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An inexact two-stage stochastic integer programming (ISIP) model is developed for capacity planning of
flood diversion under uncertainty. It incorporates the concepts of two-stage stochastic programming and
chance-constrained programming within an interval-parameter integer programming framework. ISIP can
facilitate dynamic analysis of capacity-expansion planning when uncertainties are presented in terms of
probabilistic distributions and discrete intervals. Moreover, it can be used for examining various policy
scenarios associated with different levels of economic penalties when the promised targets are violated.
The developed method is applied to a case study of flood-diversion planning under uncertainty. Reasonable
solutions are generated for binary and continuous variables. They provide the desired capacity-expansion
schemes and flood-diversion patterns, which are related to a variety of trade-offs between system cost and
constraint-violation risk. Decisions with a lower-risk level imply a higher system cost and an increased
reliability in satisfying the system constraints; conversely, a desire for reducing the system cost could result
in an increased risk of violating the system constraints.

Keywords: capacity planning; flood diversion; integer programming; interval optimisation; policy
analysis; stochastic; uncertainty

1. Introduction

Flooding is the leading cause of losses from natural phenomena. Roughly a half of fatalities from
natural hazards and one-third of economic losses were attributed to flooding (Munich 2000). Over
the past decades, the frequency and intensity of floods have increased due to deteriorated eco-
systems, decreased vegetation cover, reduced stream capacity, varied runoff pattern, and changed
climate condition. Flood damages are becoming more severe. For example, the flood of 1997
in the Red River forced about 28,000 Manitobans to move away from their homes and caused
an estimated loss of $400 million (Huang 2005). Losses can hardly be avoided when major
floods occur; however, floodplains can be used to divert flows and reduce losses. Therefore,
capacity planning for floodplain-management systems to meet the overall flood-diversion demand
continues to challenge decision makers.
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Capacity planning for floodplains can be achieved through the mixed-integer linear program-
ming (MILP) method, where integer variables can be typically used to indicate whether or not
particular expansion options are to be undertaken. Previously, several studies of flood management
by means of MILP were reported (van Dantzig 1956, Kumar et al. 1979, Windsor 1981, Randall
1997, Srinivasan et al. 1999, Needham et al. 2000). However, in real-world problems, many sys-
tem parameters are highly uncertain and their interrelationships can be extremely complicated
(Babaeyan-Koopaei et al. 2003, Byun et al. 2003). For example, in a flood management system,
spatial and temporal variations in such components as flood flows, floodplain capacities, and water-
diversion policies can exist. Also, costs for flood diversion and capacity expansion have many
uncertainties. These complexities may be increased by interactions between the uncertain param-
eters and the associated economic implications. These difficulties place the planning problem
beyond the conventional integer programming methods. A more robust approach is thus desired.

Several optimisation techniques such as interval, fuzzy, and stochastic programming were
incorporated within the MILP framework to tackle uncertainties in integer optimisation problems.
These led to methods of interval-parameter integer programming (IIP), fuzzy integer program-
ming (FIP), and stochastic integer programming (SIP) (Glover 1976, Ignizio and Daniels 1983,
Zimmermann and Pollatschek 1984, Teghem and Kunsch 1986a,b, Huang et al. 1995a,b, 2001,
Chang et al.1997, Chanas and Kuchta 1998, Watkins and McKinney 1998, Vanderpooten 2003,
Li et al. 2008). IIP allows uncertainties expressed as interval numbers to be directly communi-
cated into the integer optimisation process and the resulting solution, such that multiple decision
alternatives can be generated through the interpretation of the solutions (Huang et al. 1995a).
In IIP, uncertain parameters are expressed as intervals with known lower and upper bounds but
unknown membership or distribution functions. However, the IIP method may become infeasible
when the model’s right-hand side parameters are highly uncertain; this limits its practical use.
Huang et al. (1995b) proposed an interval fuzzy integer programming (IFIP) method to deal
with uncertainties presented as intervals and fuzzy sets. However, IFIP had difficulties reflecting
uncertainties expressed as random variables and analysing economic consequences.

The two-stage stochastic programming (TSP) is effective for problems in which an analysis of
policy scenarios is desired and the related data are random in nature with recourse. In the past
decades, two-stage stochastic integer programming (TSIP) methods were explored and applied
to capacity-expansion problems (Bean et al. 1992, Berman and Ganz 1994, Berman et al. 1994,
Klein-Haneveld et al. 1996, Carøe and Tind 1998, Carøe and Schultz 1999, Ahmed 2000, Lund
2002, Ahmed et al. 2004, Li et al. 2006a, b). For example, Eppen et al. (1989) described a TSIP
model for capacity planning in an automobile manufacturing plant. Berman et al. (1994) developed
a two-stage stochastic capacity-expansion model for service industries, where the Lagrangian
relaxation-based solution methodology was used. Klein-Haneveld et al. (1996) proposed solution
schemes for TSIP problems with simple integer recourse, based on the construction of a convex
hull for the second-stage value function. Schultz et al. (1998) proposed a finite scheme for TSPs
with discrete distributions and integer second-stage variables, where only integer values of the
right-hand side parameters for the second-stage decisions were considered. Ahmed et al. (2004)
developed a finite branch-and-bound algorithm for TSPs with discrete distributions, where mixed-
integer first-stage and pure-integer second-stage variables were involved. Albornoz et al. (2004)
proposed a TSIP model for planning the expansion of a thermal power plant, where uncertainties
related to the future availability of the thermal plant were reflected through analysing a finite
group of scenarios. Li et al. (2006b) developed an interval-fuzzy two-stage stochastic MILP
model for dealing with multiple uncertainties in municipal solid waste management systems.
However, there were few reports on the applications of TSIP to flood management. Lund (2002)
developed a two-stage integer linear programming model for floodplain planning, where the
objective was to minimise the sum of expected annual damages and annualised expected flood
response costs. The developed method could deal with uncertainties (flood flows) expressed as
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probability distributions; however, it had difficulties in dealing with independent uncertainties of
the model’s left-hand sides and cost coefficients (in the objective function) and accounting for the
risks of violating uncertain system constraints.

A real-world flood management system may involve multiple complexities, such as (i) uncer-
tainties that exist as intervals and/or random variables, (ii) dynamics in capacity-expansion
planning, and (iii) variations in policy scenarios that are associated with different levels of eco-
nomic penalties when the promised targets are violated. Therefore, this study is to develop an
inexact two-stage stochastic mixed-integer programming (ISIP) method for capacity planning of
flood management systems. The developed ISIP will be able to address uncertainties presented as
probability distributions and interval values and to reflect the risk of violating system constraints
under uncertainty. Moreover, fixed-charge cost function will be used to reflect the economies of
scale (EOS) in the capacity-expansion costs. Then, the developed method will be applied to a case
study of flood management, and the modelling results will support decisions of flood diversion
and capacity expansion.

2. Model development

2.1. Definitions for interval-parameter programming

Prior to formulating the ISIP model for flood management and planning, we first introduce and
review several ancillary definitions used in the earlier interval-parameter or grey system studies
(Huang et al. 1992, 1995) that will be implemented through a series of model transformations to
assist with computational efforts.

