mass, momentum

ρt + (ρu)x =0, (1)

(ρu)t + (ρu2 + P )x =µuxx + ρf, (2)

and the balance of internal energy

(ρe)t + (ρeu)x − κθxx = (µux − P )ux, (3)

where (x, t) ∈ R × R+; ρ(x, t) ≥ 0, u(x, t), θ(x, t) ≥ 0, P (ρ, θ) and e(ρ, θ) denote
the density, velocity, temperature, pressure and internal energy respectively; f =
f(x, t) ∈ L1([0, T ];L∞loc(R)) is an external force; µ ≥ 0 is the constant viscosity
coefficient depending on the local properties of isotropic fluid and is a measure
of the internal friction opposing deformation of the fluid; κ ≥ 0 is the constant
heat conductivity coefficient; P, e ∈ C1([0,∞)2), ∂e

∂θ (ρ, θ) > 0 on [0,∞)2, P (ρ, θ) is
non-decreasing with respect to ρ for all θ ≥ 0 and

e(ρ, 0) = 0 for ρ ≥ 0; P (0, θ) = 0 for θ ≥ 0. (4)

The one-dimensional full compressible Navier-Stokes system has been investigated
by a great many authors in a large variety of contexts. For the system away from
vacuum, the local existence of a classical solution was proved by Nash in [27].
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Uniqueness had previously been obtained by Serrin in [28]. The global existence of
classical solutions was obtained in [19, 20, 21]. For initial data with discontinuity,
Hoff in [11] and [12] proved the local existence of solutions and global existence of
solutions with small initial data, and Chen-Hoff-Trivisa [4] obtained global existence
of solutions in bounded domain for large data. Besides, the reader may consult
Amosov and Zlotnick [1], Fujita-Yashima, Padula and Novotny [10], and Jiang and
Zhang [18] and the references contained therein. For the multidimensional system,
the global classical solutions were first obtained by Matsumura-Nishida [26] for
initial data close to a non-vacuum equilibrium.

In the present of vacuum (i.e. ρ may vanish), Cho and Kim [6] constructed
a local strong solution, as long as a suitable compatibility condition is satisfied
initially. It should be note that solutions of the Navier-Stokes equations show certain
instabilities when vacuum states are allowed even for isentropic case (see Hoff-Serre
[13]). Moreover, there is no a priori estimate on the temperature for vacuum states
generally, and it is not clear how to set up the problem when concerning this physical
dependence on temperature. By now, most results about global well-posedness of
the full Navier-Stokes equations are limited to the existence of solutions with special
pressure. More precisely, for specific pressure laws excluding the perfect gas, Feireisl
in [9] got the existence of so-called “variational” solutions in dimensionN ≥ 2, where
the temperature equation is satisfied only as an inequality. This work is the first
attempt towards the existence of weak solutions to the full compressible Navier-
Stokes system for large initial data with vacuum. Later on, for a very particular
form of the viscosity coefficients depending on the density, Bresch and Desjardins [2]
obtained global weak solutions in T3 or R3. Recently, Huang and Li [15] establish
the global existence of classical and weak solutions to the 3D full compressible
Navier-Stokes system with small energy but possibly large oscillations. For more
related problems, please refer to [8, 16, 17, 22, 23, 24, 25, 29].

It is still open whether the global solutions with possible different states at
x = ±∞ exist for Cauchy problem of 1D full compressible Navier-Stokes equations
containing vacuum with general pressure. In this case, investigating the dynamics
of vacuum states is one of the most important aspects in studying the weak solu-
tions and the regularity of solutions. Hoff-Smollar [14] showed that if there is no
vacuum initially, the weak solutions to one-dimensional compressible Navier-Stokes
equations do no exhibit vacuum states for special “potential energy density”. And
for N(≥ 3) dimensional spherically symmetric compressible Navier-Stokes system,
Xin-Yuan [30] obtained the same result, which holds in the region away from the
origin. This is one of several important differences between the Navier-Stokes equa-
tions and the inviscid Euler equations, for which vacuum states may in fact occur
for large initial data and for certain equations of state (see [3, 5]).

Our main purpose here is to investigate the dynamics of vacuum states for weak
solutions to one dimensional full compressible Navier-Stokes system with viscosity
and heat conductivity (1)-(3). We prove that either near or away from x = ±∞, the
vacuum states cannot appear provided there is no initial vacuum. We remove the
restriction on the quantity “potential energy density” in [14], and only assume that
the mass and energy densities of the fluid is integrable. There are no other constrains
on the pressure P except the second principle of thermodynamics and the results
hold for the solutions possibly having different states at x = ±∞. Furthermore, we
prove that two separate vacuum regions will never meet each other in the future.

First, let us define the weak solution of problem (1)-(3).
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Definition 1.1. We say that (ρ, u, θ) is a weak solution of (1)-(3) on R × [0, T ]
provided that, ρ, ρu and ρe(·, ·) are in C([0, T ];H−1

loc (R)) with (ρ, θ) nonnegative;
ρ(·, t), ρu(·, t) and ρe(·, t) are in L1

loc(R) for each t ∈ [0, T ]; P, ρu2, ρue(·, ·), θx(·, ·),
ux and (P−µux)ux are in L1([−L,L]× [0, T ]) for every L. And for all test functions
ϕ ∈ C1

0 (R× R),∫
ρϕ

∣∣∣∣t2
t1

=

∫ t2

t1

∫
[ρϕt + ρuϕx]dxdt, (5)∫

ρuϕ

∣∣∣∣t2
t1

=

∫ t2

t1

∫
[ρu(ϕx + uϕx) + (P − µux)ϕx + ρfϕ]dxdt, (6)

and ∫
ρeϕ

∣∣∣∣t2
t1

=

∫ t2

t1

∫
[ρe(ϕx + uϕx)− (P − µux)uxϕ− κθxϕx]dxdt, (7)

for all t1, t2 ∈ [0, T ].

We assume that the mass is locally finite for all t. That is, for any L > 0, there
is a constant C = C(L) such that∫ L

−L
ρ(·, t)dx ≤ C(L), for all t ∈ [0, T ]. (8)

Also, we assume that

u ∈ L1([0, T ];L1
loc(R)), ux ∈ L1([0, T ];L2

loc(R)).

