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Abstract

Superhydrophobic surfaces with a contact angle (CA) larger than 150° have recently attracted great interest in both academic research and
practical applications due to their water-repellent or self-cleaning properties. However, thermodynamic mechanisms responsible for the effects of
various factors such as surface geometry and chemistry, liquids, and environmental sources have not been well understood. In this study, a pillar
microtexture, which has been intensively investigated in experiments, is chosen as a typical example and thermodynamically analyzed in detail. To
gain a comprehensive insight into superhydrophobic behavior, the roles of pillar height, width and spacing (or roughness and solid fraction),
intrinsic CA, drop size, and vibrational energy are systematically investigated. Free energy (FE) and free energy barrier (FEB) are calculated using
a simple and robust model. Based on the calculations of FE and FEB, various CAs, including apparent, equilibrium (stable), advancing and
receding CAs, and contact angle hysteresis (CAH) can be determined. Especially, the design of practical superhydrophobic surfaces is emphasized
in connection with the transition between noncomposite and composite states; a criterion for judging such transition is proposed. The theoretical
results are consistent with the Wenzel's and the Cassie's equations for equilibrium CA values and experimental observations. Furthermore, based
on these results and the proposed criterion, some general principles to achieve superhydrophobic performance are suggested.
© 2007 Elsevier B.V. All rights reserved.
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Fig. 1. A typical 2-D pillar surfacemicrotexture. (a) noncomposite; (b) composite
wetting states.
1. Introduction

Inspired by the so-called lotus effect [1,2], superhydrophobic
surfaces with water contact angles (CA) larger than 150° have
attracted great interest over the last few years from both
fundamental research and practical applications [3–9]. Such
surfaces require both appropriate surface roughness and
generally low surface energy. With rapid improvements of
micro/nanofabrication techniques, it is now becoming possible
to control and tailor micro/nano-scale chemical structures on
solid surfaces. Numerous methods to prepare superhydrophobic
surfaces have been reported. Some of the recent examples
include using surface roughness as a means to switch wettability
of membranes [10] and fabrication of stable ZnO-based
superhydrophobic surfaces using a wet-chemical route [11].
However, in spite of significant advances in fabrication
techniques for micro/nanostructures and development of novel
materials for superhydrophobic surfaces, the thermodynamic
mechanism responsible for superhydrophobic behavior has not
been completely understood. It is generally accepted that
superhydrophobicity can be described using a maximum CA;
however, it should be recognized that only CA is not sufficient
to define superhydrophobicity if drop mobility is to be
considered; additionally, contact angle hysteresis values or the
work of adhesion is required [12,13]. To design and fabricate
superhydrophobic surfaces, the following are some of the most
important issues that should be addressed and clarified
theoretically.

1.1. Surface geometry

It is well known that generally low surface energy and
suitable surface roughness can enhance contact angle (CA) of a
solid surface. Lowering of surface energy is limited to well
packed CF3 groups at the surface, corresponding to a maximum
intrinsic CA of about 120° with water [14]. Recent studies have
focused on manipulating roughness to achieve superhydropho-
bic surfaces. However, for the same roughness value, different
surface geometries (textures) can exhibit completely different
wetting behavior. A typical surface with pillar (post or spike)
microtextures, as illustrated in Fig. 1, has been extensively
investigated experimentally [4–8,15]. It has been argued that all
the geometrical parameters of pillars, such as height, cross
section, and arrangement, individually play a role in determin-
ing superhydrophobic behavior. This indicates that the consid-
eration of only roughness value (a composite measure of all
surface texture parameters) is not adequate. For example, it is
suggested [12,14] that thin and tall pillars are necessary for
superhydrophobicity; however, in term of roughness, this is
contradictory because thin pillars mean small roughness if pillar
spacing is kept constant (based on general roughness para-
meters, e.g., Wenzel roughness ratio (see Eq. (17) below)),
whereas tall pillars mean large roughness (see roughness
expression below). Therefore, investigations of the effect of
all surface geometrical parameters (height, cross section, and
arrangement) are necessary. It is worth noting that the pillar
texture is used in many recent experimental investigations of
superhydrophobic behavior [17,18]. However, systematic and
complete studies on the effects of all the geometrical parameters
have not been conducted. For example, among the latest studies,
Nakae et al. [16] investigated the effect of roughness pitch (i.e.,
pillar spacing); Callies et al. [17] investigated the effect of
microstructure density in natural surfaces (also pillar spacing).
However, such studies hardly consider theoretically why and
how surface geometry impacts apparent, equilibrium (stable),
advancing and receding CAs. It is therefore necessary to under-
stand the fundamental mechanism responsible for the effects of
surface geometry (rather than only the roughness value) and
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material chemistry, and their interrelation on superhydrophobi-
city. This issue is important for the geometrical design of
superhydrophobic surfaces. At present, however, theoretical
explorations of such effects are still rare (the notable examples
are the latest study on the microscopic mechanism of the
dependence of CA on roughness using a variational minimiza-
tion of total potential energy [19], and the analysis of anisotropy
in the wetting of rough surface using Surface Evolver [20]).
Accordingly, up to now the guidelines for the fabrication of
superhydrophobic surfaces have considered a general notion of
roughness (not exact surface geometry), and are mainly based
on experimental observations or phenomenological methodol-
ogies; rigorous and systematic theoretical consideration, in
particular, thermodynamic analysis is rare.