Definition 1 Let x denote a closed and bounded set of real numbers. An interval number with
known lower and upper bounds but unknown distribution can be defined as follows:

x± = [x−, x+] = {t ∈ x|x− ≤ t ≤ x+} (1)

where x− and x+ represent the lower and upper bounds of x±, respectively. When x− = x+, x±
becomes a deterministic number, i.e. x± = x− = x+.

Definition 2 For x±, the following relationships hold:

x± ≥ 0 if x− ≥ 0 and x+ ≥ 0 (2a)

x± ≤ 0 if x− ≤ 0 and x+ ≤ 0 (2b)

Definition 3 For x± and y±, their order relations are:

x± ≤ y± if x− ≤ y− and x+ ≤ y+ (3a)

x± < y± if x− < y− and x+ < y+ (3b)

Definition 4 For x±, Sign (x±) is defined as follows:

Sign (x±) = 1 if x± ≥ 0

−1 if x± < 0
(4)
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Definition 5 For x±, its absolute value |x|± is defined as follows:

|x|± = x± if x± ≥ 0

−x± if x± < 0
(5a)

where

|x|− = x− if x± ≥ 0

−x+ if x± < 0
(5b)

and

|x|+ = x+ if x± ≥ 0

−x− if x± < 0
(5c)

Definition 6 Let R± denote a set of interval numbers. An interval vector X± is a tuple of interval
numbers, and an interval matrix Y± has its elements being interval numbers:

X± = {x±
i = [x−

i , x+
i ]|∀i}, X± ∈ {R±}1×n (6a)

Y± = {y±
ij = [y−

ij , y
+
ij ]|∀i, j}, Y± ∈ {R±}m×n (6b)

Definition 7 The lower/upper bounds of interval vector X± and interval matrix Y± are defined
as follows:

X− = {x−
i , |∀i} (7a)

X+ = {x+
i , |∀i} (7b)

Y− = {y−
ij , |∀i, j} (7c)

Y+ = {y+
ij , |∀i, j} (7d)

Definition 8 For an interval vectors (or matrix), we have:

X± ≥ 0, if x±
ij ≥ 0, ∀i, j, X± ∈ {R±}m×n, m ≥ 1, (8a)

X± ≤ 0, if x±
ij ≤ 0, ∀i, j, X± ∈ {R±}m×n, m ≥ 1. (8b)

Definition 9 Let ∗ ∈ {+, −, ×, ÷} be a binary operation on interval numbers. For interval
numbers x± and y±, we have:

x± ∗ y± = [min{x ∗ y}, max{x ∗ y}], x− ≤ x ≤ x+, y− ≤ y ≤ y+. (9a)

In case of division, it is assumed that y± does not contain a zero. Hence, we have:

x± + y± = [x− + y−, x+ + y+], (9b)

x± − y± = [x− − y+, x+ − y−], (9c)

x± × y± = [min{x × y}, max{x × y}], (9d)

x± ÷ y± = [min{x ÷ y}, max{x ÷ y}]. (9e)
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Definition 10 An IIP model can be formulated as follows:

Minf ± = C±X±, (10a)

subject to:

A±X± ≤ B±, (10b)

X± ≥ 0, (10c)

x±
j = interval decision variables, x±

j ∈ X± (10d)

where A± ∈ {R±}m×n, B± ∈ {R±}m×1, C± ∈ {R±}1×n, X± ∈ {R±}n×1, and R± denotes a set of
interval numbers. In model (10), the decision variables (X±) can be sorted into two categories:
continuous and binary. An interactive solution algorithm has been developed to solve the above
problem through analyses of the interrelationships between the parameters and the variables and
between the objective function and the constraints. According to Huang et al. (1992, 1995), the
solution for model (10) can be obtained through a two-step method, where a submodel cor-
responding to f − (when the objective function is to be minimised) can be first formulated as
follows (assume that b±

i > 0, and f ± > 0):

Minf − =
k1∑

j=1

c−
j x−

j +
n∑

j=k1+1

c−
j x+

j (11a)

subject to:

k1∑
j=1

|aij|+ Sign(a+
ij )x

−
j +

n∑
j=k1+1

|aij|− Sign(a−
ij )x

+
j ≤ b+

i , ∀i, (11b)

x±
j ≥ 0, ∀j (11c)

where x±
j (j = 1, 2, . . . , k1) are interval variables with positive coefficients in the objective func-

tion; x±
j (j = k1 + 1, k1 + 2, . . . , n) are interval variables with negative coefficients. Solutions of

x−
jopt(j = 1, 2, . . ., k1), x

+
jopt(j = k1 + 1, k1 + 2, . . . , n), and f −

opt can be obtained from submodel
(11). Thus, the submodel corresponding to f + can be formulated as follows:

Minf + =
k1∑

j=1

c+
j x+

j +
n∑

j=k1+1

c+
j x−

j (12a)

subject to:

k1∑
j=1

|aij|− Sign(a−
ij )x

+
j +

n∑
j=k1+1

|aij|+ Sign(a+
ij )x

−
j ≤ b−

i , ∀i, (12b)

x+
j ≥ x−

j opt, j = 1, 2, · · · , k1 (12c)

0 ≤ x−
j ≤ x+

jopt, j = k1 + 1, k1 + 2, · · · , n (12d)

Solutions of x+
jopt(j = 1, 2, . . . , k1), x

−
jopt(j = k1 + 1, k1 + 2, . . . , n), and f +

opt can be obtained
from submodel (12). Then, through integration of the solutions of submodels (11) and (12), we
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can obtain interval solutions for model (10) as follows:

x±
jopt = [x−

jopt, x
+
jopt], ∀j (13a)

f ±
opt = [f −

opt, f
+
opt] (13b)

The IIP can directly handle uncertainties presented as interval numbers. However, it has difficulties
in reflecting uncertainties expressed as probabilistic distributions; moreover, it is lack of linkage to
economic consequences of violated policies pre-regulated by the authorities. When uncertainties
of the model’s right-hand sides are expressed as random variables and decisions need to be made
periodically over time, the problem can be formulated as a TSP model. In TSP, a decision is
first undertaken before random uncertainties are disclosed; then, after the random events have
happened and their values are disclosed, a recourse decision can be made to minimise penalties
that may appear due to any infeasibility (Birge and Louveaux 1988, 1997, Huang and Loucks
2000). However, the conventional TSP is associated with the following difficulties: (i) it can
hardly deal with independent uncertainties of the model’s left-hand sides and cost coefficients
(in the objective function); (ii) it requires probabilistic specifications for uncertain parameters
while, in many practical problems, the quality of information that can be obtained is mostly not
satisfactory enough to be presented as probabilities; (iii) when multiple right-hand side parameters
are expressed as probability distributions and are formulated into a TSP model, interactions
among these uncertainties may lead to serious complexities, particularly for large-scale real-
world problems. Therefore, one potential approach for tackling uncertainties presented as multiple
formats is to incorporate the techniques of IIP and TSP within a general optimisation framework;
this can lead to an ISIP method.