In particular,

u(·, t) ∈ L1
loc(R), ux(·, t) ∈ L2

loc(R) for almost all t ∈ [0, T ]. (9)

Then we assume that, there is a constant C = C(L) and a positive function γ(t) ∈
L1([0, T ]) such that, for all L > 0 and almost all t ∈ [0, T ],∫ L

−L
|u(x, t)|dx ≤ (1 + L)γ(t), (10)(∫ L

−L
u2
x(x, t)dx

) 1
2

≤ (1 + L1/4)γ(t), (11)

and (∫ L

−L
[ρ(u2 + e)]dx

) 1
2

≤ γ(t)C(L). (12)

Finally, we assume that the momentum is locally finite, that is, for every L > 0,∫ L

−L
(ρ|u|)(x, t)dx ≤ C(L), for almost all t ∈ [0, T ]. (13)

Remark 1. If the total energy is strengthened slightly to be locally finite for all
t, we can replace the right side of (12) by some constant C = C(L) > 0 for all
t. Then the assumption (13) follows immediately from (8) and (12); that is, finite
local mass and energy would imply finite local momentum. Moreover, if the states
of the initial data U0 = (ρ0, u0, θ0) at x = ±∞ are defined by U± = (ρ±, u±, θ±),
we fix a smooth function U(x) =

(
ρ(x), u(x), θ(x)

)
satisfying U(x) = U±, (±x ≥ 1)

such that 4U0 = U0 − U ∈ L2(R), as in [11, 12]. Then the assumptions (10) and
(11) hold as long as u− ū(x), ux belong to L1([0, T ];L2(R)), which are satisfied by
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the solutions constructed in Theorem 1.3 in [11], Theorem 1.2 in [15], and more
general.

Now, we state our main results:

Theorem 1.2. Let (ρ, u, θ) be a global weak solution of (1)-(4) satisfying assump-
tions (9)-(11). If

∫
E
ρ(x, 0)dx > 0 for every open set E ⊂ R, then for any

t ∈ (0,+∞), it holds that∫ 2L

L

ρ(x, t)dx > 0 and

∫ −L
−2L

ρ(x, t)dx > 0, (14)

for all L ∈ (L∗(t),+∞), where

L∗(t) = max

{
1, C1

(∫ t

0

γ(t)

)4
}
, for some C1 > 0. (15)

Remark 2. The above theory shows that if there is no vacuum initially, then the
vacuum states can only possibly occur in a finite set in the future. We also note
that in [14], Hoff and Smoller assumed that ρ cannot be close to zero on a too large
set; i.e., they defined a “potential energy density” function G and assumed that

G(ρ, x, t) ≥ C−1
0 , for some C0 > 0,

and there exist some constants C1 > 0 and θ ∈ [0, 1), such that∫ x0+L

x0

G(ρ, x, t)dx ≤ C1 + θC−1
0 L, for all x0, L ∈ R.

In this paper, we remove the restriction on “potential energy density” and Theorem
1.2 holds for general one-dimensional full compressible Navier-Stokes system.

Based on Theorem 1.2, we have

Theorem 1.3. Let (ρ, u, θ) be a weak solution of (1)-(4) on R × [0, T ] satisfying
assumptions (9)-(13). If ∫

E

ρ(x, 0)dx > 0 (16)

for every open set E ⊂ R, then ∫
E

ρ(x, t)dx > 0

for every open subset E ⊂ R and for every t ∈ [0, T ].

The next observation is about vacuum appears on two or more open intervals.

Theorem 1.4. Let (ρ, u, θ) be a weak solution to (1)-(4) on R× [0, T ] with any T <
+∞ satisfying assumptions as in Theorem 1.3. If there exist constants ai, bi, i = 1, 2
such that

−∞ < a1 <b1 < a2 < b2 < +∞,∫ b1

a1

ρ(0, x)dx =

∫ b2

a2

ρ(0, x)dx = 0,∫ b1

a1−ε
ρ(0, x)dx > 0,

∫ b2+ε

a2

ρ(0, x)dx > 0, for all ε ∈ (0,+∞),



DYNAMICS OF VACUUM STATES 2547

and ∫ b1+ε

a1

ρ(0, x)dx > 0,

∫ b2

a2−ε
ρ(0, x)dx > 0, for all ε ∈ (0, a2 − b1).

Then there exist yi(t), zi(t) ∈ C1[0, T ], i = 1, 2, such that

yi(0) = ai, zi(0) = bi, i = 1, 2,

−∞ < y1(t) < z1(t) < y2(t) < z2(t) < +∞, ∀t ∈ [0, T ],

with the following properties:∫ z1(t)

y1(t)

ρ(x, t)dx =

∫ z2(t)

y2(t)

ρ(x, t)dx = 0,∫ z1(t)

y1(t)−ε
ρ(x, t)dx > 0,

∫ z2(t)+ε

y2(t)

ρ(x, t)dx > 0, for any ε ∈ (0,+∞),∫ z1(t)+ε

y1(t)

ρ(x, t)dx > 0,

∫ z2(t)

y2(t)−ε
ρ(x, t)dx > 0, for any ε ∈ (0, y2(t)− z1(t)),

for all t ∈ [0, T ].
In particular, ∫ y2(t)

z1(t)

ρ(·, t)dx =

∫ a2

b1

ρ(0, ·)dx, ∀t ∈ [0, T ]. (17)

Remark 3. Our results also allow the possibility that U0 have different states at
x = ±∞. Also, the proof in the following sections shows that the temperature has
no immediate effect on the dynamic of vacuum states.

The paper is organized as this. In section 2, we show that the flow velocity glows
at most linearly and an estimate on the evolution of a vacuum interval is given. In
section 3, we investigate the vacuum states at x = ±∞ and prove Theorem 1.2.
In section 4, we focus on the properties of vacuum states and prove Theorem 1.3
by contradiction argument. In section 4, we investigate two vacuum states without
interaction and prove Theorem 1.4.

2. Preliminary Lemmas. In this section, we list two elementary facts which are
useful for later analysis.

Lemma 2.1. Let (ρ, u, θ) be a global weak solution of (1)-(3) satisfying assumptions
(9)-(11). Then, u ∈ L1([0, T ];L∞loc(R)); in fact, there is a constant C > 0 such that
for any L > 0,

‖u(·, t)‖L∞(−L,L) ≤ Cγ(t)(L+ 1)

for almost all t ∈ [0, T ], where γ(t) is the same as in assumptions (10)-(12).

Proof. For any L > 0, we choose ξL(x) ∈ C∞0 (R) such that

ξL(x) =


0 ≤ ξL ≤ 1,

|ξ′L| ≤ C,
ξL = 1, x ∈ [−L,L];

ξL = 0, |x| ≥ L+ 1.
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From hypothesis (9), u(·, t) ∈ H1
loc(R) for almost all t ∈ [0, T ], pick such a t. Then,

we have

‖u(·, t)‖L∞(−L,L) =ess sup
x∈[−L,L]

|u(x, t)ξL(x)|

=ess sup
x∈[−L,L]

∣∣∣∣∫ x

−L−1

∂y(ξL(y)u(y, t))dy

∣∣∣∣
≤
∫ L

−L−1

|ξ′L(y)u(y, t)|dy +

∫ L

−L−1

|ξL(y)uy(y, t)|dy

≤C
∫ −L
−L−1

|u(y, t)|dy +

∫ L

−L−1

|uy(y, t)|dy

≤C
∫ −L
−L−1

|u(y, t)|dy + C(1 + L
1
2 )

(∫ L

−L−1

|uy(y, t)|2dy

) 1
2

≤C(1 + L)γ(t),

where in the last inequality, we use the hypothesis (10) and (11).

Based on Lemma 2.1, we can give an estimate on the evolution of an open interval
of vacuum states.

