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The research of applying evolutionary algorithms (EAs) to digital infinite-impulse response (IIR) filter
design has gained much attention in recent years. Previously, most works treated digital IIR filter design as
a single objective optimization problem of minimizing the magnitude response error with supplementary
conditions. While the lack of considering the linear phase response error and the order may result in the
loss of control on the structural flexibility, the distortion of output, and the dependency on pre-knowledge.
The aim of this paper is to develop proper IIR filter designing method that (1) can provide relatively
more complete optimal solutions with equal consideration of magnitude response, linear phase response
and the order of structure; (2) can simultaneously optimize the structure and coefficients of digital IIR
filter to obtain relatively better linear phase response and lower order, besides the good magnitude
response. To achieve these targets, the digital IIR filter design problem is treated as a multi-objective

optimization problem in this paper. A new local search operator enhanced multi-objective evolutionary
algorithm (LS-MOEA) is specifically proposed for such kind of multi-objective optimization problems.
To evaluate the effectiveness and efficiency of LS-MOEA, we experimentally compare it with classical
methods and previously effective EAs for digital IIR filter design on four typical IIR filter design cases.
Experimental results show that the proposed method can effectively improve the linear phase response
of the designed filter, and can obtain filter of lower order. Besides, it achieves these by relatively much

t than
lower computational cos

. Introduction

Considered as an important and very hard task in digital signal
rocessing, digital IIR filter design has attracted much attention

n EA community [3,10,12,13,22–25,30]. In the previous works,
ome methods have been proposed to tackle such a hard task. The
ilinear transformation approach is one of the early techniques [3]
nd has been widely adopted. Via this approach, the digital filter
s transformed to the corresponding analog low-pass (LP) filter,
nd then, the well-known LP filter design methods, such as But-
erworth, Chebyshev Type I, and Chebyshev Type II, are used to
ccomplish the design of analog LP filter. Finally, the analog LP filter
s transformed back to the digital filter using bilinear transforma-
ion [17]. However, this procedure needs too much pre-knowledge

nd shows poor performance in most cases [24]. This stimulated
he research on more effective optimization approaches with less
re-knowledge and higher accuracy [22,30].
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compared EAs.
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Since the seminal work published in [10], a number of evolu-
tionary algorithms (EAs) have been developed for digital IIR filter
design. The major advantages of these EAs over other methods can
be summarized as [2,15,20,26]: (1) pre-knowledge of the problems
is not necessary for EAs, while the highly nonlinear characteris-
tic must be approximated firstly for transformation approach and
other mathematical optimization approaches; (2) EAs usually work
with a population of candidate solutions and can handle the con-
straints adaptively under the strategy set beforehand in a single
run. The current research of applying EAs to design digital IIR filter
mainly focuses on the following two highly concerned issues:

• Developing specific operators: Similar to the other applica-
tion areas, developing more effective GA operators has attracted
wide attention for digital IIR filter design. The motivation is
to strengthen the exploration ability, due to the fact that the
fitness landscape of such a problem contains too many local
optima. The important digital IIR filter optimization approaches

include: hybrid genetic algorithm [12], hierarchical genetic algo-
rithm (HGA) [22], Taguchi strategy enhanced GA (HTGA) [24]
and GA including simulated annealing (SA) [13]. Among these
approaches, only HGA considers optimizing the structure of dig-
ital IIR filter, which is also regarded as minimizing the order.
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Multi-algorithm framework: In order to syncretize all qualita-
tive aspects, a novel approach proposed recently is to implement
different EA techniques to deal with different sub-problems [30].
In detail, the main idea of cooperative co-evolutionary genetic
algorithm (CCGA) is inherited to divide and optimize the control
genes (control genes define the structure of the filter) and coef-
ficient genes separately. In the stage of optimizing the control
genes, NSGA-II [7] is implemented to balance the relationship
among magnitude response error, linear phase response error
and order. In the stage of optimizing coefficient genes, the multi-
objective situation is handled by a simple weight sum approach,
and the simulated annealing (SA) is used. Clearly, the MOEA is
only a part of this complex framework.