2.2. ISIP for flood-diversion planning

Consider a watershed system where flood volumes need to be diverted from a river to multiple
diversion regions (i.e. flood-retention zones) over a flooding season. The river has a limited
water-conveyance capacity and may overflow during flooding events. Associated with the local
flood-management policies, a flood-warning water level (of the river) has been pre-formulated,
and several projected flood-diversion regions have been assigned. If water in the river exceeds the
pre-regulated warning level, the water will be allocated to the flood-retention zones. The flood-
management system should contain both a specification of allowable levels of flood diversions
and a scheme for efficiently using the diversion capacities. Especially, policies for diverting
flood under limited diversion capacities are critical for minimising flows to densely populated
communities. Decision makers desire sound flood-diversion and capacity-expansion schemes
with both minimised cost and maximised safety.

Moreover, many uncertainties exist in the study system. The random characteristics of various
natural processes and stream conditions, the errors in acquiring the modelling parameters, and
the imprecision of the system objective and the related constraints are all possible sources of the
uncertainties (Li et al. 2008). For example, stream flows may be presented as random variables with
their values under different probability levels being available as discrete intervals, leading to dual
uncertainties; randomness may also exist in flood-retention capacities, which can be expressed as a
minimum requirement on the probability of satisfying the flood-diversion demands; the economic
data for flood-diversion cost and floodplain expansion expense may be available as interval values
(i.e. an interval value can be defined as a number with known lower and upper bounds but with
unknown distribution information). Based on the above considerations, IIP is introduced into the
TSP framework to communicate multiple uncertainties into the optimisation process. Thus, an
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ISIP model for flood management can be formulated as follows:

Minf ± =
u∑

i=1

C±
i W±

i + E

[
u∑

i=1

[C±
i T ±

iFL + D±
i S±

iFL]
]

+
u∑

i=1

w∑
m=1

{[
A±

i + (B±
i �R±

im)δi
]
y±

i

}
(14a)

subject to:

Pr
{[W±

i + S±
iFL] ≤ R±

i max, ∀i
} ≥ 1 − q (14b)

(Existing capacity constraints)

Pr

{
u∑

i=1

[
W±

i + S±
iFL + T ±

iFL

] ≤
u∑

i=1

(R±
i max +

w∑
m=1

�R±
imy±

im), ∀i

}
≥ 1 − q (14c)

T ±
iFL ≤

w∑
m=1

�R±
imy±

im, ∀i (14d)

(Expanded capacity constraints)

u∑
i=1

[W±
i + S±

iFL + T ±
iFL] ≥ FL̃

±
(14e)

(Flood-availability constraints)

y±
im = 1, if capacity expansion is undertaken

= 0, if otherwise
, ∀i, m (14f)

w∑
m=1

y±
im ≤ 1, ∀i (14g)

(Floodplain expansion constraints)

W±
i ≥ 0, ∀i (14h)

S±
iFL ≥ 0, ∀i (14i)

T ±
iFL ≥ 0, ∀i (14j)

(Non-negative constraints)

where f ± is expected net system cost; i denotes index of water-diversion region, and i =
1, 2, . . . , u; A±

i is fixed-charge expansion cost in diversion region i ($106); B±
i is variable expan-

sion cost ($/m3); δi denotes the EOS exponent of region i; C±
i represents regular cost to region i

per unit of allowable water diverted ($/m3) (the first-stage cost parameter); D±
i denotes penalty

to region i per unit of surplus water diverted ($/m3) (the second-stage cost parameter); E[·]
means expected value of a random variable; FL̃

±
symbolises random variable equal to the total of

available flood flow; qis a joint probability of violating constraints of flood-retention capacities,
and q ∈ [0, 1]; R±

i max denotes maximum level of the existing diversion capacity in region i (m3);
�R±

im is the level of expansion option m for region i (m3); S±
iFL represents amount of surplus flood

diverted to region i in reference to W±
i when the flood flow is FL̃

±
(m3) (the second-stage decision

variable); T ±
iFL denotes the amount of increased allowance for region i when its diversion capacity

is expanded under flood flow of FL̃
±

(m3) (the second-stage decision variable); W±
i stands for
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allowable amount of diversion to region i (m3) (the first-stage decision variable); y±
im is binary

variable for determining which region expansion option needs to be undertaken.
Model (12) includes continuous and binary decision variables. The continuous variables rep-

resent flood flows and the binary ones are for capacity planning decisions. The goal is to achieve
optimal capacity-expansion schemes and relevant flood-diversion patterns with a minimised sys-
tem cost and a maximised system safety. In model (12), the fixed-charge cost function is used to
reflect the EOS in the capacity-expansion costs (Thuesen et al. 1977); moreover, the constraints
of uncertain flood-retention capacities are enforced to be satisfied at a joint probability of at least
q, and thus an increased robustness in controlling the system risk can be accomplished (Miller
and Wager 1965, Zhang et al. 2002, Lejeune and Prekopa 2005). However, the above model is
generally nonlinear. It will be equivalently formulated as a linear model, based on an assumption
of discrete distribution for each random parameter. According to Huang and Loucks (2000), the
distribution of flood flows (FL̃

±
) can be converted into an equivalent set of discrete values by

letting each FL̃
±

take value FL±
j with probability pj (j = 1, 2, . . . , v). Thus, we have:

E

[
u∑

i=1

[
C±

i T ±
iFL + D±

i S±
iFL

]] =
u∑

i=1

v∑
j=1

pj (C
±
i T ±

ij + D±
i S±

ij ), ∀i, j (15a)

Secondly, by letting the random variables take a set of individual probabilistic constraints, the non-
linear joint probabilistic constraints (JPC) problem can be converted into a linear one. According
to Lejeune and Prekopa (2005), Equations (14b) and (14c) can be converted into:[

W±
i + S±

iFL

] ≤ (R±
i max)

qi , ∀i (15b)

u∑
i=1

[
W±

i + S±
iFL + T ±

iFL

] ≤
u∑

i=1

[(
R±

i max

)qi +
w∑

m=1

�R±
imy±

im

]
, ∀i (15c)

u∑
i=1

qi ≤ q (15d)

where qi is the admissible probability of violating the capacity of floodplain i. Consequently,
the above nonlinear ISIP model can be converted into a linear one. Moreover, in model (14),
the flood-diversion targets (W±

i ) are expressed as interval numbers; however, as the first-stage
decision variables, they should be identified before the related flood flows (i.e. random variables)
are known (Huang and Loucks 2000, Dupaèová 2002). In this study, it is proposed introducing zi as
decision variables to identify an optimised set of target values. This optimised set will correspond
to the lowest possible system cost under the uncertain flood-diversion targets. Thus, according
to Huang and Loucks (2000), model (14) can be transformed into two deterministic submodels
based on an interactive algorithm when W±

i are known. The transformation process is based on
an interactive algorithm, which is different from normal best/worst case analysis. The resulting
solution presents as intervals for the objective function value and decision variables, which can
be easily interpreted for generating decision alternatives. Since the objective is to minimise the
system cost, f − submodel is first desired. Thus, we have:

Minf − =
u∑

i=1

C−
i (W−

i + �Wizi) +
u∑

i=1

v∑
j=1

pj (C
−
i T −

ij + D−
i S−

ij )