Lemma 2.2. Let (ρ, u, θ) be a global weak solution of (1)-(4) satisfying assumptions
(9)-(11). For t1 < T and suppose that ρ(·, t1) = 0 a.e. on an open interval (a, b)
with −∞ < a < b <∞. Let

t0 = inf

{
t ∈ [0, t1] :

∫ t1

t

‖u(·, s)‖L∞(a,b) <
b− a

2

}
and

t2 = sup

{
t ∈ [t1, T ] :

∫ t

t1

‖u(·, s)‖L∞(a,b) <
b− a

2

}
.

Then t0 < t1 < t2, and for any t ∈ (t0, t2), ρ(·, t) = 0 on the interval(
a+

∣∣∣∣∫ t

t1

‖u‖L∞(a,b)ds

∣∣∣∣ , b− ∣∣∣∣∫ t

t1

‖u‖L∞(a,b)ds

∣∣∣∣) .
Proof. Since the positive function γ(t) is integrable, Lemma 2.1 and the definition
of t0, t2 show that t0 < t1 < t2.

Now suppose t > t1; the proof for t < t1 is similar, so it will be omitted. Let uε

be the usual spatial regularization of u. Then for almost all t ∈ [t1, T ],

‖uε‖∞ := ‖uε‖L∞(a−ε,b+ε) ≤ ‖u‖L∞(a,b) =: ‖u‖∞.

Now for fixed δ ∈ (0, (b− a)/6), define the smooth monotone function wεδ by

wεδ(x, t) =

{
‖uε‖∞, x < b+a

2 − δ;
−‖uε‖∞, x > b+a

2 + δ,

and the smooth function Ψδ(x) by

Ψδ(x) =

 0, x > b− δ;
1, a+ 2δ < x < b− 2δ;
0, x < a+ δ,
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where Ψδ is increasing in (a+ δ, a+ 2δ), and decreasing in (b− 2δ, b− δ). Moreover,
let φεδ be the smooth solution of the problem{

φt + wεδφx = 0, t > t1;

φ(·, t1) = Ψδ.
(18)

Consider the curves xεr = xεr(t), defined by{
dx
dt = wεδ,

x|t1 = r, r ∈ R.
(19)

Set

V1 ={(x, t) : −∞ < x < xεa+δ(t), t ∈ [t1, T ]},
V2 ={(x, t) : xεa+δ(t) < x < xεa+2δ(t), t ∈ [t1, T ]},
V3 ={(x, t) : xεa+2δ(t) < x < xεb−2δ(t), t ∈ [t1, T ]},
V4 ={(x, t) : xεb−2δ(t) < x < xεb−δ(t), t ∈ [t1, T ]},
V5 ={(x, t) : xεb−δ(t) < x < +∞, t ∈ [t1, T ]}.

It is easy to check that

φεδ(x, t) =

{
0, (x, t) ∈ V1 ∪ V5;
1, (x, t) ∈ V3,

(20)

and

φεδx

 > 0, (x, t) ∈ V2;
< 0, (x, t) ∈ V4;
= 0, otherwise.

(21)

Thus φεδ is a test function for the weak formulation of solution of (1)-(3). In
particular, from (5) we have

∫ b−δ

a+δ

ρφεδ

∣∣∣∣∣
t

t1

=

∫ b−δ

a+δ

∫ t

t1

ρ(φεδt + uφεδx )dxdt

=

∫ b−δ

a+δ

∫ t

t1

ρ(u− wεδ)φεδx dxdt.

Since ρ(x, t1) = 0 a.e. on (a, b), we have∫ b−δ

a+δ

(ρφεδ)(x, t)dx =

∫ b−δ

a+δ

∫ t

t1

ρ(uε − wεδ)φεδx dxdt

+

∫ b−δ

a+δ

∫ t

t1

ρ(u− uε)φεδx dxdt.
(22)

Now we define T εδ by

T εδ = sup

{
t ∈ [t1, T ] : xεa+2δ(s) <

a+ b

2
− δ, xεb−2δ(s) >

a+ b

2
+ δ, ∀s ∈ [t1, t]

}
.
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Without loss of generality, we may assume that xεa+2δ(T
εδ) = a+b

2 − δ, then we

estimate T εδ from (19) that

b− a
2
− 3δ = (

a+ b

2
− δ)− (a+ 2δ) =

∫ T εδ

t1

wεδdt

≤
∫ T εδ

t1

‖uε‖∞dt ≤
∫ T εδ

t1

‖u‖∞dt.

Now, we define T δ by

T δ = sup

{
t ∈ [t1, T ] :

∫ t

t1

‖u‖∞ <
b− a

2
− 3δ

}
, (23)

then T εδ ≥ T δ.
Next, we will show

ρ(·, t) = 0 a.e. on Iδ, for all t ∈ [t1, T
δ], (24)

where Iδ(t) =
(
a+ 2δ +

∫ t
t1
‖u‖∞, b− 2δ −

∫ t
t1
‖u‖∞

)
.

To see this, first, if t ∈ [t1, T
δ], then t ∈ [t1, T

εδ]. So from (20),(21),(22) and the
definition of wεδ, we have∫ b−δ

a+δ

∫ t

t1

ρ(uε − wεδ)φεδx dxdt ≤ 0. (25)

Secondly, for the term
∫ b−δ
a+δ

∫ t
t1
ρ(u− uε)φεδx dxdt, we differentiate (18) with respect

to x and get {
φxt + wεδφxx = −wεδx φx, t > t1;

φx(·, t1) = Ψδ
x.

Then alone the characteristics, we have

φεδx (x(t), t) = Ψδ
x(x(t1))e

−
∫ t
t1
wεδx (x(s),s)ds

. (26)

Next, by the definition of wεδ, we see that

|wεδx (·, s)| ≤ C(δ)‖uε‖∞ ≤ C(δ)‖u‖∞,

where C(δ)→ +∞ as δ → 0, and thus by (26),

‖φεδx ‖∞ ≤ C1(δ),

where C1(δ) is a constant only depending on δ and C1(δ) → 0 as δ → 0. Hence
from (8) and note that for almost all t ∈ [t1, T ], u(·, t) ∈ H1

loc(R), we have∣∣∣∣∣
∫ t

t1

∫ b−δ

a+δ

ρ(u− uε)φεδx dxdt

∣∣∣∣∣
≤ C1(δ)

∫ T

t1

‖u(·, t)− uε(·, t)‖∞‖ρ(·, t)‖L1(a+δ,b−δ)dt

≤ C(a, b, T )C1(δ)

∫ T

t1

‖u(·, t)− uε(·, t)‖∞dt

≤ εC(a, b, T )C1(δ)

∫ T

t1

‖u(·, t)‖H1dt

−→ 0 as ε→ 0.
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That is

lim
ε→0

∫ b−δ

a+δ

∫ t

t1

ρ(u− uε)φεδx dxdt = 0. (27)

Now, from (20), (22) and (25)-(27), we get

lim
ε→0

∫
Iδ

ρ(x, t)dx = lim
ε→0

∫
Iδ

(ρφεδ)(x, t)dx

≤ lim
ε→0

∫ b−δ

a+δ

(ρφεδ)(x, t)dx ≤ 0, t ∈ [t1, T
δ],

then (24) is proved.