1.2. Criterion for the transition from noncomposite to
composite wetting states

A change in roughness or surface geometry (texture) may lead
to a transition between thermodynamic states fromnoncomposite,
i.e., complete liquid penetration into the troughs of a rough
surface, to composite, i.e., entrapment of air in the troughs of a
rough surface, as illustrated in Fig. 1. Such a transition may
increase maximum CA and/or further enhance the superhydro-
phobicity. The equilibrium CAs for these two states can be
evaluated by classical Wenzel's and Cassie's equations [21,22],
but a priori it is difficult to predict which equation would apply to
a particular system [5,6,23]. A wetting system may exhibit both
states for a given situation; a transition between noncomposite and
composite states can also occur with variations of surface
conditions (e.g., composition and geometry). In general, this
transition is the result of competition between noncomposite and
composite thermodynamic states. The result of this competition is
determined by the two factors of free energy (FE) and free energy
barrier (FEB). A system always transfers to a thermodynamic
state with a low FE with small transitional FEB. Depending on
surface geometry and chemistry of a microtextured solid, one of
the noncomposite or composite states has the lowest FE. A
complete understanding on why and how surface geometry and
chemistry affect the transition is essential for the design and
prediction of superhydrophobic behavior. There have been
considerable studies on determining this transition in the recent
years. For example, Extrand [24] proposed a contact line density
criterion to predict suspension of water drop on top of surface
asperities; more recently, because of the inadequate validity for
some experimental observations, he added an additional asperity
height criterion for such transition [25]. However, models
allowing for calculating/predicting such a transition, in particular,
simple and reliable thermodynamic treatments are scarce.

1.3. Contact angle hysteresis (CAH)

In general, wetting behavior can be characterized commonly
by a CA. However, maximum CA is insufficient to assess
superhydrophobicity when drop mobility is desired [4,12]. A
superhydrophobic surface suitable for liquid shedding should
exhibit both high CA and low contact angle hysteresis (CAH),
i.e., the difference between advancing or maximum (θa) and
receding or minimum (θr) CAs. Recently, maximum CA of
various materials and associated superhydrophobic behavior has
been widely investigated, but the CAH is studied so far only to a
very limited extent, in particular, from theoretical aspects
[15,26,27]. In spite of its important role in determining
superhydrophobic behavior, theoretically there is not a general
or simple approach to predict CAH due to its complexity
(Wenzel's and Cassie's models can predict equilibrium CA of
noncomposite and composite states, respectively, but neither
equation can predict CAH). This happens partly because the CAH
is non-intrinsic property of a solid surface, which is, in some
sense, dependent on the concerned system or environment (see
below). In principle, CAH can be calculated by analyzing the
thermodynamic status of a system consisting of a solid surface
and a liquid drop. This was well demonstrated by Johnson and
Dettre (J–D) in their classical work [28]. Unfortunately, their
numerical calculations were cumbersome and complicated; also,
their model used a sinusoidal roughness pattern for the surface,
which is not very realistic or achievable by current microfabrica-
tion techniques. Recently, some researchers have used empirical
or phenomenological models [5–7,24] to approach CAH.
Although the above studies were in agreement with specific
experimental observations, and advanced our understanding of
the CAH for superhydrophobic surfaces, generally, they could not
be considered as being rigorously derived from first principles of
thermodynamics (e.g., FE analysis for metastable states). To
better understand and evaluate the superhydrophobicity, it is
necessary to develop a simple and general thermodynamic
approach to calculate CAH.

1.4. The effect of drop size

The factors such as the formation and the size of a drop can
play a significant role in the observed CA. For example,
different wetting behavior is observed by depositing a drop
gently, from some height or pushing it by applying pressure on a
solid surface [29]. Especially, experimental evidence regarding
the effect of drop size on CAs has been well documented [30–
32]. However, the only theoretical consideration was conducted
byMarmur [33] who proposed a simple model of heterogeneous
smooth surfaces to demonstrate the possible effects of drop
volume on the metastable states of a thermodynamic system.
Thus, to systematically investigate superhydrophobic behavior
the issue of drop size should be addressed.

1.5. The effect of external environment

Environmental or external sources such as temperature, me-
chanical vibrations, light and acoustical energy may play a role
in determining superhydrophobic behavior. In this aspect,
Johnson and Dettre [28] made an important contribution by
revealing the significance of the so-called “vibrational energy”.
Vibrational energy is defined as the energy to overcome FEB.
Here it should be pointed out that in general sense, the vi-
brational energymeans the energy that a wetting system receives
from its environment or external sources, e.g., mechanical
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vibrations of the building in which the experiments are done,
acoustical or light; the “vibrational energy” in our case does not
refer to the vibration at a molecular level for the system (the
examples of vibrational energy concerned here can be found in
[34,36]). It is experimentally found that the vibrational energy
can impose practical bounds on measurements of CA [34]. In
general, the higher the vibrational energy, the smaller the prac-
tical range of the observed CAs or CAH. If the vibrational energy
is large enough, only a stable or equilibrium CA rather than a
range of CAs (i.e., CAH) can be experimentally observed. There
have been experimental studies to demonstrate this point; me-
chanical or acoustical means such as direct vibration of a solid
surface or application of a loudspeaker in order to create large
vibrational energy was used [34–36]. Noblin et al. [37] showed
that the contact line can either remain pinned or oscillate, de-
pending on the frequency and the amplitude of the vibration; the
hysteresis acts as a frictional force, leading to a stick slip motion
of the triple line. Such studies support the basic assumption that
CAH depends on the vibrational energy from external sources.
At present, in the study of superhydrophobic phenomenon, it is
urgent to establish the relationship between vibrational energy
and CAs, as well as CAH.