Based on the above literature review, it can be observed that
ost existing works treat digital IIR design as a single objective

roblem with some supplementary conditions, while the multi-
le criteria design has not attracted sufficient attention. The single
bjective methods inevitably cause the loss of consideration of the
econdary or tertiary objectives, which are usually related to the
inear phase response error and order of IIR filter [30]. These fac-
ors are also very important in digital IIR filter design. For example
n HTGA [24] and HGA [22], the linear phase response error is not
onsidered, which may result in large distortion. [14] indicates that
IR filters designed in such single objective optimization way can
nly be implemented in the applications, where phase responses
re not very important. Besides, for single objective optimization
lgorithms, the users have to set weights to combine several crite-
ions into one single optimization objective. Especially, the setting
f weights always requires strong background of both designing
igital IIR filter and optimization algorithm. Furthermore, a lot of
revious works [12,13,24] do not take the optimization of the filter
tructure into account, which means that the order of IIR filter must
e determined beforehand. It is well understood that higher order
f IIR filter is, more complex the structure is and more expensive
he cost is. In this case, EAs have not shown their full flexibility and
otentiality in the tasks of designing optimal IIR filters.

With the equal consideration of all objectives, the essential goal
f MOEA is to provide a set of complete Pareto optimal solutions to
he decision maker. Therefore, for a static multi-objective optimiza-
ion problem, a natural and effective choice is to implement MOEA
ue to its mature technique and proven excellent performance
27,32]. However, it is a little bit surprising that none of the exist-
ng works is found to try to handle digital IIR filter design totally by

OEAs, in defiance of the fact that the digital IIR filter design always
eeds to optimize more than one objective [30]. In this work, we
ry to investigate reasonable way of designing suitable digital IIR
lter design algorithm from the perspective of MOEA. A new local
earch enhanced MOEA (LS-MOEA) is proposed specifically for dig-
tal IIR filter design. To fully evaluate the effectiveness of LS-MOEA,
t is applied on four typical filter design cases, and its performance is
ompared comprehensively with those of the following algorithms:
1) several classical digital IIR filter design algorithms, to show the
dvantage of EA based algorithms; (2) the previous most effective
lgorithms based on single objective EAs, i.e. HGA and CCGA, to
how the advantages of the usage of MOEA; and (3) the classi-
al NSGA-II, to validate the advantages of the specifically designed
perators for multi-objective digital IIR filter design. The experi-
ental results evidently show that LS-MOEA is distinctly suitable

or designing good digital IIR filter.
The remainder of this paper is structured as follows: In Section
, the digital IIR filter design problem is introduced first. Then, the
tate-of-the-art works on MOEAs are briefly reviewed. In Section 3,
he new algorithm LS-MOEA is proposed. Section 4 presents exper-
mental evaluation of LS-MOEA on designing four types of digital
IR filters, including low-pass (LP), high-pass (HP), band-pass (BP)
Fig. 1. Coding of digital IIR filter design.

and band-stop (BS) filters. The previous effective algorithms, such
as HGA and CCGA, and classical approaches are utilized to provide
comparisons. In Section 5, a brief conclusion is given and the future
work is outlined.

2. Digital IIR filter optimization

The cascade form of an infinite-impulse response (IIR) filter can
be described as follows [10,21,22]:

H(z) = K

n∏
k=1

1 + bkz−1

1 + akz−1

m∏
i=1

1 + di1z−1 + di2z−2

1 + ci1z−1 + ci2z−2
(1)

where K is the gain, ak and bk for k = 1, 2, . . ., n are the first-order
coefficients, and ci1, ci2, di1 and di2 for i = 1, 2, . . ., m are the second-
order coefficients. In this paper, the optimization task is defined as
searching an optimal structure with lowest order, minimal magni-
tude response error and minimal linear phase response error.