+
u∑

i=1

w∑
m=1

{[
A−

i + (B−
i �R−

im)δi
]
y−

im

}
(16a)
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subject to:

(W−
i + �Wizi) + S−

ij ≤ (R+
i max)

qi , ∀i, j (16b)

u∑
i=1

(W−
i + �Wizi + S−

ij + T −
ij ) ≤

u∑
i=1

[
(R+

i max)
qi +

w∑
m=1

�R−
imy−

im

]
, ∀j (16c)

T −
ij ≤

w∑
m=1

�R−
imy−

im, ∀i, j (16d)

u∑
i=1

(W−
i + �Wizi + S−

ij + T −
ij ) ≥ FL−

j , ∀j (16e)

W−
i + �Wizi ≥ 0, ∀i (16f)

S−
ij ≥ 0, ∀i, j (16g)

T −
ij ≥ 0, ∀i, j (16h)

y−
im

= 1, if capacity expansion is undertaken
= 0, if otherwise

, ∀i, m (16i)

w∑
m=1

y−
im ≤ 1, ∀i (16j)

u∑
i=1

qi ≤ q (16k)

0 ≤ zi ≤ 1, ∀i (16l)

where �Wi = W+
i − W−

i and zi ∈ [0, 1]. In submodel (16), S−
ij , T −

ij , and zi are continuous vari-
ables and y−

im are binary variables. Solution for f − provides the lower-bound system cost under
uncertain inputs of water-allocation targets. Let S−

ijopt, T −
ijopt, ziopt, and y−

imopt be solutions of sub-
model (16). Then, the second submodel corresponding tof + under the optimised water-allocation
target (i.e. W±

iopt = W−
i + �Wiziopt) can be formulated as follows:

Minf + =
u∑

i=1

C+
i (W−

i + �Wiziopt) +
u∑

i=1

v∑
j=1

pj (C
+
i T +

ij + D+
i S+

ij )

+
u∑

i=1

w∑
m=1

{[
A+

i + (B+
i �R+

im)δi
]
y+

im

}
(17a)

subject to:

(W−
i + �Wiziopt) + S+

ij ≤ (R−
i max)

qi , ∀i, j (17b)

u∑
i=1

(W−
i + �Wiziopt + S+

ij + T +
ij ) ≤

u∑
i=1

[(R−
i max)

qi +
w∑

m=1

�R+
imy+

im], ∀j (17c)

T +
ij ≤

w∑
m=1

�R+
imy+

im, ∀i, j (17d)
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u∑
i=1

(W−
i + �Wiziopt + S+

ij + T +
ij ) ≥ FL+

j , ∀j (17e)

y+
im

= 1, if capacity expansion is undertaken

= 0, if otherwise
, ∀i, m (17f)

w∑
m=1

y+
im ≤ 1, ∀i (17g)

u∑
i=1

qi ≤ q (17h)

S+
ij ≥ S−

ijopt ≥ 0, ∀i, j (17i)

T +
ij ≥ T −

ijopt ≥ 0, ∀i, j (17j)

y+
im ≥ y−

imopt, ∀i, m (17k)

where S+
ij , T +

ij , and y+
im are decision variables. Let S+

ijopt, T +
ijopt, and y+

imopt be the solutions of
submodel (17). Thus, we can obtain the interval solution as follows:

T ±
ijopt = [T −

ijopt, T
+
ijopt], ∀i, j (18a)

S±
ijopt = [S−

ijopt, S
+
ijopt], ∀i, j (18b)

y±
imopt = [y−

imopt, y
+
imopt], ∀i, m (18c)

f ±
opt = [f −

opt, f
+
opt] (18d)

The optimised flood-diversion patterns under varied flow levels are:

N±
ijopt = W±

iopt + T ±
ijopt, ∀i, j (18e)

A±
ijopt = W±

iopt + T ±
ijopt + S±

ijopt, ∀i, j (18f)

where N±
ijopt is the sum of primal and incremental allowable flood-diversion levels; A±

ijopt is the
total diversion flow including primal allowance, incremental quota, and excess flow. The main
advantage of the two-stage programming is its capability of incorporating multiple policies of
flood management within the modelling framework. If the models were simply constructed with
A±

ij (instead of W±
i , S±

ij , and T ±
ij ) being decision variables, then the related flood-management

policies and their implications would not have been reflected. Moreover, the ISIP method can
facilitate dynamic analyses of capacity-expansion planning when uncertainties are expressed as
probability distributions and interval values. Violations for capacity constraints are allowed under
a range of significance levels, which are related to trade-offs between the system cost and the
constraint-violation risk. Thus, the method can also support the assessment of reliability for
satisfying the system constraints under uncertainty.

3. Case study

The study watershed contains three regions that are available to serve flood-diversion needs
(Figure 1). An allowable flood-diversion level is pre-regulated according to the existing capacity.
If this allowance is exceeded, it will mean a surplus diversion associated with economic penal-
ties and/or capacity-expansion costs. The penalties may be expressed in terms of raised costs for
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Figure 1. Schematic of flood diversion to assigned regions.

Table 1. Descriptions of flood-flow availability.

Stream flow level Probability (pj ) Flow volume (q±
j ) (106 m3)

Low (j = 1) 0.10 [5.0, 8.0]
Low-medium (j = 2) 0.20 [8.0, 12.0]
Medium (j = 3) 0.40 [12.0, 16.5]
Medium-high (j = 4) 0.20 [16.5, 22.0]
High (j = 5) 0.10 [22.0, 28.0]

Table 2. Capacity-expansion options, allowable diversion flows, and the associated costs

i = 1 i = 2 i = 3

Capacity-expansion option (106 m3):

�R±
i1 (option 1) [3, 4] [5, 7] 0

�R±
i2 (option 2) [4, 5] [6, 8] 0

�R±
i3 (option 3) [5, 6] [7, 9] 0

Capital cost of expansion:
Fixed expansion cost, A±

i ($106) [8, 10] [12, 15] 0
Variable expansion cost, B±

i ($/m3) [90, 100] [110, 120] 0
Scale-economy index, δi 0.98 0.94 0

Allowable flood-diversion target W±
i (106 m3) [2.0, 3.0] [3.0, 4.5] [2.5, 3.5]

Regular cost for allowable flood diversion C±
i ($/m3) [80, 100] [90, 110] [100, 130]

Penalty for excess flood diversion D±
i ($/m3) [200, 250] [150, 180] [180, 210]

flood diversion and/or destruction of land-based infrastructure. The capacity expansions will help
increase the allowable flood-diversion levels and thus reduce the penalties. Therefore, the total
diverted flow will be a sum of the primal allowance, the incremental quota, and the probabilistic
excess flow. Table 1 provides the flood flows as well as the associated probabilities of occur-
rences. Table 2 presents capacity-expansion options, allowable flood allocation, and the related
costs. Based on the local flood-management policy, regions 1 and 2 can be expanded once by any
of the three options. Besides, the existing capacities of floodplains 1, 2, and 3 are [4.0, 5.0] ×106,
[5.2, 6.0] ×106 m3, and [3.4, 4.4] ×106 m3, respectively. The problems under consideration
include: (a) how to identify desired capacity-expansion schemes, (b) how to effectively divert
flood flows to suitable regions, (c) how to achieve a minimised system cost under uncertainty,
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Table 3. Solution of ISIP model for binary variables under different q levels.