If now t ∈ (t1, t2), then
∫ t
t1
‖u‖∞ < b−a

2 , and thus there exists a δ0 ∈ (0, b−a6 )

such that if δ ∈ (0, δ0), then ∫ t

t1

‖u‖∞ <
b− a

2
− 4δ.

For such δ, (23) implies that t ≤ T δ and then ρ(·, t) = 0 for almost all x ∈ Iδ(t).
Letting δ → 0, we get that ρ(·, t) = 0 a.e. on(

a+

∫ t

t1

‖u‖∞, b−
∫ t

t1

‖u‖∞
)

for all t ∈ [t1, t2], thus the proof is completed.

3. Non formation of vacuum near x = ±∞. In this section, by Lemma 2.1 and
Lemma 2.2, we can show that if there is no vacuum initially, then there will be no
formation of vacuum state near infinite.

Proof of Theorem 1.2. We only prove the case that x is positive, the negative part
is similar. If L ≥ 1, as in Lemma 2.1, we can choose ξL(x) ∈ C∞0 (R) such that

ξL(x) =


0 ≤ ξL ≤ 1,

|ξ′L| ≤ CL−1/2,

ξL = 1, x ∈ [−L,L];

ξL = 0, |x| ≥ 3L/2.

Then, we have

‖u(·, t)‖L∞(−L,L) = ess sup
x∈[−L,L]

|u(x, t)ξL(x)|

= ess sup
x∈[−L,L]

∣∣∣∣∣
∫ x

− 3L
2

∂y(ξL(y)u(y, t))dy

∣∣∣∣∣
≤
∫ L

− 3L
2

|ξ′L(y)u(y, t)|dy +

∫ L

− 3L
2

|ξL(y)uy(y, t)|dy

≤ CL−1/2

∫ L

− 3L
2

|u(y, t)|dy + CL
1
2

(∫ L

− 3L
2

|uy(y, t)|2dy

) 1
2

≤ Cγ(t)(1 + L
3
4 )

≤ CL 3
4 γ(t),
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which yields that∫ t

0

‖u‖L∞(L,2L) ≤
∫ t

0

‖u‖L∞(−2L,2L) ≤ 2
3
4CL

3
4

∫ t

0

γ(s)ds, (28)

for all t ∈ (0,+∞) and L ∈ (1,+∞). Let

L∗(t) = max

{
1, 648C4

(∫ t

0

γ(s)ds

)4
}
, (29)

then

2
3
4C(L∗(t))

3
4

∫ t

0

γ(s)ds ≤ L∗(t)/3 (30)

for all t ∈ (0,+∞). We claim that for any t ∈ (0,+∞),∫ 2L

L

ρ(x, t)dx > 0

for all L ∈ (L∗(t),+∞) with L∗(t) defined by (29). In fact, if (14) is not true for
some t0 ∈ (0,+∞) and some L0 ∈ (L∗(t0),+∞), then ρ(x, t0) = 0 a.e. on (L0, 2L0).
Then Lemma 2.2 shows that ρ(·, t) = 0 a.e. on(

L0 +

∫ t0

t

‖u‖L∞(L0,2L0), 2L0 −
∫ t0

t

‖u‖L∞(L0,2L0)

)
(31)

for all t ∈ [t∗, t0], where

t∗ = inf

{
t ∈ [0, t0] :

∫ t0

t

‖u‖L∞(L0,2L0) <
L0

2

}
. (32)

It follows from (28) and (30) that∫ t0

0

‖u(·, t)‖L∞(L0,2L0)dt ≤ 2
3
4CL

3
4
0

∫ t0

0

γ(t)dt ≤ L0

3
<
L0

2
(33)

for all L0 ∈ (L∗(t0),+∞). Combining (31)-(33) yields that 0 ∈ [t∗, t0], that is

ρ0(x) = ρ(x, 0) = 0

for almost all x ∈ (L0 + L0

3 , 2L0 − L0

3 ). This contradicts
∫
E
ρ(x, 0)dx > 0 for any

open set E ⊂ R. We finish the proof of Theorem 1.2.

4. Vacuum away from infinity. In this section, we focus on the properties of
vacuum states and prove Theorem 1.3 by contradiction argument. Let (ρ, u, e) be a
weak solution of (1)-(3) on R× [0, T ] satisfying assumptions (9)-(13). We suppose
that ρ(·, t1) = 0 a.e. on (a, b), where, Theorem 1.2 implies −∞ < a < b+∞. The
interval (a, b) and the time t1 will be fixed in the rest of the argument.

Let t0 be as in the statement of Lemma 2.2, and define for t ∈ (t0, t1),

y(t) = inf

{
x : ρ(·, t) = 0 a.e. on (x,

a+ b

2
)

}
, (34)

z(t) = sup

{
x : ρ(·, t) = 0 a.e. on (

a+ b

2
, x)

}
, (35)

and

y(t1) = a, z(t1) = b. (36)

We start with some elementary estimates and regularity properties for the curves
x = y(t) and x = z(t).
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Lemma 4.1. There exists a constant h0 = h0(a, b) > 0 such that y(t) and z(t) are
absolutely continuous functions on [t1 − h0, t1], and

a0 ≤ y(t) ≤ a1 < b1 ≤ z(t) ≤ b0, (37)

where a0 = a− b−a
2 , a1 = a+ b−a

4 , b1 = b− b−a
4 and b0 = b+ b−a

2 .

Proof. First, from Lemma 2.2,

y(t) < a+
b− a

2
=
a+ b

2
< b− b− a

2
< z(t) (38)

for all t ∈ [t0, t1], where t0 is as in Lemma 2.2. Let

ω(t) = max{z(t),−y(t)} ≥ 0, (39)

then ω(t1) = max{b,−a} and∫ t1

t1−h
‖u(·, t)‖L∞( a+b2 ,b+ b−a

2 ) ≤
∫ t1

t1−h
‖u(·, t)‖L∞(−2ω(t1),2ω(t1))

≤ C(2ω(t1) + 1)

∫ t1

t1−h
γ(t)dt,

where C is a constant as in Lemma 2.1. Choose h0 = h0(a, b) > 0 such that

C(2ω(t1) + 1)

∫ t1

t1−h0

γ(t)dt <
b− a

4
,

so that ∫ t1

t1−h0

‖u(·, t)‖L∞( a+b2 ,b+ b−a
2 ) <

b− a
4

. (40)

Then we can prove that for all t ∈ [t1 − h0, t1],

z(t) ≤ b+
b− a

2
. (41)

In fact, if (41) fails then z(t) > b + b−a
2 for some t ∈ [t1 − h0, t1). Due to (38),

one gets that ρ(·, t) = 0 a.e. on (a+b
2 , b + b−a

2 ). Applying Lemma 2.2 we obtain
ρ(·, t) = 0 a.e. on(

a+ b

2
+

∫ t

t

‖u‖L∞( a+b2 ,b+ b−a
2 ), b+

b− a
2
−
∫ t

t

‖u‖L∞( a+b2 ,b+ b−a
2 )

)
for all t ∈ (t, t), where

t = sup

{
t ∈ [t, T ] :

∫ t

t

‖u‖L∞( a+b2 ,b+ b−a
2 ) <

b− a
2

}
.