2.1. Coding scheme

The coding is important to bridge optimization algorithms to
digital IIR filter design. As is claimed in [22] and [30], the coding is
the essence of HGA. In principle, such a coded method represents a
given digital IIR filter as a chromosome that contains control genes
and coefficient genes. The control genes determine the structure of
the filter, and the coefficient genes define the value of the coeffi-
cients in each block. Compared with HGA, the major difference of
the coded method in [30] is that the control genes and the coeffi-
cient genes are separately considered to be corresponding species.
The species can be flexibly combined to be the chromosome. In this
paper, the classical coding method in [22] is inherited. Consider
a digital IIR filter that can be expressed as Eq. (1) with n = 2 and
m = 2. The graphical representation of the coding is shown in Fig. 1.
The first four genes are control genes and the others are coefficient
genes. The control genes are in binary bit form, which determine
the activation of corresponding block by setting “1” for active block.
The coefficient genes are in real number form. Note that coefficient
genes for the inactive block are useless in calculation of the chro-
mosome. It is apparent that such a coded method inevitably causes
redundant genes. However, the MOEA is able to make use of the
redundant genes to effectively maintain the diversity.

2.2. Formulation of digital IIR filter design

The digital IIR filter design problem can be formulated as a multi-
objective optimization form as follows [30]:

minimize f = {f1(x), f2(x), f3(x)}
subject to x ∈ X,
Objective1 f1(x)∼magnitude response error,

Objective2 f2(x)∼linear phase response error,

Objective3 f3(x)∼order

(2)
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Table 1
Procedure of NSGA-II

Algorithm: NSGA-II

Step 0 Randomly initialize a population P(0). Set the iteration counter t = 0.
Step 1 Crossover [5].
Step 2 Mutation [5].
Step 3 Update population P(t) using non-dominated sorting rank [7,5].
Y. Wang et al. / Applied Soft

here X ⊂ (DM ∪ RN) denotes the feasible decision space with M
inary control variables and N continuous coefficient variables;
= {x1, x2, . . ., xM+N}∈ (DM ∪ RN) is the decision variable vec-

or; f : X → R3 stands for 3 objective functions for mapping from
+ N dimensional variable space to 3 dimensional objective value

= {f1(x), f2(x), f3(x)}.
Definition: (Pareto dominate and Pareto front) x1 ‘Pareto domi-

ate’ (is better than) x2 is true when the following two conditions
old: (1) fj(x1)� fj(x2), j = 1, 2, 3 which means that all objective val-
es of x1 are not worse than x2. (2) ∃j ∈ 1, 2, 3, st. fj(x1) < fj(x2), which
eans that at least one objective of x1 is better than x2. Based on the

Pareto dominate’ concept, the ‘Pareto front’ SP is defined as a set of
olutions that are not dominated by all the other feasible solutions.

The ultimate goal of MOEA is to achieve a set of solutions spread
niformly along the Pareto optimal front. Then, the decision maker
an select the appropriate one which satisfies the tolerant condi-
ions.

.2.1. Magnitude response error
The magnitude response error can be simulated as the differ-

nce to the boundary of design requirement. It can be calculated as
ollows [22,30]:

p(ω) =
{

1 − ı1 − |H(ejω)|, |H(ejω)| < 1 − ı1

0, |H(ejω)| ≥ 1 − ı1,
(3)

here ω is in the passband and the Hp(ω) is the passband magni-
ude response error at ω.

s(ω) =
{ |H(ejω)| − ı2, |H(ejω)| ≥ ı2

0, |H(ejω)| ≤ ı2,
(4)

here ω is in the stopband and the Hs(ω) is the stopband magnitude
esponse error at ω.

in f1 = 1
Pn

Pn∑
i=1

Hp(ωi) + 1
Sn

Sn∑
j=1

Hs(ωj) (5)

here Pn and Sn are the sampling frequency in the passband and
topband respectively. In this case, the best fitness f1 = 0 represents
hat the magnitude response of the solution is within [1 − ı1, 1] in
he passband and [0, ı2] in the stopband.