It should be pointed out that external sources may also lead to
the change in surface conditions such as composition (chemistry)
and structure (roughness), causing changes in wetting properties
Fig. 2. Illustration of FE analysis for a drop on a surface with a pillar texture. Solid
arbitrary state of the drop.
(e.g., variation in CA) [38,39]. For instance, an extremely large
change in CA or CAH of aligned ZnO nanorod films can be
realized using ultraviolet irradiation [39]. Such a change in CA
can be generally understood by the interplay of surface chemistry
and roughnesswith external stimulus, and not themanifestation of
“vibrational energy” from external sources such as building
vibrations discussed here.

1.6. Thermodynamic analysis of superhydrophobic surfaces

In view of the above considerations, superhydrophobic behavior
can be affected by multiple factors. Although superhydrophobicity
is necessarily characterized using CA, it is difficult and complex to
make meaningful CA measurements and to reveal the physical
nature of the measurements for superhydrophobic behavior. It is
therefore, understandable why a wide range of CA values are
presented in literature by different researchers even on the same
solid surface [40]. Accordingly, there are considerable controversial
assertions on the fundamental aspects of superhydrophobic
phenomena. Some of the controversy is due to the lack of a
theory/model that can quantitatively interpret experimental mea-
surements of CA and CAH in terms of the contributions of surface
chemistry and geometry, drop size, and external sources.

In our previous study [41], we proposed a thermodynamic
approach to analyze FE and FEB of a metastable wetting state. In
line represents the initial state of the drop whereas dashed line is to signify an
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this approach, we proposed a two-dimensional model assuming
cylindrical drops and neglecting the gravity effect to simplify the
calculations of CA and CAH associated with FE and FEB without
much loss of generality as the results can describe experimental
observations clearly. In the present study, using this approach we
conduct a detailed analysis of a typical surface with a pillar mi-
crostructure. The aim is to provide a comprehensive understanding
of the roles of various factors, including chemistry (intrinsic CA),
surface geometry (solid fraction and roughness), liquid (drop size
or volume), and externalmeans (vibrational energy) in determining
superhydrophobic behavior, i.e., CA and CAH as well as the
transition from noncomposite to composite states. The final aim is
to provide some guidelines for the design of superhydrophobic
surfaces.

2. Thermodynamic analysis

In our previous study [41], a FE analysis and formulation was
presented for wetting of a surface with the texture shown in Fig. 1.
The texture design in Fig. 1 is regularly used by experimentalists to
study superhydrophobic phenomenon. The formulation provided
allowed study of both noncomposite and composite wetting states.
Based on the developedmodel, the thermodynamic analysis of the
wetting states related to the surface texture geometry and nume-
rical calculations of FE and FEB can be conducted. For a wetting
noncomposite state, the change inFE per unit length of contact line
(ΔF) for a drop receding from a reference position (with drop size
and CA of L0 and θ0, respectively), to an arbitrary position with
Lar and θar, can be written as (see Fig. 2):

DF re
0Yar=g

la ¼ har
Lar

sinhar
−h0

L0
sinh0

� �
þ L0−Lar

aþ b

� �
ðaþ b

þ 2hÞcoshY ð1Þ

The equivalent change in FE per unit length of contact line
(ΔF) for the advancing case will be:

DFad
0Yar=g

la ¼ har
Lar

sinhar
−h0

L0
sinh0

� �
−

L0−Lar
aþ b

� �
ðaþ b

þ 2hÞcoshY ð2Þ
where γla is liquid surface tension; a and b are defined in Fig. 2;
ΔF /γla is the normalized change in FE per unit length of
contact line or the so-called FEB; θY is the intrinsic CA.

The variation of FE as a result of an infinite small change in
drop position receding from point A (with drop size LA and CA
of θA) to the neighboring point B (with drop size LB and CA of
θB, where LA≈LB and θA≈θB) can be expressed as follows for
a noncomposite state:

hA
L2A

sin2#A
−L2ActghA ¼ hB

L2B
sin2hB

−L2BctghB ð3Þ

DFAYB=g
la ¼ hB

LB
sinhB

−hA
LA

sinhA

� �
þ a coshY ð4Þ

Eq. (3) is a geometrical constraint as a result of constant
drop volume assumption between two neighboring states. The
equivalent equations for the advancing case from A to the
neighboring point C (with drop size LC, and CA of θC) can be
expressed as:

hA
L2A

sin2#A
−L2ActghA ¼ hC

L2C
sin2hC

−L2CctghC þ 2bh ð5Þ

DFAYC=g
la ¼ hC

LC
sinhC

−hA
LA

sinhA

� �
−ðbþ 2hÞcoshY ð6Þ

where h is pillar height as shown in Fig. 2.
For the case of a composite system, liquid does not penetrate

into the troughs. The change in FE can be easily derived using
the same method. When the drop recedes or advances from the
reference position to an arbitrary position, the geometrical
constraint and energy equations associated with the changes in
FE per unit length of contact line (ΔF), respectively, can be
derived as Eqs. (7)–(9).