Using (40) we have t1 ∈ (t, t), then ρ(·, t1) = 0 a.e. on(
a+ b

2
+

∫ t1

t

‖u‖L∞( a+b2 ,b+ b−a
2 ), b+

b− a
2
−
∫ t1

t

‖u‖L∞( a+b2 ,b+ b−a
2 )

)
.

This contradicts (35) and (36) since

b+
b− a

2
−
∫ t1

t

‖u‖L∞( a+b2 ,b+ b−a
2 ) > b.

Similarly, we have a− b−a
2 ≤ y(t). Moreover,∫ t1

t

‖u‖L∞(a,b) ≤
∫ t1

t1−h0

‖u‖L∞(a,b) ≤
∫ t1

t1−h0

‖u‖L∞(−2ω(t1),2ω(t1)) <
b− a

4
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for all t ∈ [t1 − h0, t1], then (37) holds.
Next, we can prove that y(t), z(t) are absolutely continuous by definition and

follow the ideas in [14].

Let S be defined as the set of all t > 0 such that there exist extensions of y(t)
and z(t) to [t, t1] with the following three properties:

1. y(t) and z(t) are absolutely continuous on [t, t1];
2. y(t) < z(t) on [t, t1];

3.
∫ z(s)
y(s)−ε ρ(x, s)dx and

∫ z(s)+ε
y(s)

ρ(x, s)dx are both positive for all ε > 0 and

s ∈ [t, t1], and
∫ z(s)
y(s)

ρ(x, s)dx = 0.

It follows from Lemma 4.1 that S is not a empty set and thus let

τ = inf S. (42)

Concerning τ , according to Lemma 2.1, Lemma 2.2 and Lemma 4.1, we have the
following result.

Lemma 4.2. y(t) and z(t) have absolutely continuous extensions to time τ , y(τ) =
z(τ), and there exists an L = C ′ (max{−a0, b0}+ 1) > 0 for some constant C ′ > 0,
such that for all t ∈ [τ, t1], −L ≤ y(t) < z(t) ≤ L, where a0, b0 as in (37).

Proof. The proof is similar to Lemma 2.4 in [14]. For any t̃ ∈ (τ, t1], y(t) and z(t)

are absolutely continuous on [t̃, t1], and y(t) < z(t) for all t ∈ [t̃, t1]. Therefore for

any t ∈ [t̃, t1 − h0

2 ], Lemma 2.2 shows that there is an h = h(t) > 0 such that

C

∫ t+h

t−h
γ(s)ds ≤ 1

4
, (43)

and if |s− t| ≤ h, then ρ(·, s) = 0 a.e. on the interval(
y(t) +

∣∣∣∣∫ t

s

‖u‖L∞(−2ω(t),2ω(t))

∣∣∣∣ , z(t)− ∣∣∣∣∫ t

s

‖u‖L∞(−2ω(t),2ω(t))

∣∣∣∣) ,
where C is as in Lemma 2.1, h0 = h0(a, b) is as in Lemma 4.1 and ω(t) is defined
by (39). Thus

z(s) ≥ z(t)−
∣∣∣∣∫ t

s

‖u‖L∞(−2ω(t),2ω(t))

∣∣∣∣
and

y(s) ≤ y(t) +

∣∣∣∣∫ t

s

‖u‖L∞(−2ω(t),2ω(t))

∣∣∣∣ ,
then we get

ω(s) ≥ ω(t)−
∣∣∣∣∫ t

s

‖u‖L∞(−2ω(t),2ω(t))

∣∣∣∣
≥ ω(t)− C

∣∣∣∣∫ t

s

γ

∣∣∣∣ (2ω(t) + 1)

≥
(

1− 2C

∣∣∣∣∫ t

s

γ

∣∣∣∣)ω(t)− C
∣∣∣∣∫ t

s

γ

∣∣∣∣ .
Thus for |t− s| ≤ h(t), we have

0 < ω(t) ≤
(

1 + 2C

∣∣∣∣∫ t

s

γ

∣∣∣∣) [ω(s) + C

∣∣∣∣∫ t

s

γ

∣∣∣∣] (44)
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for some positive constant C. On the other hand, let

d(t̃) = inf
t∈[t̃,t1]

|y(t)− z(t)| > 0. (45)

Choose constants A, B depending on t and t̃, such that

−2ω(t) < y(t) < A < B < z(t) < 2ω(t)

and

(A− y(t)) + (z(t)−B) <
d

4
.

If h(t) is further reduced, it follows from the continuity of y(t) and z(t) that if
|s− t| ≤ h, then

|y(s)− y(t)| < |A− y(t)| and |z(s)− z(t)| < |B − z(t)|,

which means

−2ω(t) < y(s) < A < B < z(s) < 2ω(t).

For such s, using Lemma 2.2, we find that there exists a σ = σ(t) depending on
B−A

2 , such that if s ≤ s̃ ≤ s+ σ, then ρ(·, s̃) = 0 a.e. on(
y(s) +

∫ s̃

s

‖u‖L∞(−2ω(t),2ω(t)), z(s)−
∫ s̃

s

‖u‖L∞(−2ω(t),2ω(t))

)
.

We can further reduce h(t) so that h(t) ≤ σ(t). Thus if t − h(t) ≤ s ≤ t, then
s ≤ t ≤ s+ h(t) ≤ s+ σ(t), and we may take s̃ = t to obtain

ω(t) ≥ ω(s)−
∫ t

s

‖u‖L∞(−2ω(t),2ω(t))dt

and then

ω(s) ≤ ω(t) + C(2ω(t) + 1)

(∫ t

s

γ

)
. (46)

We now cover the interval [t̃, t1 − h0

2 ] by finitely many intervals Bhj (sj), where

s1 > s2 > · · · > sp and hj = hj(sj) as above with hj <
h0

2 , that is
[t̃, t1 −

h0

2
] ⊂ ∪pj=1(sj − hj , sj + hj),

t̃ ∈ (sp − hp, sp + hp),

t1 −
h0

2
∈ (s1 − h1, s1 + h1).

If τj ∈ Bhj+1(sj+1) ∩Bhj (sj), then by (46),

ω(sj+1) ≤ ω(τj) + C(2ω(τj) + 1)

(∫ τj

sj+1

γ

)
,

also from (44),

0 < ω(τj) <

(
1 + 2C

∣∣∣∣∣
∫ τj

sj

γ

∣∣∣∣∣
)[

ω(sj) + C

∣∣∣∣∣
∫ τj

sj

γ

∣∣∣∣∣
]
,
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then

ω(sj+1) ≤

(
1 + 2C

∫ τj

sj+1

γ

)(
1 + 2C

∫ sj

τj

γ

)[
ω1 + C

∫ t

s

γ

]

+

(
1 + 2C

∫ τj

sj+1

γ

)∫ t

s

γ,

(47)

which gives

ω(sp) ≤ ω(sj+1) ≤
p−1∏
j=0

(
1 + 2C

∫ τj

sj+1

γ

)(
1 + 2C

∫ sj

τj

γ

)[
ω1 + C

∫ t

s

γ

]

+

p−1∑
k=0

p−1∏
j=k

(
1 + 2C

∫ τj

sj+1

γ

)(
1 + 2C

∫ sj

τj

γ

)∫ t

s

γ.