.2.2. Linear phase response error
Both passband and transition band are considered when cal-

ulating linear phase response error [30]. The sampling points are
venly distributed in the passband and transition band. Then the
rst order difference of phase sequences {�1, �2, . . ., �Pn+Tn } can
e calculated as follows:
Phase = {��1, ��2, . . . , ��Pn+Tn−1}, (6)

here ��i = �i+1 − �i; Pn and Tn are the sampling frequency in the
assband and transition band respectively. Then, the Linear Phase
esponse error is equal to the variance of the �Phase sequence:

in f2 = var{��i|�i ∈ passband ∪ transition band} (7)

here var is the operator to calculate the variance value. The best
tness f2 = 0 represents that the elements of �Phase sequence are
xactly the same.
Step 4 Update population P(t) using crowding distance strategy [7,5].
Step 5 If termination criterion is not satisfied, set t = t + 1 and go to Step 1,

else report P(t).

2.2.3. Order
The order is only determined by the control genes. It can be

calculated as follows [22,30]:

min f3 =
n∑

i=1

pi + 2
m∑

j=1

qj (8)

where n and m are the numbers of first order blocks and second
order blocks respectively; pi and qj are the ith and jth control genes
for the corresponding first order blocks and second order blocks
respectively. The f3 = 0 is not the best fitness, because it stands for an
all-pass filter. Therefore, the feasible region of order is the integers
within [1, n + 2m].

2.3. Related works on multi-objective optimization evolutionary
algorithm

Historically, the attempt of making use of the population based
evolutionary approaches for multi-objective optimization prob-
lems goes back as far as 1985 [19]. Two books [4] and [6] summarize
the early works on MOEAs. In the recent years, MOEAs have been
successfully applied to many engineering applications, such as
electric power dispatch problem [1], design of power distribution
systems [18], bioinformatics and computational biology [11]. Gen-
erally speaking, the widely adopted MOEAs include non-dominated
sorted based genetic algorithm II (NSGA-II) [7], strength Pareto
evolutionary algorithm II (SPEA-II) [31] and Pareto develop based
selection algorithm (PAES) [16]. For many multi-objective tasks,
these approaches have shown excellent performances.

Due to the arising of new challenges, several effective MOEAs
with improved strategies have been proposed, such as �-MOEA
[8], hypervolume based MOEA [9], regularity model-based multi-
objective estimation of distribution algorithm (RM-MEDA) [32],
and, but not least fast hypervolume based MOEA (FH-MOEA)
[27]. Either more effective new offspring creating mechanism or
elite maintenance with stronger selection pressure was adopted
in these MOEAs. However, there are different problems of these
algorithms when applying to digital IIR filter design, which can
be summarized as follows: the computational costs of SPEA-II,
hypervolume based MOEA and RM-MEDA are too expensive when
dealing with the three objective problems; much pre-knowledge
of the fitness landscape and bounds is needed for �-MOEA; FH-
MOEA seems not so effective for the problems with more than
two objectives; the diversity maintenance of NSGA-II is not so
effective.

Due to its high efficiency and low computational cost, the orig-
inal NSGA-II algorithm proposed in [7] is selected to be the basic
MOEA in this paper. It implements a fast non-dominated sorting
approach to effectively conduct the selection strategy. The proce-

dure of NSGA-II is shown in Table 1. The genetic operators, including
crossover and mutation, are exactly the same as that used in single
objective GAs. Without loss of diversity, step 4 is used to trun-
cate the fixed number of individuals to form the population for the
next generation. In detail, the individuals that locate at the sparse
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Table 3
Design criteria.