Symbol Solution of capacity expansion

q = 0.05 q = 0.10 q = 0.20
Expansion

option Region 1 Region 2 Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

1 Y±
11 Y±

21 0 0 [0, 1] 0 [0, 1] [1, 1]

2 Y±
12 Y±

22 [1, 1] 0 0 [1, 1] 0 0

3 Y±
13 Y±

23 0 [1, 1] 0 0 0 0

Figure 2. The original and expanded capacities under different q levels.

and (d) how to incorporate flood management policies within the modelling system. Therefore,
the developed ISIP will be used for dealing with the planning problem.

Table 3 presents the solutions of binary variables from the ISIP model. In ISIP, the capacity
constraints of the three flood-retention zones are considered to be satisfied at a set of joint prob-
ability level (q). The results indicate that different q levels can lead to varied capacity-expansion
schemes. For example, region 1 would be expanded with an increment of [4, 5] ×106 m3 when
q = 0.05; however, when q = 0.10 and 0.20, there would be two expansion options correspond-
ing to f − and f +. When the decision scheme tends towards f − under advantageous system
conditions, this region would not be expanded; conversely, when the scheme tends towards f +
under more demanding conditions, it would be expanded with a capacity of 4 × 106 m3. For
region 2, its expansion capacities would be [7, 9] ×106 m3 when q = 0.05, [6, 8] ×106 m3 when
q = 0.10, and [5, 7] ×106 m3 when q = 0.20. Consequently, the total expanded capacities would
be [11, 14] ×106, [6, 12] ×106, and [5, 11] ×106 m3 when q levels are 0.05, 0.10, and 0.20,
respectively. Figure 2 presents the original and expanded capacities available for flood diversion
under different q levels. An increased q level means a raised risk of constraint violation and,
at the same time, it leads to a decreased strictness for the capacity constraints and thus corre-
sponds to a lower capacity-expansion amounts, and vice versa. The capital costs for capacity
expansion under q = 0.05, 0.10, and 0.20 would be $[488.3, 670.0] ×106, $[207.2, 571.7] ×106,
and $[176.4, 539.0] ×106, respectively. In general, planning with a higher risk of violating the
constraints could lead to a lower expansion cost. In comparison, planning for a lower risk would
result in a higher cost.

In this study, expansions of regions 1 and 2 would lead to increased allowable flows to the two
regions (i.e. T ±

ij ); at the same time, the increased allowable flows could reflect the utilisation
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conditions of expanded capacities under different flood flows and q levels. An increase in
the allowable flow would help to reduce excess flow and thus increase system reliability. For
example, the results of T ±

11opt = T ±
21opt = 0 means that under significance levels of q = 0.05,

0.10, and 0.20, the expanded capacities of regions 1 and 2 would not be needed when the
flow level is low associated with a probability of 10%. Under a low-medium flow level, the
results of T ±

12opt = [0.0, 3.5] × 106 m3 (q = 0.05), T ±
12opt = [0.0, 2.0] × 106 m3 (q = 0.10), and

T ±
12opt = [0.0, 2.0] × 106 m3 (q = 0.20) indicate that region 1 would need to be expanded when

the flow approaches its upper bound (i.e. FL+
j ). However, under a high flow level, regions 1 and

2 would both be expanded to satisfy the diversion need. The allowable flows to region 3 would
keep being constant since this zone would not be expanded.

Tables 4–6 present the continuous variable solutions including those for the first- and second-
stage variables. In the case of flooding events, the allowable flood flows are first diverted to the three
regions with regular costs; if the water level in the river still exceeds the pre-regulated warning
criterion, the probabilistic excess flow (in reference to the allowable water-diversion target) should
continue to be diverted, leading to excess flow and/or increased allowance. The results of z1opt = 1,
z2opt = 0, and z3opt = 0 indicate that the allowable diversion levels to regions 1–3 would be
3.0 × 106, 3.0 × 106, and 2.5 × 106 m3 when q = 0.05. However, when q = 0.10 and 0.20, the
allowable diversion levels to regions 1–3 would be 3.0 × 106 m3 (z1opt = 1), 4.5 × 106 m3 (z2opt =
1), and 2.5 × 106 m3 (z3opt = 0), respectively. Generally, when W±

i reach their lower bounds
(i.e. when zi = 0), low system cost may be obtained if the flood-flow level is low; however, a
higher penalty may have to be paid when the flood-flow level is high. Conversely, when W±

i

approach their upper bounds (i.e. when zi = 1), we may have a high system cost under a low
flood-flow level but, at the same time, a lower risk of violating the promised targets (and thus
lower penalty) when the flood-flow level is high.

For the three regions under q = 0.05, 0.10, and 0.20, there would be excess flows when the
flood flows are medium-high to high, but no excess flow under low to medium flow levels. For
example, under medium-high flow level, there would be excess flows of [0.0, 1.0] ×106 m3 when

Table 4. Solution of the ISIP model for continuous variables under q = 0.05.

Flood-diversion pattern (106 m3)

Allowable Incremental Regular Excess Optimised
Flood-flow Probability diversion, diversion after diversion, diversion, diversion,

Region level (%) W±
iopt expansion, T ±

ijopt N±
ijopt S±

ijopt A±
ijopt

1 Low 10 3.0 0 3.0 0 3.0
2 Low 10 3.0 0 3.0 0 3.0
3 Low 10 2.5 0 2.5 0 2.5

1 Low-medium 20 3.0 [0.0, 3.5] [3.0, 6.5] 0 [3.0, 6.5]
2 Low-medium 20 3.0 0 3.0 0 3.0
3 Low-medium 20 2.5 0 2.5 0 2.5

1 Medium 40 3.0 [3.5, 5.0] [6.5, 8.0] 0 [6.5, 8.0]
2 Medium 40 3.0 [0.0, 3.0] [3.0, 6.0] 0 [3.0, 6.0]
3 Medium 40 2.5 0 2.5 0 2.5

1 Medium-high 20 3.0 5.0 3.0 0 3.0
2 Medium-high 20 3.0 [3.0, 8.5] [6.0, 11.5] 0 [6.0, 11.5]
3 Medium-high 20 2.5 0 2.5 0 2.5

1 High 10 3.0 5.0 8.0 [0.0, 0.6] [8.0, 8.6]
2 High 10 3.0 [8.5, 9.0] [11.5, 12.0] [0.0, 3.0] [11.5, 15.0]
3 High 10 2.5 0 2.5 [0.0, 1.9] [2.5, 4.4]

Decision variables: z1opt = 1, z2opt = 0, and z3opt = 0
Net system cost ($106): f ±

opt = [1610.8, 2571.9]
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Table 5. Solution of the ISIP model for continuous variables under q = 0.10.