Now if ε1 + · · ·+ εq = ε, and each εi > 0, then∏
(1 + εi) ≤

(
1 +

ε

q

)q
≤ eε.

Therefore,

ω(sp) ≤ e2ε

[
ω(s1) + C

∫ T

0

γ

]
+ eεp

∫ T

0

γ

≤ e2
∫ T
0
γ

[
ω(s1) + C

∫ T

0

γ

]
+ e

∫ T
0
γp

∫ T

0

γ

≤ C ′(ω(s1) + 1),

(48)

for some constant C ′. As s1 ∈ [t1 − h0, t1], by Lemma 4.1, we can bound ω(s1)

independent of t, and so (48) bound ω(t) on [t̃, t1] for all t̃ ∈ (τ, t1], independent of
t. Thus there exists

L = C ′ (max{−a0, b0}+ 1) > 0,

such that
−L ≤ y(t) < z(t) ≤ L, for all t ∈ (τ, t1],

where a0, b0 as in (37).
Next, we will show that y(t) and z(t) are uniformly continuous on the interval

(τ, t1]. Let ε > 0 be given. Choose δ > 0 such that if 0 ≤ s < t ≤ T and |s− t| < δ,
then ∫ t

s

‖u‖L∞(−L,L) <
ε

5
.

Now, if t ∈ (τ, t1], we can find h(t) > 0 such that if |t− s| < h(t), then

|z(s)− z(t)| ≤
∣∣∣∣∫ t

s

‖u‖L∞(−L,L)

∣∣∣∣ .
Now fix s < t with |s−t| < δ and s, t ∈ (τ, t1], then [s, t] is covered by ∪Nk=1Bhk

2

(sk),

s1 < s2 < · · · < sN , where sj +
hj
2 > sj+1 − hj+1

2 and hj < δ for each j. Then

|sj+1 − sj | ≤ hj+hj+1

2 ≤ max{hj , hj+1} < δ. Thus

|z(sj)− z(sj+1)| ≤

∣∣∣∣∣
∫ sj+1

sj

‖u‖L∞(−L,L)

∣∣∣∣∣ .
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Now if for some j and k, s ∈ Bhj
2

(sj), t ∈ Bhk
2

(sk), then

|z(s)− z(t)| ≤ |z(s)− z(sj)|+ |z(sj+1)− z(sj)|+ · · ·+ |z(sk)− z(t)|

≤
∫ sj+1

sj

+ · · ·+
∫ sk

sk−1

+

∣∣∣∣∫ sj

s

‖u‖L∞(−L,L)

∣∣∣∣+

∣∣∣∣∫ t

sk

‖u‖L∞(−L,L)

∣∣∣∣
≤
∫ t

s

‖u‖L∞(−L,L) + 2

∣∣∣∣∫ sj

s

‖u‖L∞(−L,L)

∣∣∣∣+ 2

∣∣∣∣∫ t

sk

‖u‖L∞(−L,L)

∣∣∣∣
<
ε

5
+

2ε

5
+

2ε

5
= ε.

It follows that y(t) and z(t) have absolutely continuous extension to time τ . To
complete the proof, we have to show that y(τ) = z(τ). Otherwise, y(τ) < z(τ),

and if τ = 0, then
∫ z(τ)

y(τ)
ρ(x, 0)dx = 0 which contradicts the assumption (16); or if

τ > 0, then τ would not be the minimal, since we can do the absolutely continuous
extensions of y(t) and z(t) to time τ − h(τ) for some h(τ) > 0.

Now, we define the vacuum region V by

V = {(x, t) : y(t) < x < z(t), τ < t ≤ t1}. (49)

The function u in V has following representation:

Lemma 4.3. Let (ρ, u, θ) be a global weak solution of (1)-(4), then

u(x, t) = α(t)x+ β(t)

for all x ∈ (y(t), z(t)) and almost all t ∈ (τ, t1], where α(t) ∈ L1
loc((τ, t1]) and

β(t) ∈ L1
loc((τ, t1]).

Proof. This can be seen formally from the equation (2) and we omit the details.

Based on Lemma 4.2 and Lemma 4.3, we can estimate the growth of x = y(t)
and x = z(t) more precisely.

Lemma 4.4. It holds that

dz

dt
≤ αz + β and

dy

dt
≥ αy + β (50)

for almost all t ∈ (τ, t1].

Proof. The proof can follow the idea of Hoff-Smoller [14] and Duan-Zhao [7].

Remark 4. Lemma 4.4 shows that integral curves of u which start in V must
remain in V on (τ, t1]. In fact, fix w1 ∈ (a, b) and for τ < t ≤ t1, w(t) is defined by

dw

dt
= αw + β,

w(t1) = w1 < b = z(t1).
(51)

Then by Lemma 4.4, we have
d(z − w)

dt
≤ α(z − w) a.e.,

(z − w)(t1) = b− w1 > 0.

Thus

0 < z(t1)− w1 ≤ c
∫ t1
s
α(z(t)− w(t)),
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so that w(t) < z(t); similarly, we have w(t) > y(t). That is

y(t) < w(t) < z(t) for all t ∈ (τ, t1]. (52)

Corollary 1. It holds that

lim
t→τ

∫ t1

t

α(s)ds = +∞.

Proof. For a < w1 < w2 < b and the corresponding function wi(t)(i = 1, 2) defined
by (51), we have 

d(w1(t)− w2(t))

dt
= α(w1(t)− w2(t)) + β,

w1(t1)− w2(t1) = w1 − w2,

then

w1(t)− w2(t) = (w1 − w2)e−
∫ t1
t α(s)ds. (53)

From (52), limt→τ (w1(t) − w2(t)) = 0 and (53) gives that limt→τ
∫ t1
t
α(s)ds =

+∞.

We now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let c(t) ≡ w1(t) < w2(t) ≡ d(t) be two curves defined by
(51). Then 0 ≤ d(t) − c(t) → 0 as t → τ . Let ωε = (αε(t)x + βε(t))χ(x), where
αε, βε are regularizations of α and β and χ(x) is a smooth function defined as
following:

sptχ(x) ⊂ (a, b),

{x : χ(x) = 1} = (a1, b1), where (a1, b1) ⊂ (c(t1), b) and a1 < d(t1),

0 ≤ χ(x) ≤ 1.

Define the smooth function ψ(x) by
sptψ(x) ⊂ (a1, b̃), where b̃ > b,

{x : ψ(x) = 1} = (a2, b2), where a1 < a2 < d(t1) and b < b2 < b̃,

0 ≤ ψ(x) ≤ 1.