h0
L20

sin2h0
−L20ctgh0 ¼ har

L2ar
sin2har

−L2arctghar ð7Þ

DF re
0Yar=g

la ¼ har
Lar

sinhar
−h0

L0
sinh0

� �
−

L0−Lar
aþ b

� �
ðb−a coshY Þ

ð8Þ

DFad
0Yar=g

la ¼ har
Lar

sin#ar
−h0

L0
sinh0

� �
þ L0−Lar

aþ b

� �
ðb−a coshY Þ

ð9Þ
Similarly, the geometrical constraint and energy equations

associated with the two FEBs for the composite state can also be
derived; note that for the receding case, the derived geometrical
constraint and energy equations for the composite state are the
same as those for the noncomposite state (i.e., Eqs. (3) and (4)),
whereas for the advancing case, the derived geometrical
constraint and energy equations for the composite state are as
follows:

hA
L2A

sin2hA
−L2ActghA ¼ hC

L2C
sin2hC

−L2CctghC ð10Þ

DFAYC=g
la ¼ hC

LC
sinhC

−hA
LA

sinhA

� �
þ b ð11Þ

2.1. The FE analysis for the transition between noncomposite
and composite wetting states

Superhydrophobic states are thermodynamic manifestation
of FE. By comparing the FE of noncomposite and composite
states, one can determine which state is energetically favorable.
Here we derive the FE change for the transition from a
noncomposite to a composite state. Consider a noncomposite
state associated with a drop width (Lnc) and a CA (θnc), as
illustrated in Fig. 3. When such system exhibits a composite
state associated with an equivalent drop width (Lcom=Lnc) and a



Fig. 3. Illustration of FE analysis for the transition between noncomposite and composite states (note drop volume is considered constant for both states).
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CA (θcom), the FE per unit length of contact line, F, for these
two states can be expressed as:

Fnc ¼ glallanc þ glsllsnc þ C2 ð12Þ

Fcom ¼ glallacom þ gsalsacom þ C2 ð13Þ

where C2 is the FE of the portion of the system that remains
unchanged as a result of the transition between noncomposite and
composite states. Note that given the geometry of the system stu-

died, the following relationships exist: llanc ¼ hncLnc=sinhnc; llsnc ¼
Lnc
aþb

� �
ðbþ 2hÞ; llacom ¼ hcomLcom=sinhcom þ Lcom

aþb

� �
ðbþ 2hÞ, and lsacom ¼ Lcom

aþb

� �
ðbþ 2hÞ. Applying the constant drop volume constraint or its 2D
equivalent, constant drop area in x-z plane allows derivation of
Eq. (14) as:

hnc
L2non

sin2hnc
−L2ncctghnc þ

Lnc
ðaþ bÞ bh ¼ hcom

L2com
sin2hcom

−L2comctghcom
ð14Þ

Because Young's equation is locally valid, the FE change for
the transition from a noncomposite state to a composite state can
be expressed as Eq. (15).

DFncYcom=g
la ¼ hcom

Lcom
sinhcom

−hnc
Lnc

sinhnc

� �
þ Lnc
aþ b

b

þ Lcom
aþ b

ðbþ 2hÞcoshY ð15Þ
2.2. Calculations of equilibrium CA, receding and advancing
CAs, and CAH

From a thermodynamic point of view, a wetting system with
an equilibrium CA should exhibit the lowest FE state. However,
such a system can also exhibit multi-valued FE property,
implying the existence of multiple metastable equilibrium
states. This explains the thermodynamic conditions for
existence of advancing and receding CAs and their manifesta-
tion CAH (each metastable state is associated with an apparent
CA). Accordingly, a thermodynamic model should be capable
of analyzing the metastable states and to calculate the related
CAs and CAH. In principle, the present model may allow
analytical determination of the multiple minima for FE. In the
present study, there are two types of equations: energy and
geometry related. Differentiation of an energy equation yields
the FE minima whereas the geometrical variables in the energy
equations are subjected to the constraint of the geometrical
equations (e.g. constant liquid volume). Here we show a simple
example. In case of the receding in a noncomposite state, based
on Eq. (1), the differential of ΔF with respect to CA will be:

dðDF re
0Yar=g

laÞ
dðharÞ ¼ Lar

sinhar
þ har
sinhar

dðLarÞ
dðharÞ −

harLarcoshar
sin2har

−
coshY
aþ b

dðLarÞ
dðharÞ ð16Þ

It is noted that because Lar is also a function of θar, it might
be possible but difficult to obtain an analytical solution for Eq.
(16). However, it is easier to conduct numerical calculations.
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For various θar values representing the range of possible CA
between advancing and receding values, using FE or FEB
equations, the change in FE or FEB can be calculated. Fig. 4
shows a typical bowl-shaped curve of FE as a function of
apparent CA (θar) for a noncomposite state (a=b=2×10−6,
h=0.75 μm); note that FE as described above (i.e., F per unit
length of contact line) is normalized with respect to γ (the FE
unit will then be meter) [41]. As shown, the absolute or global
minimum, i.e., the point of lowest FE associated with an
equilibrium CA can be found.

Based on the geometrical dimension of the surface micro-
structure, Wenzel's roughness ratio (r) can be expressed as:

r ¼ 1þ 2h
aþ b

ð17Þ

Similarly, Cassie's solid fraction ( f ) can be expressed as:

f ¼ a
aþ b

ð18Þ

Using Eqs. (17) and (18), in conjunction with the Wenzel and
the Cassie equations (i.e. cos θw= r cos θY and cos θc= f cos θY+
f−1, respectively), the CAs for the above geometrical system
(a=b=2×10−6, h=0.75 μm) can be calculated as: θw=133.8°;
and θc=138.6°. It is important to note that the equilibrium CA in
Fig. 4 exactly corresponds to Wenzel's CA.