Flood-diversion pattern (106 m3)

Allowable Incremental Regular Excess Optimised
Flood-flow Probability diversion, diversion after diversion, diversion, diversion,

Region level (%) W±
iopt expansion, T ±

ijopt N±
ijopt S±

ijopt A±
ijopt

1 Low 10 3.0 0 3.0 0 3.0
2 Low 10 4.5 0 4.5 0 4.5
3 Low 10 2.5 0 2.5 0 2.5

1 Low-medium 20 3.0 [0.0, 2.0] [3.0, 5.0] 0 [3.0, 5.0]
2 Low-medium 20 4.5 0 4.5 0 4.5
3 Low-medium 20 2.5 0 2.5 0 2.5

1 Medium 40 3.0 [0.0, 4.0] [3.0, 7.0] 0 [3.0, 7.0]
2 Medium 40 4.5 [2.0, 2.5] [6.5, 7.0] 0 [6.5, 7.0]
3 Medium 40 2.5 0 2.5 0 2.5

1 Medium-high 20 3.0 [0.0, 4.0] [3.0, 7.0] 0 [3.0, 7.0]
2 Medium-high 20 4.5 [6.5, 8.0] [11.0, 12.5] 0 [11.0, 12.5]
3 Medium-high 20 2.5 0 2.5 0 2.5

1 High 10 3.0 [0.0, 4.0] [3.0, 7.0] [0.0, 2.0] [3.0, 9.0]
2 High 10 4.5 8.0 12.5 1.7 14.2
3 High 10 2.5 0 2.5 2.3 4.8

Decision variables: z1opt = 1, z2opt = 1 and z3opt = 0
Net system cost ($106): f ±

opt = [1430.1, 2514.6]

Table 6. Solution of the ISIP model for continuous variables under q = 0.20.

Flood-diversion pattern (106 m3)

Allowable Incremental Regular Excess Optimised
Flood-flow Probability diversion, diversion after diversion, diversion, diversion,

Region level (%) W±
iopt expansion, T ±

ijopt N±
ijopt S±

ijopt A±
ijopt

1 Low 10 3.0 0 3.0 0 3.0
2 Low 10 4.5 0 4.5 0 4.5
3 Low 10 2.5 0 2.5 0 2.5

1 Low-medium 20 3.0 [0.0, 2.0] [3.0, 5.0] 0 [3.0, 5.0]
2 Low-medium 20 4.5 0 4.5 0 4.5
3 Low-medium 20 2.5 0 2.5 0 2.5
1 Medium 40 3.0 [0.0, 4.0] [3.0, 7.0] 0 [3.0, 7.0]
2 Medium 40 4.5 [2.0, 2.5] [6.5, 7.0] 0 [6.5, 7.0]
3 Medium 40 2.5 0 2.5 0 2.5

1 Medium-high 20 3.0 [0.0, 4.0] [3.0, 7.0] 0 [3.0, 7.0]
2 Medium-high 20 4.5 [6.5, 7.0] [11.0, 11.5] [0.0, 1.0] [11.0, 12.5]
3 Medium-high 20 2.5 0 2.5 0 2.5

1 High 10 3.0 [0.0, 4.0] [3.0, 7.0] [0.1, 2.1] [3.1, 9.1]
2 High 10 4.5 7.0 11.5 2.5 14.0
3 High 10 2.5 0 2.5 2.4 4.9

Decision variables: z1opt = 1, z2opt = 1, and z3opt = 0
Net system cost ($106): f ±

opt = [1406.6, 2503.9]

q = 0.20; under high flow level, the total excess flows would be [0.0, 5.5] ×106, [4.0, 6.0] ×106,
and [5.0, 7.0] ×106 m3 when q = 0.05, 0.10, and 0.20, respectively. This is because the expanded
diversion capacities would generate increased allowances and thus reduce excess flows.

Correspondingly, the penalties for excess flood diversion would be $[0.0, 108.9] ×106, $[66.9,
128.9] ×106, and $[83.2, 183.9] ×106 when q = 0.05, 0.10, and 0.20, respectively, indicating
an increasing tendency. Figures 3 and 4 present the optimised diversion patterns for regions 1
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Figure 3. Optimised diversion patterns of region 1 under different q levels.

Figure 4. Optimised diversion patterns of region 2 under different q levels.

and 2 under different q levels. It is indicated that (i) the allowable and excess flows would both
increase when the q level is raised; (ii) the expanded capacities would result in increased diversion
allowances and reduced excess flows; (iii) more incremental allowances would be assigned to
region 2 where a larger expansion capacity is planned.

Variations in the q levels also reveal the decision makers’ preferences regarding the trade-off
between system cost and constraint-violation risk. The objective function values are expressed as
intervals under different q levels. The solutions of system cost (f ±

opt) are $[1610.8, 2571.9] ×106,
$[1430.1, 2514.6] ×106, and $[1406.6, 2503.9] ×106 under q = 0.05, 0.10, and 0.20, respectively
(listed in Tables 4–6). Figure 5 shows the variations of system cost with q level. Moreover, the
solutions of system cost would also vary with individual probability of each reservoir-capacity
constraint. Figure 6 provides the solutions for system cost under several scenarios (that correspond
to different joint and individual-probability levels). For example, when joint probability equals
0.20, the system costs would be $[1408.1, 2505.4] ×106, $[1411.6, 2507.4] ×106, $[1418.9,
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Figure 5. System costs under different q levels.

Figure 6. System costs under several scenarios.

2509.6] ×106, $[1406.6, 2503.9] ×106, and $[1427.7, 2510.6] ×106 under different individual
probability levels. In general, a lower q level (i.e. lower constraint-violation risk) would result in
a higher cost; conversely, a higher q would sacrifice the system safety in order to reduce the cost.

4. Discussion

Solutions of the ISIP model provide desired flood-diversion patterns with minimised cost and
maximised safety. The complexity is associated with the pre-regulation of the allowable flood-flow
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levels (i.e. the first-stage variable W±
i ) before the random flows are disclosed. Variations in

the allowable flood-diversion levels could lead to multiple scenarios corresponding to different
policies for managing the flood under uncertainty. When all W±

i reach their lower bounds (W−
i ),

the system cost would be $[1600.8, 2594.9] ×106, $[1418.6, 2557.6] ×106, and $[1407.1, 2546.9]
×106 under q = 0.05, 0.10, and 0.20, respectively. Under this scenario, the decision makers are
optimistic regarding the future conditions, and thus pre-regulate a low flood-diversion target for
each region. This scenario would lead to a plan with both higher excess flows and higher penalties;
the corresponding penalties would be $[7.5, 151.9] ×106 when q = 0.05, $[144.4, 270.9] ×106

when q = 0.10, and $[190.7, 325.9] ×106 when q = 0.20. Conversely, the solution when all
W±

i reach their upper bounds represents a conservative consideration. It projects a high diversion
target for each region. This scenario is associated with both lower excess flows and lower penalties;
the penalties would be $[0.0, 60.9] ×106, $[48.9, 107.9] ×106, and $[65.2, 126.9] ×106 when
q = 0.05, 0.10, and 0.20, respectively. Under this scenario, the system cost would be $[1698.3,
2603.9] ×106, $[1458.1, 2537.6] ×106, and $[1434.6, 2512.9] ×106 when q = 0.05, 0.10, and
0.20, respectively. Generally, a policy corresponding to a lower diversion target (W−

i ) may lead
to a lower cost (f −) under advantageous conditions; however, the system may be subjected to a
higher risk of penalties under demanding conditions, and vice versa.