Now let φε be the solution of the initial value problem{
φt + ωεφx = 0,
φε(t1) = ψ(x),

then φε is a smooth compactly supported function. Consider the curves xεr = xεr(t)
defined by {

dx

dt
= ωε, t ∈ (τ, t1],

x(t1) = r, r ∈ [0,+∞),

Set

V1 =
{

(x, t) : xεa1(t) < x < xεa2(t), t ∈ (τ, t1]
}
,

V2 =
{

(x, t) : xεb2(t) < x < xε
b̃
(t), t ∈ (τ, t1]

}
.
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Then sptφεx is contained in V1 and V2 with the corresponding characteristics ẋ =
αεx+ βε and ẋ = 0 respectively. Thus from (6), we have for τ < t < t1,∫

ρuφε
∣∣∣∣t1
t

dx =

∫∫
[ρu(φεt + uφεx) + (P − µux)φεx + ρfφε] dxdt

=

∫∫
[ρu(u− ωε)φεx + (P − µux)φεx + ρfφε] dxdt.

(54)

Now, first
∣∣∣∫ ρuφε∣∣t1

t
dx
∣∣∣ ≤ C by (13), where C is independent of t. Then the term∣∣∫∫ ρfφε∣∣ is bounded because of the regularity of f and (8). Also, since ρ = 0 a.e.

on V1, ∫ t1

t

∫
V1

ρu(u− ωε)φεx = 0.

In V2, ωε = 0 and φεx = ψεx, then in view of (12),∣∣∣∣∫ t1

t

∫
V2

ρu(u− ωε)φεx
∣∣∣∣ =

∣∣∣∣∫ t1

t

∫
V2

ρu2ψx

∣∣∣∣ ≤ C(t1, τ).

Next, by the assumptions (4), (9)-(12) and Definition 1.1, we have∣∣∣∣∫∫
V2

(P − µux))φεx

∣∣∣∣ ≤ ∫∫
V2

(|P |+ µ|ux|)|ψx| ≤ C.

Finally, since P (0, θ) = 0, we have∫∫
V1

(P − µux)φεx = −
∫∫

V1

µuxφ
ε
x

= −
∫ t1

t

∫ d(t)

c(t)

µα(s)φεx

= −
∫ t1

t

µα(s)(φε(d(s), s)− φε(c(s), s))ds

= −
∫ t1

t

µα(s),

because c(t1) < a1 < a2 < d(t1) and thus φε(d(s), s) = 1, φε(c(s), s) = 0. Then by
(54) ∣∣∣∣µ∫ t1

t

α(s)

∣∣∣∣ =

∣∣∣∣∫∫
V1

(P − µux)φεx

∣∣∣∣
≤

∣∣∣∣∣
∫
ρuφε

∣∣∣∣t1
t

dx

∣∣∣∣∣+

∣∣∣∣∫∫ ρu(u− ωε)φεx + ρfφεx

∣∣∣∣
+

∣∣∣∣∫∫
V2

(P − µux))φεx

∣∣∣∣
≤ C

(55)

where C is independent of t. Letting t ↓ τ , (55) contradicts Corollary 1. We finish
the proof of Theorem 1.3.

Remark 5. It is clear that if the vacuum states appear on an open interval initially,
then the interval of vacuum state will persist in time. In fact, if ρ(x, 0) = 0 a.e.
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on (a, b) ⊂ R, we can define y(t), z(t) and set S as before for t ∈ [0, T ] with any
T < +∞, and let

τ = supS. (56)

Then from the proof of Theorem 1.3, we get

−L < y(t) < z(t) < L, for all t ∈ [0, τ) and some L > 0;

y(t), z(t) have absolutely continuous extensions to time τ and are uniform contin-
uous on [0, τ). Now if y(τ) = z(τ), we obtain Corollary 1 which contradicts (55),
which means the momentum is locally finite. Thus y(τ) < z(τ) and τ = T , since
otherwise τ < T , then τ would not be the maximal.

5. Vacuum states on two intervals. In this section we show that two initial
non interacting vacuum regions will never meet each other in the future.

Proof of Theorem 1.4. According to Remark 5, we see that the curves yi(t), zi(t),
i = 1, 2 are absolutely and uniformly continuous functions. Also, by Lemma 4.1,
there exists h0 = h0(ai, bi) > 0 such that for any t ∈ [0, h0], we have

−∞ < y1(t) < a1 +
b1 − a1

4
< b1 −

b1 − a1

4
< z1(t)

< y2(t) < a2 +
b2 − a2

4
< b2 −

b2 − a2

4
< z2(t) < +∞

since b1 < a2. Suppose y2(t) > z1(t) is not true for some t ∈ (h0, T ], let

t̄ = inf{t ∈ (h0, T ] : y2(t) = z1(t)}
as the set is not empty. Thus ρ(·, t̄) = 0 a.e. on (y1(t̄), z2(t̄)), then there exists
0 < h(t̄) < h0, such that∫ t̄

t̄−h(t̄)

‖u(·, t̄)‖L∞(−w(t̄),w(t̄)) <
d

4
,

where w(t̄) = max{−y1(t), z2(t̄)} and

d = min

{
inf

t∈[0,T ]
|y1(t)− z1(t)|, inf

t∈[0,T ]
|y2(t)− z2(t)|

}
. (57)

Here d > 0 because of Remark 5. Then ρ(·, t) = 0 a.e. on(
y1(t̄) +

d

4
, z2(t̄)− d

4

)
for all t ∈ (t̄− h(t̄), t̄). We can reduce h(t̄) so that if |t− t̄| < h(t̄), then

|z1(t)− z1(t̄)| < d

4
and |y2(t)− y2(t̄)| < d

4
,

and then

y1(t̄) +
d

4
< z1(t̄)− d

4
< z1(t) and y2(t) < y2(t̄) +

d

4
< z2(t̄)− d

4
.

This shows that ρ(·, t) = 0 a.e. on (z1(t), y2(t)) for all t ∈ (t̄ − h(t̄), t̄) which leads
to the contradiction since t̄ is the minimum. Thus for all t ∈ [0, T ], we have

−∞ < y1(t) < z1(t) < y2(t) < z2(t) < +∞.
Next, we will show (17). We first set

Ri =
1

2
(yi(t) + zi(t)), i = 1, 2.
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Moreover, for any t ∈ [h0

2 , T ) one can find a small positive constant h(t) > 0 such
that if |s− t| < h(t), then

|yi(s)− yi(t)|+ |zi(s)− zi(t)| <
d

4
, i = 1, 2,

where h0 = h0(ai, bi), d are constants defined in (57). Thus let

Ωi(t) = [Ri(t)− d

4
, Ri(t) +

d

4
]× [t− h(t), t+ h(t)]

and

V i = {(x, t) : yi(t) < x < zi(t), 0 ≤ t ≤ T}
then

Ωi(t) ⊂ V i, i = 1, 2.