The curve shown in Fig. 4 is smooth with variations in CA
and has only one minimum i.e., the global FE value. However,
if θar changes slightly on the order of 10−2 degree (e.g., drop
moves from a pillar edge position to another neighboring
position such as from A to B or C in Fig. 2), the local curve can
show a fluctuation in FE, as illustrated in the inset of Fig. 4.
These fluctuations demonstrate multiple local minima points in
FE. As indicated before, each minimum represents a metastable
state, associated with a corresponding apparent CA (θar). On
each side of a local minimum, there are always two FEBs, (one
associated with retreating contact line, ΔAB in Fig. 4 and
another with a advancing contact line ΔAC). Note that given the
Fig. 4. Variation of normalized FE with CA for a noncomposite wetting state
(L=1×10−2 m, a=b=2 μm, h=0.75 μm; intrinsic CA, i.e., θY=120°,
θw=133.8°). The inset shows an enlarge view of a segment of FE curve
illustrating the FEB; positions A, B and C correspond to those in Fig. 2.ΔAB and
ΔAC represent the FEB for retreating and advancing contact line, respectively;
see Section 2.2. The lines are to guide the eyes.
geometry in Fig. 2, a retreating contact line leads to an increase in
CA since drop volume is constant. This should not be confused
with what is done in experiments to measure advancing and
receding CAs, i.e. changing the volume of a sessile drop. In case
of this thermodynamic calculation, here we are simply comparing
the energy levels of two states for a drop with constant volume.
Inevitably, the existence of these multiple metastable states can
thermodynamically lead to the existence of multiple CA values,
i.e., CAH for a wetting system. To obtain CAH or to calculate
maximum (advancing) and minimum (receding) CAs, it is
necessary to analyze these local minima of FE. According to
the J–D model [28], a drop can rest in a metastable state with a
non-zero FEB. In cases where the concerned system receives
energy, i.e., the vibrational energy, from external sources, the drop
can overcome the local FEB andmove to anothermetastable state;
if the vibrational energy is larger than all FEB present in a system,
the drop will assume the equilibrium state (minimum FE).
Therefore, the theoretical (or maximum) CAH, strictly speaking,
is the value that is only observed under ideal conditions i.e.,
without the effect of external sources (any vibrations, air currents,
temperature fluctuations etc.). In this case, the extreme advancing
and recedingCAs can be calculated using the zero FEB equations,
i.e.,

DFbarrier ¼ f ðharÞ ¼ 0 ð19Þ
Here we present a simple example. For a 2-D drop forming a

noncomposite system and having a constant cross sectional area
(A0), based on Eq. (3) the receding CA (θr) should obey:

hr
L2r

sin2hr
−L2r ctghr ¼ hr V

L2r V
sin2hr V

−L2r Vctghr V¼ A0 ð20Þ

where Lr′=Lr +a. From Eq. (20), an equation containing two
variables θr and θr′ can be derived as :

hr V

sin2hr V
−
coshr V
sinhr V

� �
A0sin

2hr
hr−sinhrcoshr

� �1
2

−a

( )2

−A0 ¼ 0 ð21Þ

Based on receding FEB Eq. (5), another equation that also
contains two variables θr and θr′ can be derived as:

hr V
sinhr V

A0sin
2hr

hr−sinhrcoshr

� �1
2

−a
� �

−
hr

sinhr

A0sin
2hr

hr−sinhrcoshr

� �1
2

þa coshY ¼ 0 ð22Þ

Solving for θr and θr′, using Eqs. (21) and (22), the receding
CA can be analytically obtained (θr or θr′, both are approxi-
mately equal). Similarly, advancing CA can be found based on
the Eqs. (5) and (6).

Fig. 5 shows the two curves corresponding to the advancing
and receding FEBs (for a=b=2×10−6, h=0.75 μm); Fig. 5 is
calculated using the geometrical and energy Eqs. (3)–(6). If the
vibrational energy is assumed to have a value of zero, indicating
that there is no FEB to advance or recede, the advancing and
receding CAs as well as CAH can be determined by the inter-
secting values of advancing and receding curves with x-axis,



Fig. 5. Determining receding and advancing CAs as well as CAH from the
typical curves of advancing and receding FEBs for a noncomposite wetting state
(L=1×10−2 m, a=b=2 μm, h=0.75 μm; intrinsic CA, θY=120°). The CAH
shown is the maximum value associated with zero FEB on the advancing and
receding branches of the FE curve (see Fig. 4). The lines are to guide the eyes.
FEB is per unit length of the contact line and it is normalized with respect to the
surface tension of the liquid.

Fig. 6. Comparison of variations of normalized FE with apparent CA between
noncomposite and composite wetting states with different pillar heights; the unit
for h is micrometers; the other geometrical dimensions are: L=1×10−2 m,
a=b=2 μm, intrinsic CA, θY=120°; non and com denote noncomposite and
composite states, respectively. The lines are to guide the eyes [41].

Fig. 7. Variations of normalized FEB with apparent CA for various pillar heights
of the microstructure surfaces for noncomposite and composite wetting systems;
L=1×10−2 m, a=b=2 μm, intrinsic CA, θY=120°; the unit for h is
micrometers; non and com denote noncomposite and composite states; re and
ad denote receding and advancing, respectively. The lines are to guide the
eyes [41].
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respectively (see Fig. 5). It is noted that the equilibrium CA can
also be determined by FEB curves, i.e., the intersection point
between advancing and receding curves in Fig. 5.

3. Results and discussion

The effect of surface texture geometry on superhydrophobic
behavior is discussed first in terms of pillar height, spacing, and
width (Fig. 1). The effect of chemical composition or its
manifestation in terms of intrinsic CA is discussed next. The
effect of drop size and vibrational energy is provided in Sections
3.4 and 3.5, respectively, followed by a discussion on concurrent
effect of varying a number of parameters discussed in Section
3.6. In closing, basic guidelines for design of superhydrophobic
surfaces are provided.

3.1. The effects of pillar height

The effect of pillar height is mainly discussed in our previous
study [41], however, for completeness, it is briefly discussed here.