Types Order ωp ωs

LP 11 [0 0.2�] [0.3��]

HP 11 [0.8��] [0 0.7�]

BP 11 [0.4� 0.6�] [0 0.25�]∪ [0.75��]

BS 11 [0 0.25�]∪ [0.75��] [0.4� 0.6�]

approaches and how the incorporated strategies improve the
performance of NSGA-II, we compare LS-MOEA with classical meth-
ods, single-objective EAs and NSGA-II on a widely used test suit
[22,24,30], including four types of filters: (1) low-pass (LP); (2)

Table 4
854 Y. Wang et al. / Applied Soft

egion are preserved while the ones that locate at the dense area
re abandoned.

. Algorithm

The goal of digital IIR filter designing is to find the optimal solu-
ion that satisfies the following requirements: (1) the magnitude
esponse error f1 = 0; (2) the phase response is as linear as pos-
ible; and (3) the order is as low as possible. The application of
OEAs to IIR filter design problem will generate a number of non-

ominated solutions, called Pareto optimal solutions. To facilitate
he satisfaction of requirement 2 above, a specific local search oper-
tor is proposed to enhance the search of higher quality solutions
f phase response f2 around the central point with f1 = 0 and low-
st order. Such a local search operator is the essence of LS-MOEA.
ther components are mainly inherited from NSGA-II.

In principle, LS-MOEA tries to congregate multiple strategies to
nhance various abilities of MOEA to meet the specific require-
ents of multi-objective IIR digital filter design, which can be

ummarized as follows:

As is discussed in the above section, the diversity maintenance is
the major demerit of NSGA-II. To make up it, the original NSGA-II
is developed to be an improved-NSGA-II (INSGA-II) [28] by incor-
porating an extensive archive and an improved non-dominated
selection strategy [32]. These two strategies can remarkably
improve the diversity property compared with the original NSGA-
II [28].
To make the algorithm be specific for digital IIR filter design, a
local search operator is introduced to improve the quality of the
eligible solution. The main idea is to put large amount of attention
around the previous best solution. It is beneficial to find superior
solution in phase response error.
The cooperation of diversity maintenance strategies and local
search strategy can be expressed as follows: the extensive archive
and improved non-dominated selection strategy help in keeping
a good diversity of various filter structures (orders); when the
solutions with f1 = 0 appear, local search operator is launched to
improve the linearity of phase response.

The details of LS-MOEA are shown in Table 2. At each generation,
he proposed algorithm maintains: a population of NP solutions
i.e. points in decision space) with their objective values, and an

xternal archive to record the non-dominated solutions found
reviously. In step 4, an improved selection operator removes
olutions one at a time, which has the most crowding density.
fter a fixed number of generations, LS-MOEA detects whether

here is some solutions with f1 = 0 in the archive. If the above

able 2
rocedure of LS-MOEA

Algorithm: LS-MOEA

Step 0 Randomly initialize a population P(0). The non-dominated solutions
of P(0) are copied to an archive population A(0) one by one. Set the
iteration counter t = 0.

Step 1 Crossover: Apply two-point crossover operator [5] to the control
genes; apply the simulated binary crossover operator [5] to coefficient
genes.

Step 2 Mutation: Apply bit-flip mutation operator [5] to the control genes;
apply polynomial mutation operator [5] to the coefficient genes.

Step 3) Update population P(t) using non-dominated sorting rank and
crowding distance strategy [5,7].

Step 4 Update the archive with the new generated population using
improved non-dominated selection.

Step 5 Apply local search operator to the selected individual.
Step 6 If termination criterion is not satisfied, set t = t + 1 and go to Step 1,

else report A(t).
Other uniform requirements are: (1) the phase response is linear in the pass band
and transition band; (2) ı1 = 0.1088; (3) ı2 = 0.17783.

situation is satisfied, the local search is applied to the one with
lowest order to generate 5 new individuals. A Gaussian based local
search operator defined as Eq. (9) is used to implement the local
search:

for i = (m + n + 1)to(5 · m + 3 · n)

vi =
{

xi + N(0, �), if r and < 0.1

xi, otherwise,
,

(9)

where m and n come from Eq. (1); v is the new offspring solu-
tion generated by the selected solution x from the archive; genes
(m + n + 1) to (5 · m + 3 · n) are the coefficient genes; rand is a uni-
formly generated number within [0, 1]; � is a positive constant.
The individual x will be replaced by v, if v dominate x. The Gaussian
local search operator defined as Eq. (9) has been testified by many
researches to be a good strategy to enhance the ability of elaborate
search [29]. The Gaussian local search operator is adopted with
probability 0.1. By performing such Gaussian local search opera-
tor, the selected archive solution can search for superior solutions
around its current position.