In the study problem, only one time period is considered. However, when the planning problem
includes multiple periods with a sequential structure, the developed ISIP will have difficulties
in reflecting dynamic variations of system conditions. Moreover, in ISIP, the capacity-expansion
scheme for the entire planning horizon is determined at the first stage, while recourse actions
to correct any infeasibility are taken at the second stage. These recourse actions can be inter-
preted as outsourcing additional capacities (Ahmed et al. 2003, Li et al. 2006c). Consequently,
to deal with such a dynamic feature, a number of multi-stage stochastic programming (MSP)
methods with recourse were developed as extensions of dynamic stochastic optimisation tech-
niques. The multi-stage models improved upon TSP by permitting revised decisions in each time
stage based on the real-time information of the uncertainties. The uncertainties and dynamics in
MSP were often modelled through a multi-layer scenario tree. The solution approaches for MSP
included nested benders decomposition and progressive hedging (Birge 1985, Rockafellar and
Wets 1991). Several researchers also dealt with capacity-expansion issues under stochastic condi-
tions through developing multi-stage stochastic integer programming methods (Chen et al. 2002,
Ahmed et al. 2003, Lulli and Sen 2004). Therefore, one potential extension of this research will
be about the reflection of the system dynamics within a multi-stage context in order to enhance
the robustness of the developed method.

In fact, the objective of the developed ISIP is to minimise the expected system cost, which
includes regular costs for diverting allowable flood flows, penalties for diverting excess flows,
and capital costs for expanding flood-retention zones. ISIP is a single-objective model, and dif-
ferent from the conventional best–worst analysis. Based on an interactive algorithm, ISIP can be
transformed into two deterministic submodels, where the second submodel is formulated based
on the solutions of the first one (Huang et al. 1992). The resulting solutions present as intervals
for the objective function value and decision variables, and can be interpreted for generating
decision alternatives. In comparison, although multi-objective programming (MOP) methods can
be used for decision analysis under multiple objectives subjected to a set of constraints, they may
result in multiple decision alternatives. In general, in an MOP problem, an optimal solution or
a Pareto set has to be determined. Determination of an optimal solution can be done through
utility theory or other weighting methods; however, difficulties lie in the selection of correct
utility functions and the quantification of trade-offs among multiple objectives (Sankararao and
Gupta 2007). Moreover, for MOP problems, it can be problematic to directly analyse interre-
lationships among objectives through a combined function. A slight perturbation in the related
parameters could result in significantly different solutions. An alternative to the MOP technique
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is to determine a Pareto set of solutions. The Pareto solutions are often preferred to the optimal
solution since the final decisions are seldom based on the optima due to the existence of complex
trade-offs among multiple conflicting factors. However, as the number of objectives increases,
it can become increasingly overwhelming to identify desired compromises based on the Pareto
set (Taboada et al. 2007). Challenges also exist in identifying such a Pareto set because an MOP
problem often involves many subjective considerations and trade-off relationships.

5. Conclusions

An ISIP method has been developed for capacity planning of flood diversion under uncertainty.
It incorporates techniques of TSP and chance-constrained programming within an IIP frame-
work. The developed ISIP can facilitate dynamic analysis of capacity-expansion planning when
uncertainties are presented in terms of probabilistic distributions and interval values. Moreover,
it can support analyses for a variety of policy scenarios that are associated with multiple levels of
economic penalties and expansion costs.

The developed method has been applied to a case study of flood management. Violations of
capacity constraints are allowed under a range of joint-probability levels, which are related to
trade-offs between system cost and constraint-violation risk. The results indicate that reasonable
solutions have been generated for binary and continuous variables. The solutions provide desired
capacity-expansion schemes and flood-diversion patterns with minimised system cost and max-
imised system safety. Decisions with a lower risk level would imply a higher system cost and
an increased reliability in satisfying the system constraints; conversely, a desire for reducing the
system cost could result in an increased risk of violating the system constraints. The results sug-
gest that the developed ISIP method is applicable to the study case and can be extended to other
problems that involve policy analysis, capacity planning, and risk assessment.

Acknowledgements

This research has been supported by the Natural Science Foundation of China (50849002 and 50675074) the Major State
Basic Research Development Program of China (2003CB415201, 2005CB724200, 2006CB403307), and the Natural
Science and Engineering Research Council of Canada. The authors are grateful to the editors and the anonymous reviewers
for their insightful comments and suggestions.

References

Ahmed, S., 2000. Strategic planning under uncertainty: stochastic integer programming approaches. Thesis (PhD).
University of Illinois, Urbana, IL.

Ahmed, S., King,A.J., and Parija, G., 2003.A multi-stage stochastic integer programming approach for capacity expansion
under uncertainty. Journal of Global Optimization, 26, 3–24.

Ahmed, S., Tawarmalani, M., and Sahinidis, N.V., 2004. A finite branch-and-bound algorithm for two-stage stochastic
integer programs. Mathematic Program Search A, 100, 355–377.

Albornoz, V.M., Benario, P., and Rojas, M.E., 2004. A two-stage stochastic integer programming model for a thermal
power system expansion. International Transactions in Operational Research, 11, 243–257.

Babaeyan-Koopaei, K., Ervine, D.A., and Pender, G., 2003. Field measurements and flow modeling of overbank flows in
River Severn, UK. Journal of Environmental Informatics, 1, 28–36.

Bean, J.C., Higle, J.L., and Smith, R.L., 1992. Capacity expansion under stochastic demands. Operations Research, 40,
210–216.

Berman, O. and Ganz, Z., 1994. The capacity expansion problem in the service industry. Computers & Operations
Research, 21, 557–572.

Berman, O., Ganz, Z., and Wagner, J.M., 1994. A stochastic optimization model for planning capacity expansion in a
service industry under uncertain demand. Naval Research Logistics, 41, 545–564.

Birge, J.R., 1985. Decomposition and partitioning methods for multistage stochastic linear programs. Operation Research,
33, 989–1007.



Civil Engineering and Environmental Systems 51

Birge, J.R. and Louveaux, F.V., 1988. A multicut algorithm for two-stage stochastic linear programs. European Journal
of Operational Research, 34, 384–392.

Birge, J.R. and Louveaux, F.V., 1997. Introduction to stochastic programming. New York: Springer.
Byun, D.W., et al., 2003. Information infrastructure for air quality modeling and analysis: application to the Houston-

Galveston ozone non-attainment area. Journal of Environmental Informatics, 2, 38–57.
Carøe, C.C. and Tind, J., 1998. L-shaped decomposition of two-stage stochastic programs with integer recourse.