3.1.1. The effect of pillar height on FE
It is seen from Eq. (17) that for a given pillar width (a) and

spacing (b), the role of Wenzel's roughness ratio in determining
superhydrophobic behavior can be represented by that of pillar
height (h). Fig. 6 illustrates comparison between FE variations
for noncomposite and composite systems for various pillar
heights. One can see that the composite state is more stable than
noncomposite state as pillar height increases. For example, the
FE of composite state is lower than that of noncomposite state
when pillar height is above a critical pillar height, hc (for
condition given in Fig. 6, hc=1 μm), whereas the opposite
situations is true when pillar height is below hc. It is important
to note that the calculated equilibrium CA (with the lowest FE),
θe, for noncomposite states depends strongly on pillar height
and exactly corresponds to that predicted by Wenzel's equa-
tion (e.g., with h=1.0 μm: θe=θw=138.6° or with h=0.75 μm:
θe=θw=133.8°). The θe of composite state exactly corresponds
to that predicted by Cassie's equation and does not depends on
pillar height (e.g., θe = θc = 138.6° for both h=1.0 and
h=0.75 μm). The necessity of a certain h value to allow
transition from noncomposite to composite states and subse-
quent insensitivity to h value beyond hc to maintain the
composite state is also observed experimentally [15,18].

3.1.2. The effect of pillar height on FEB and the transition
between noncomposite and composite states

Fig. 7 shows the effect of pillar height on FEBs for non-
composite and composite wetting systems. One can see that FEB
and the resultant CAH of composite system does not depend on
pillar height. However, for noncomposite system, the FEB for an
advancing case and the resultant CAH increaseswith pillar height,



Fig. 9. Variations of normalized FEB with apparent CA for various pillar widths
of the microtextured surfaces for noncomposite and composite wetting states;
L=1×10−2 m, h=1 μm, b=2 μm; intrinsic CA, θY=120°; the unit for a is
micrometers. non and com denote noncomposite and composite states; re and
ad denote receding and advancing, respectively. The lines are to guide the eyes.
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whereas the FEB for the receding case remains the same/constant.
The present results reveal that the essential effect of pillar height is
to promote the transition between noncomposite and composite
states; pillar height does not affect CAH, as long as the composite
state is maintained for a given pillar size and spacing; this is
consistent with the experimental findings [43]. If pillar height is
too small, the systemwill prefer noncomposite state, and its CAH
strongly depends on pillar height (the limiting case of h=0 will
result in zero CAH as expected for an ideally smooth surface).
This is also supported by recent experimental observations. For
instance, in [43], it was shown that CAHdepended strongly on the
height of surface texture (made of nanotubes)when noncomposite
state was observed.

A critical height, therefore, can be found where both FE and
FEB of noncomposite and composite states would be equal
(e.g., for the system here, hc=1.0 μm). As a result, a criterion
for transition from noncomposite to composite can be found as:

hNhc ð23Þ

Based on the above criterion, the variations of CAH with
respect to pillar height for the studied geometrical microstructure
(a=b=2 μm) can be summarized as illustrated in Fig. 8. For the
design of practical superhydrophobic surfaces, a suggestion from
this criterion is that a suitable pillar height, i.e., higher than the
critical height but not too much higher, is necessary to guarantee
such a transition and to prevent surface microtextures from
breaking or damage (an excessively tall texture can be susceptible
to breakage). Here it should be pointed that the significant role of
critical pillar height is also indicated by other studies, e.g., the
recent experimental observation by Fürstner et al. [18] and model
studies by Carbone and Mangialardi [44].

3.2. The effects of pillar width and spacing (or solid fraction)

3.2.1. The effect of pillar width on FEB and FE
To investigate the role of pillar width, we fix all other param-

eters and only vary the pillar width (pillars have a square cross
section). Fig. 9 illustrates the normalized FEBs for noncomposite
Fig. 8. Variations of CAH with respect to pillar height for a wetting system with
L=1×10−2 m, a=b=2 μm; intrinsic CA, θY=120°. Solid lines represent plausible
variations of CAH, whereas dashed lines represent CAH variations if wetting
system with high FE values were permissible. non and com denote noncomposite
and composite states, respectively. The lines are to guide the eyes [41].
state with different pillar widths. One can see that receding FEB
increases with increasing pillar width, whereas advancing FEB
does not depend on pillar width. The intersection of receding and
advancing FEB curves corresponds to the Wenzel's CAs. It is
important to note that for the noncomposite system, all of the
receding curves cross the x-axis at the CA of 120°. This implies
that the receding CA for this system does not depend on pillar
width. This happens because the vibrational energy is assumed as
zero in the present study. However, if the vibrational energy is not
zero, the receding CA depends strongly on pillar width (see
below).

Fig. 9 also illustrate the FEBs of composite systems with
different pillar widths. One can see that both the receding and
advancing FEB curves of noncomposite and composite states
with different pillar widths overlap. Calculations of FE for
noncomposite and composite states confirm the same results,
i.e., the FE curves of both noncomposite and composite states
with different pillar widths overlap, as illustrated in Fig. 10.
Fig. 10. Comparison of variations of normalized FE with apparent CA between
noncomposite and composite wetting states with different pillar widths; the unit
for a is micrometers; the other geometrical dimensions are: L=1×10−2 m,
h=1, b=2 μm; intrinsic CA, θY=120°. non and com denote noncomposite and
composite states, respectively. The lines are to guide the eyes.