4. Experimental study

To provide experimental evidence to study how LS-MOEA
improves the performance of traditional digital IIR filter design
Parameters settings of LS-MOEA.

Genes Parameters Settings

Population Population size 100, archive size 100
Selection Binary tournament selection
Crossover rate 0.9
Mutation 0.1

Control genes Crossover Two-point crossover
Mutation Bit-flip mutation

Coefficient genes Crossover Simulated binary crossover
Mutation Polynomial mutation

GLS = 5 stands for the minimum number of generations between two local search
operators. The termination condition for LS-MOEA is that the first objective function
value f1 = 0, and the other two objective values are less than the given values.

Table 5
The results obtained by LS-MOEA

LP : H(z) = 0.1828 1+0.2094z−1

1−0.4384z−1
1−0.8939z−1+0.9316z−2

1−1.2338z−1+0.6429z−2

HP : H(z) = 0.2020 1−0.5189z−1

1+0.3087z−1
1+0.9351z−1+0.9295z−2

1−1.1694z−1+0.6127z−2

BP : H(z) = 0.2192 1−1.6642z−1+0.9998z−2

1+0.5927z−1+0.5120z−2
1+1.6536z−1+0.9949z−2

1−0.6168z−1+0.5134z−2

BS : H(z) = 0.4758 1+0.3083z−1+0.8687z−2

1+0.7223z−1+0.4658z−2
1−0.3112z−1+0.8910z−2

1−0.7238z−1+0.4758z−2
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f four filter types (LS-MOEA).
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Table 6
Lowest filter order due to various design schemes.
Fig. 2. Filter responses o

igh-pass (HP); (3) band-pass (BP); and (4) band-pass (BS). The
undamental structure of H(z) is expressed as:

(z) = K

3∏1 + bkz−1

−1

4∏1 + di1z−1 + di2z−2

−1 −2
, (10)
k=1
1 + akz

i=1
1 + ci1z + ci2z

here there are n = 3 first order blocks and m = 4 second order
locks for Eq. (1). In the chromosome, there are 7 control genes
nd 22 coefficient genes. The parameter K is determined by unify-

Filter BWTH CHBY1 CHBY2 ELTC LS-MOEA

LP 6 4 4 3 3
HP 6 4 4 3 3
BP 12 8 8 6 4
BS 12 8 8 6 4
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Table 7
Filter performance comparison on four types of digital IIR filters.

Fitness evaluation
size needed

Lowest filter order Pass band magnitude
response performance

Stop band magnitude
response performance

Phase response
error

LP filter
HGA – 3 0.8862 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1800 1.6485E−04
CCGA 142480 3 0.9034 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1669 1.4749E−04
NSGA-II 8900 3 0.9117 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1719 1.2662E−04
LS-MOEA 4900 3 0.9083 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1586 1.0959E−04

HP filter
HGA – 3 0.9221 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1819 1.1212E−04
CCGA 341640 3 0.9044 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1749 9.7746E−05
NSGA-II 148000 3 0.8960 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1769 9.1419E−05
LS-MOEA 42385 3 0.9004 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1746 9.6150E−05

BP filter
HGA – 6 0.8956 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1772 1.1222E−04
CCGA 778960 4 0.8920 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1654 8.1751E−05
NSGA-II 26500 4 0.9100 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1771 3.6503E−04
LS-MOEA 9995 4 0.9285 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1734 6.0371E−05

BS filter
HGA – 4 0.8920 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1726 2.7074E−04
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CCGA 775320 4
NSGA-II 307700 4
LS-MOEA 123505 4

ng the magnitude response of the digital IIR filter. Therefore, the
easible order of the designed digital IIR filter is [1 11].