Next, we can cover [h0, T ] by
⋃
t∈[

h0
2 ,T )

(t− h(t), t+ h(t)), then there exist {tj}Nj=1

and {hj}Nj=1 such that
0 < t1 < t2 < · · · < tN ,

[h0, T ] ⊂ ∪Nj=1(tj − hj , tj + hj), where hj = h(tj),

h0 ∈ (t1 − h1, t1 + h1),

T ∈ (tN − hN , tN + hN ) ∩ [0, T ],

and ∪Nj=1Ωij ⊂ V i, Ωij ∩ Ωij+1 6= ∅, where

Ωij(t) =

[
Rij(t)−

d

4
, Rij(t) +

d

4

]
× [tj − hj , tj + hj ]

with Rij = Ri(tj), j = 1, 2, · · · , N, i = 1, 2. Now denote Ωi0 by

Ωi0 =

[
ai +

bi − ai
4

, bi −
bi − ai

4

]
× [0, h0],

then Ωi0 ⊂ V i, i = 1, 2. Choose φ0 ∈ C∞0 (R) such that 0 ≤ φ0 ≤ 1,

φ0(x) =


0, x ∈ (−∞, a1 +

b1 − a1

4
]

1, x ∈ [b1 −
b1 − a1

4
, a2 +

b2 − a2

4
]

0, x ∈ [b2 −
b2 − a2

4
,+∞).

It follows from (5) that∫
R
ρφ0

∣∣∣∣t
0

=

∫ t

0

∫
R

(ρuφ0
x + ρφ0

t ), for all t ∈ [0, h0],

thus ∫ y2(t)

z1(t)

ρ =

∫ a2

b1

ρ(0, x)dx, for all t ∈ [0, h0].

Now for j = 1, t1 − h1 ∈ [0, h0], then∫ y2(t1−h1)

z1(t1−h1)

ρ =

∫ a2

b1

ρ(0, x)dx, for all t ∈ [0, h0].
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Define φ1 ∈ C∞0 (R) by 0 ≤ φ1(x) ≤ 1 and

φ1(x) =


0, x ∈ (−∞, R1

1 −
d

4
]

1, x ∈ [R1
1 +

d

4
, R2

1 −
d

4
]

0, x ∈ [R2
1 +

d

4
,+∞).

Thus (5) shows that∫
R
ρφ1

∣∣∣∣t
t1−h1

=

∫ t

t1−h1

∫
R
(ρuφ1

x + ρφ1
t ), for all t ∈ [t1 − h1, t1 + h1],

that is ∫ y2(t)

z1(t)

ρ(x, t)dx =

∫ y2(t1−h1)

z1(t1−h1)

ρ(x, t1 − h1)dx

=

∫ a2

b1

ρ(0, x)dx, for all t ∈ [t1 − h1, t1 + h1].

Repeating the above process shows that∫ y2(t)

z1(t)

ρ(x, t)dx =

∫ a2

b1

ρ(0, x)dx, for all t ∈ [0, T ].

We finish the proof of Theorem 1.4.

Remark 6. If we choose the smooth function ρ̄(x) in Remark 1 to be monotone
and assume (ρ − ρ̄(x)) ∈ L∞([0, T ], Lα(R)) for some α > 1, then we can bound
(y2(t)− z1(t)) from below. To see this, from (17) we have∫ y2(t)

z1(t)

(ρ(x, t)− ρ̄(x))dx+

∫ y2(t)

z1(t)

ρ̄(x)dx =

∫ a2

b1

ρ(0, x)dx,

and ∫ y2(t)

z1(t)

(ρ(x, t)− ρ̄(x))dx ≤
∫ y2(t)

z1(t)

|ρ(x, t)− ρ̄(x)|dx

≤ ‖ρ− ρ̄‖L∞([0,T ];Lα(R))(y2(t)− z1(t))
α−1
α

= C(y2(t)− z1(t))
α−1
α ,

where C = ‖ρ− ρ̄‖L∞([0,T ];Lα(R)). Then∫ a2

b1

ρ(0, x)dx ≤ C(y2(t)− z1(t))
α−1
α + max{ρ+, ρ−}(y2(t)− z1(t))

for all t ∈ [0, T ]. If there exist some t ∈ [0, T ] such that y2(t)− z1(t) < 1, then(∫ a2
b1
ρ(0, x)

C ′

) α
α−1

≤ y2(t)− z1(t) < 1,

where C ′ = max{C, ρ+, ρ−}. Otherwise, (y2(t)− z1(t)) ≥ 1, then∫ a2
b1
ρ(0, x)dx

C ′
≤ y2(t)− z1(t).
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Thus

y2(t)− z1(t) ≥ min


(∫ a2

b1
ρ(0, x)

C ′

) α
α−1

, 1

 ,

where C ′ = max{‖ρ− ρ̄‖L∞([0,T ];Lα(R)), ρ+, ρ−} for all t ∈ [0, T ] with T > 0.
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Soc. Math. France., 90 (1962), 487–497.
[28] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Ration. Mech. Anal., 3

(1959), 271–288.

[29] Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact
density, Comm. Pure Appl. Math., 51 (1998), 229–240.

[30] Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible

Navier-Stokes equations, J. Hyperbolic Differential Equations, 3 (2006), 403–442.

Received June 2012; revised March 2013.

E-mail address: bduan.math@gmail.com

E-mail address: lluozhen@gmail.com

http://www.ams.org/mathscinet-getitem?mr=MR1810944&return=pdf
http://dx.doi.org/10.1007/PL00005543
http://dx.doi.org/10.1007/PL00005543
http://www.ams.org/mathscinet-getitem?mr=MR1999830&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0530493&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0651877&return=pdf
http://dx.doi.org/10.1007/BF00971419
http://www.ams.org/mathscinet-getitem?mr=MR0468593&return=pdf
http://dx.doi.org/10.1016/0021-8928(77)90011-9
http://dx.doi.org/10.1016/0021-8928(77)90011-9
http://www.ams.org/mathscinet-getitem?mr=MR2410901&return=pdf
http://dx.doi.org/10.1007/s00220-008-0495-4
http://dx.doi.org/10.1007/s00220-008-0495-4
http://www.ams.org/mathscinet-getitem?mr=MR1637634&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1766564&return=pdf
http://dx.doi.org/10.1137/S0036141097331044
http://dx.doi.org/10.1137/S0036141097331044
http://www.ams.org/mathscinet-getitem?mr=MR2901319&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0564670&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0149094&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0106646&return=pdf
http://dx.doi.org/10.1007/BF00284180
http://www.ams.org/mathscinet-getitem?mr=MR1488513&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2238736&return=pdf
http://dx.doi.org/10.1142/S0219891606000847
http://dx.doi.org/10.1142/S0219891606000847
mailto:bduan.math@gmail.com
mailto:lluozhen@gmail.com

	1. Introduction and main result
	2. Preliminary Lemmas
	3. Non formation of vacuum near x=
	4. Vacuum away from infinity
	5. Vacuum states on two intervals
	Acknowledgments
	REFERENCES