Fig. 12. Variations of normalized FEB with apparent CA for various pillar
widths and spacing (solid fractions: f ) for noncomposite states; L=1×10−2 m,
h=1 μm; intrinsic CA, θY=120°; the unit for a and b is micrometers; re and ad
denote receding and advancing, respectively. The lines are to guide the eyes.
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This implies that for the transition between noncomposite and
composite states in the current system the combination of pillar
spacing and height (b=2 and h=1 μm) is more important than
the change in pillar width (see Fig. 11). Furthermore, the same
FE and FEB profiles for noncomposite and composite states
means that the equilibrium CA for noncomposite and composite
systems will be the same, i.e., Wenzel's CA is equal to Cassie's
CA. Using Eqs. (17) and (18) as well as Wenzel's and Cassie's
equations, it is confirmed that for the given system (b=2 and
h=1 μm), Wenzel's CA is always equal to Cassie's CA no
matter how pillar width changes.

3.2.2. The effect of solid fraction on FEB and FE
It should be pointed out that relative values rather than

absolute values for surface texture geometry play a significant
role in wetting behavior. As seen from Eqs. (17) and (18), pillar
width affects not only solid fraction but also roughness, whereas
pillar height only affects roughness. Thus, the effect of solid
fraction cannot be explicitly demonstrated using absolute values
of pillar width. To better understand the role of solid fraction
( f ), both pillar width and spacing are changed at the same time
to obtain different f values in the following calculations. Note
that the sum of pillar width (a) and spacing (b), is kept constant,
and pillar height (h) is fixed to keep roughness constant.

Fig. 12 illustrates the FEBs for noncomposite systems with
different f values of 0.375, 0.5 and 0.625. One can see that all
the receding FEB curves cross at the CA of 120°; both the
receding and advancing FEB curves shift upward with
increasing f value (increasing pillar width or decreasing pillar
spacing) when apparent CA is greater than 120°. One can also
see that the intersecting points (i.e., equilibrium CAs) between
the receding and advancing FEB curves have the same CA
value, indicating independence of the equilibrium CA from
solid fraction; this value exactly corresponds to the Wenzel's
CA. This indicates that the texture geometry does not affect the
equilibrium CA as long as the roughness value remains
constant. It is also noted that the receding CAs do not depend
on solid fraction, whereas the advancing CAs increase with
increasing solid fraction. As a result, CAH also increases with
increasing solid fraction. Here note that the above theoretical
Fig. 11. Variation of CAH and transition from noncomposite (non) to composite
(com) states with respect to pillar width (L=1×10−2 m, b=2 μm; intrinsic CA,
θY=120°); the unit for a is micrometers.
results are consistent with the latest experimental observations.
For example, Callies et al. [17] investigated the effects of solid
fraction on various CAs (receding, advancing, and equilibrium
as well as CAH) for both noncomposite and composite states in
detail. They showed that both the receding and the equilibrium
CAs for noncomposite states remained almost unchanged with
increasing solid fraction, whereas the advancing CA increased
notably.

Fig. 13 illustrates the FEBs for a composite system with
different solid fractions. One can see that the receding FEB
increases with increasing solid fractions (indeed, the FEB
curves for composite states are the same as those for
noncomposite states). However, the advancing FEB decreases
with increasing solid fractions and all the FEB curves cross the
x-axis at about 173°. The equilibrium CA values, where each
pair of FEB curves from receding and advancing intersect,
Fig. 13. Variations of normalized FEB with apparent CA for various pillar
widths and spacing (solid fractions: f ) for composite states; L=1×10−2 m,
h=1 μm; intrinsic CA, θY=120°; the unit for a and b is micrometers; re and ad
denote receding and advancing, respectively. The lines are to guide the eyes.



Fig. 15. Variation of CAH with respect to pillar widths and spacing (solid
fractions) (L=1×10−2 m; intrinsic CA, θY=120°); the unit for a and b is
micrometers. non and com denote noncomposite and composite states,
respectively. The lines are to guide the eyes.
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decrease with increasing solid fractions. These CA values also
exactly correspond to the Cassie's CAs. It is worth noting that
for zero vibrational energy, neither of the receding and ad-
vancing CAs depends on solid fraction. Accordingly, CAH for
composite states always remains unchanged for various solid
fractions. Note here that in the experimental study of Callies et
al. [17], for composite states, the advancing CA remained
almost unchanged with increasing solid fraction, whereas the
equilibrium CA decreased; this is also consistent with our above
theoretical predictions. The decrease of receding CA for com-
posite states are somewhat different from ours results. But by
considering the effect of a small vibrational energy (see below)
in our calculations, the receding CAwill decrease, whereas the
advancing CA will remain almost unchanged.

Fig. 14 illustrates the variations of FE with respect to CA for
noncomposite and composite states with different solid
fractions. One can see that all the FE curves for noncomposite
states with different solid fractions overlap, i.e., the FE for
noncomposite states does not depend on solid fraction,
indicating an unchanged Wenzel's CA (the minimum FE
locus). The FE curves for composite states can be higher or
lower than those for noncomposite states, depending on the
solid fraction; for different FE curves, locations of the minimum
FE exactly correspond to the Cassie's CAs. It is noted that the
FE increases with decreasing the solid fraction, indicating that a
system with relatively thin pillars possesses higher FE and
hence is not energetically preferable for composite states. This
seems to be in disagreement with some recent understanding.
For example, Patankar [7] theoretically demonstrated that to
achieve superhydrophobicity, it is needed to make the ratio of
pillar width to pillar height (a/h) very small, e.g., tall and slender
pillars with appropriate spacing. However, our results show that
a higher FE is observed for the lower solid fraction as a result of
an increase in pillar spacing (note that r is kept constant). To
understand this key point, it is necessary to focus on trough
width, where the penetration of liquid occurs, rather than pillar
height. If pillar height remains unchanged, the larger the trough
Fig. 14. Comparison of variations of normalized FE with apparent CA between
noncomposite (non) and composite (com) wetting states with different pillar
widths and spacing (solid fractions: f ); the unit for a and b is micrometers; the
other geometrical dimension are: L=1×10−2 m, h=1 μm; intrinsic CA,
θY=120°. The lines are to guide the eyes.
width (pillar spacing), the smaller the capillary force, and the
easier the drop penetrates into troughs, i.e., increasing the
trough width or decreasing the trough (pillar) height plays a
similar role in determining composite (superhydrophobic) state.
This simply indicates that composite state is mainly observed as
a result of manipulating pillar spacing and not necessarily pillar
dimension for the given geometry.