The stable requirement of digital IIR filter was summarized in
21]. It can be expressed as follows:

1 < aj2 < 1, (11)

1 − aj2 < aj1 < 1 + aj2. (12)

here Eq. (11) represents the stable requirement for first order
locks and Eq. (12) is for the second order blocks. The parameters
or four types of digital IIR filters are shown in Table 3. The param-
ters settings for LS-MOEA are listed in Table 4. For fair comparison
ith HGA, CCGA and NSGA-II, the same 20 independent runs are
erformed by LS-MOEA. LS-MOEA is terminated when f1 = 0, and
he other two objectives are less than the given values. The func-
ional structures obtained by LS-MOEA are shown in Table 5. Fig 2
epicts the filter performances of LS-MOEA.

(1) Comparison with classical methods: To show the advan-
age of LS-MOEA over the classical methods, the comparison of the
owest order between LS-MOEA and the classical methods, such as
WTH, CHBY1, CHBY2, and ELTC, is shown in Table 6. The results of
hese classical approaches are from the uses of the MATLAB toolbox
22]. It is observed that LS-MOEA always provides the lowest order
or all cases. Especially, unlike the other methods, it is interesting
o see that the orders of BP and BS obtained by LS-MOEA are less
han twice of those of LP and HP.

(2) Comparison with single objective EAs (HGA and CCGA): As
s easy to be appreciated in Table 7, the passband and the stopband

agnitude response requirements are completely met by all algo-
ithms. When looking into the lowest order, CCGA and LS-MOEA are
omparable, and outperform HGA. However, LS-MOEA can accom-
lish the search procedure with significant lower computational
ost, compared with CCGA. The best results for different aspects
re marked in bold face in Table 7. In more detail, the optimization
peed of LS-MOEA is improved up to 81.63%, 249.18%, 165.13% and
49.14% for respective types of filters, which is concluded on the
spect of FES needed. Especially, LS-MOEA provides the top per-

ormances of the phase response quality for all types of digital IIR
lters among the three considered algorithms.

(3) Comparison with NSGA-II: In Table 7, it is interesting to see
hat besides LS-MOEA, NSGA-II can also obtain the filters, which
ompletely meet all requirements, within remarkably lower com-
66 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1733 1.6198E−04
17 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1770 1.5190E−04
67 ≤ | H(eiω) | ≤ 1 | H(eiω) | ≤ 0.1725 1.5084E−04

putational costs than HGA and CCGA. Therefore, the effectiveness
and efficiency of MOEAs on digital IIR filter is verified again. How-
ever, the advantage of LS-MOEA on computational cost is also very
remarkable, even compared with NSGA-II. This is due to the imple-
mentation of local search in LS-MOEA, which specially focuses on
the more promising search region. Furthermore, the qualities of
the filters obtained by LS-MOEA are better than those obtained by
NSGA-II, except the aspects of pass band magnitude response and
phase respond error on HP filter.

In summary of the above three comparisons, it can be concluded
that LS-MOEA is beneficial to effectively design digital IIR filters of
better responses and lower order with lower computational cost.

5. Conclusion

In the previous studies, the single objective algorithms were the
usual choices to design IIR filters [22,24,30]. In this paper, LS-MOEA
is proposed to design digital IIR filter with three optimization objec-
tives, minimizing magnitude response error, phase response error
and order. Particularly, a local search operator is included with the
pursuit of improving quality of phase response error. Furthermore,
LS-MOEA is developed to optimize the structure and coefficients
setting of filters simultaneously. In the experimental study, LS-
MOEA gained better results than the compared state-of-the-art
algorithms on four digital IIR filter design cases with remarkably
lower computational cost. Due to the promising performance of
LS-MOEA, MOEA based approaches deserve more attention in the
area of digital IIR filter design.
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