Mathematical Programming, 83, 451–464.
Carøe, C.C. and Schultz, R., 1999. Dual decomposition in stochastic integer programming. Operation Research Letters,

24, 37–45.
Chanas, S. and Kuchta, D., 1998. Fuzzy integer transportation problem. Fuzzy Sets and Systems, 98, 291–298.
Chang, N.B., Chen, Y.L., and Wang, S.F., 1997. A fuzzy interval multiobjective mixed integer programming approach for

the optimal planning of solid waste management systems. Fuzzy Sets and Systems, 89, 35–59.
Chen, Z.-L., Li, S., and Tirupati, D., 2002. A scenario based stochastic programming approach for technology and capacity

planning. Computer Operation Research, 29, 781–806.
Dupačová, J., 2002. Applications of stochastic programming: Achievements and questions. European Journal of

Operational Research, 140, 281–290.
Eppen, G.D., Martin, R.K., and Schrage, L., 1989. A scenario approach to capacity planning. Operations Research, 37,

517–527.
Glover, F., 1976. Chance-constrained techniques for integer programming. In: M. Dempster, ed. Stochastic programming:

proceedings of the 1974 Oxford International Conference. New York: Academic Press.
Huang, G.H., 2005. Living with flood: a sustainable approach for prevention, adaptation, and control. Water International,

30 (1), 2–4.
Huang, G.H. and Loucks, D.P., 2000.An inexact two-stage stochastic programming model for water resources management

under uncertainty. Civil Engineering and Environmental Systems, 17, 95–118.
Huang, G.H., Baetz, B.W., and Patry, G.G., 1992. A grey linear programming approach for municipal solid waste

management planning under uncertainty. Civil Engineering Systems, 9, 319–335.
Huang, G.H., Baetz, B.W. and Patry, G.G., 1995a. Grey integer programming: An application to waste management

planning under uncertainty. European Journal of Operational Research, 83, 594–620.
Huang, G.H., Baetz, B.W., and Patry, G.G., 1995b. Grey fuzzy integer programming: an application to regional waste

management planning under uncertainty. Socio-Economic Planning Science, 29, 17–38.
Huang, G.H., et al., 2001. An interval-parameter fuzzy-stochastic programming approach for municipal solid waste

management and planning. Environmental Modeling and Assessment, 6, 271–283.
Ignizio, J.P. and Daniels, S.C., 1983. Fuzzy multicriteria integer programming via fuzzy generalized networks. Fuzzy Sets

and Systems, 10, 261–270.
Klein-Haneveld, W.K., Stougie, L., and van der Vlerk, M.H., 1996. An algorithm for the construction of convex hulls in

simple integer recourse programming. Annals of Operational Research, 64, 67–81.
Kumar, S., Sharma, J., and Ray, L.M., 1979.A new technique for multidimensional capacity expansion projects. Computers

& Electrical Engineering, 6 (1), 35–39.
Lejeune, M.A. and Prekopa, A., 2005. Approximations for and convexity of probabilistic constrained problems with

random right-hand sides. RRR-Rutcor Research Report, 17.
Li, Y.P., et al., 2006a. An interval-parameter two-stage stochastic integer programming model for environmental systems

planning under uncertainty. Engineering Optimization, 38 (4), 461–483.
Li, Y.P., et al., 2006b. IFTSIP: interval fuzzy two-stage stochastic mixed-integer programming: a case study

for environmental management and planning. Civil Engineering and Environmental Systems, 23 (2),
73–99.

Li, Y.P., Huang, G.H., and Nie, S.L., 2006c. An interval-parameter multistage stochastic programming model for water
resources management under uncertainty. Advances in Water Resources, 29, 776–789.

Li, Y.P., et al., 2008. An inexact multistage stochastic integer programming method for capacity expansion of water
resources management. Journal of Environmental Management, 88, 93–107.

Lulli, G. and Sen, S., 2004. A branch-and-price algorithm for multistage stochastic integer programming with application
to stochastic batch-sizing problems. Management Science, 50 (6), 786–796.

Lund, J.R., 2002. Floodplain planning with risk-based optimization. ASCE – Journal of Water Resources Planning and
Management, 128 (3), 202–207.

Miller, B.L. and Wager, H.M., 1965. Chance constrained programming with joint constraints. Operations Research, 13
(6), 930–945.

Munich, R., 2000, Topics 2000: Natural catastrophes – the current position. Munich: Munich Reinsurance Company.
Needham, J.T., et al., 2000. Linear programming for flood control in the Iowa and Des Moines rivers. ASCE – Journal of

Water Resources Planning and Management, 126 (3), 118–127.
Randall, D., et al., 1997. A water supply planning simulation model using mixed-integer linear programming ‘engine’.

ASCE – Journal of Water Resources Planning and Management, 123 (2), 116–124.
Rockafellar, R.T. and Wets, J.-B., 1991. Scenarios and policy aggregation in optimization under uncertainty. Mathematical

Operation Research, 16 (1), 119–147.
Sankararao, B. and Gupta, S.K., 2007. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit

(FCCU) using two jumping gene adaptations of simulated annealing. Computers and Chemical Engineering, 31,
1496–1515.



52 Y.P. Li et al.

Schultz, R., Stougie, L., and van derVlerk, M.H., 1998. Solving stochastic programs with integer recourse by enumeration:
A framework using Crobner basis reductions. Mathematics Program, 83, 229–252.

Srinivasan, K., Neelakantan, T.R., and Narayan, P., 1999. Mixed-integer programming model for reservoir performance
optimization. ASCE – Journal of Water Resources Planning and Management, 125 (5), 298–301.

Taboada, H.A. Baheranwala, F. Coit, D.W., and Wattanapongsakorn, N., 2007. Practical solutions for multi-objective
optimization: An application to system reliability design problems. Reliability Engineering and System Safety, 92,
314–322.

Teghem, J. and Kunsch, P., 1986a. Complete characterization of efficient solutions for multiobjective integer linear
programming. Asia-Pacific Journal of Operation Research, 3, 95–108.

Teghem, J. and Kunsch, P., 1986b. Interactive method for multiobjective integer linear programming. In: A. Fandel, ed.
Large scale modelling and interactive decision analysis. Berlin: Springer-Verlag, 75–87.

Thuesen, H.G., Fabrycky, W.J., and Thuesen, G.J., 1977. Engineering economy. Englewood Cliffs, NJ:
Prentice-Hall.

van Danzig, D., 1956. Economic decision problems for flood prevention. Econometrica, 24, 276–287.
Vanderpooten, R.A.D., 2003. Aggregation of dispersed consequences for constructing criteria: The evaluation of flood

risk reduction strategies. European Journal of Operational Research, 144, 397–411.
Watkins, Jr., D.W. and McKinney, D.C., 1998. Decomposition methods for water resources optimization models with

fixed costs. Advances in Water Resources, 21, 283–295.
Windsor, J.S., 1981. Model for optimal planning of structural flood control systems. Water Resources Research, 17 (2),

289–292.
Zhang, Y., Monder, D., and Forbes, J.F., 2002. Real-time optimization under parametric uncertainty: a probability

constrained approach. Journal of Process Control, 12, 373–389.
Zimmermann, H.-J. and Pollatschek, M.A., 1984. Fuzzy 0-1 linear programs. In: H.-J. Zimmermann, L.A. Zadeh and

B.R. Gaines, eds. Fuzzy sets and decision analysis. Amsterdam: North-Holland, 133–146.



Copyright of Civil Engineering & Environmental Systems is the property of Taylor & Francis Ltd and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