Fig. 15 illustrates the variations of CAH for noncomposite
and composite states with different solid fractions. The CAH for
composites states remains unchanged no matter how the
geometrical parameters of the system change, whereas the
CAH for noncomposite states increases sharply with respect to
pillar height with small pillar spacing (or the large solid
fraction).

3.2.3. The effect of pillar spacing and solid fraction on the
wetting transition

Recalling the role of the pillar width in FE and FEB as well
as CAH without changes in other geometrical parameters (see
Figs. 9–11); we find that pillar width has no effect on the
transition. The transition is only related to pillar height and
spacing for a given texture. However, such independence of the
transition from pillar width does not mean the independence of
superhydrophobicity from pillar width. In fact, pillar width
plays an important role in practical cases with non-zero
vibrational energy. As shown in Figs. 13 and 14, small pillar
width (thin pillars) can lead to a high equilibrium (stable) CA.
Thus, when there is an external source of energy, i.e., a non-zero
vibrational energy, superhydrophobic behavior (high stable CA
and low CAH) for practical wetting systems can be easily
realized (see below). Furthermore, we find that the transition
depends strongly on pillar height relative to pillar spacing (i.e.,
h/b) rather than pillar width (i.e., h/a) as proposed by Patankar
[7]. Since the FE curves of noncomposite and composites
states for the system with h=1 and b=2 μm overlap, we can
extend the previous critical pillar height to relative critical
pillar height (hc

r) and therefore propose a more general criterion
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for the transition between noncomposite and composite wet-
ting states as:

h=bzhrc ð24Þ
Examining the data in Fig. 16, it is found that the texture

dimensions (b=1.5 μm, and h=0.75μm) exactly meet the present
criterion: hc

r =0.5 for the system studied. In addition, the present
criterion also indicates that solid fraction does not impact the
transition as long as the relative pillar height remains unchanged.

Here it should be pointed out that regarding the criterion for
the transition, i.e. Eq. (24), experimental investigators have
found the critical role of small pillar spacing. For example,
Fürstner et al. [18] and Nakae et al. [16] believed that narrow
pitch (i.e., small spacing) or a roughness pitch smaller than a
critical value can result in the transition, whereas Callies et al.
[17] suggest that high densities (i.e., small spacing) cannot lead
to the Wenzel state. These results support our suggestion that a
criterion based on h/b rather than the h/a proposed in [7] is
more appropriate for transition. Furthermore, it is revealed that
for a roughness pitch less than a critical value, the CA increases
with the pitch, whereas for a roughness pitch larger than the
critical value, the (equilibrium) CA decreases with the pitch
because the liquid can “touch” the bottom of the through [16].
Based on the present theoretical analysis, this is easily under-
stood that the key role pillar spacing is playing in the transition
when pillar height is kept constant. For a given pillar height, an
adequately small spacing can result in a composite state; for the
resultant composite state, the larger the spacing, the larger the
CA, i.e. right after transition the conditions are such that the
largest CA will be observed for the current surface texture
design. In contrast, a large spacing can result in a noncomposite
state; for the resultant noncomposite state, the larger the
spacing, the smaller the CA. This indicates the consistency of
our theoretical analysis with the above experimental observa-
tions. In addition, it is interesting to note that in Fürstner et al.
experimental observation [18], they changed only one param-
Fig. 16. Variations of normalized FE with apparent CA of noncomposite and
composite wetting states with different pillar heights (h); L=1×10−2 m,
a=b=2 μm; intrinsic CA, θY=80°; the unit for h is micrometers. non and com
denote noncomposite and composite states, respectively. The lines are to guide
the eyes.
eter (e.g., spacing) while keeping other two parameters (e.g.,
height and width) unchanged in order to understand the role of
each geometrical parameter of a surface microtextured with
spikes. They used sliding angles that with caution, this data may
be interpreted in terms of CAH to allow us to make a com-
parison between their result and our theoretical predictions.
They demonstrated that the sliding angle for noncomposite
states with decreasing spacing (or increasing pillar width)
increased except for certain values, whereas sliding angles for
composite states remained almost unchanged. This indicates a
basic agreement with the above theoretical results (Fig. 15).

Based on the discussion in this section, the present study
gives a clear thermodynamic explanation on how thin and tall
microtextures affect the superhydrophobic performance. This
also indicates that a re-consideration of the previous suggestion
for the transition, as demonstrated above, is required. Espe-
cially, the revised criterion is extremely important for the design
of superhydrophobic surfaces. For example, regarding the
practical concern of strength or durability of surface textures, a
suggested strategy is to use small pillar spacing rather than
small pillar width in order to gain composite (superhydropho-
bic) state.

3.3. The effect of intrinsic CA

3.3.1. The effect of intrinsic CA on FE
The discussions above were for application of hydrophobic

materials (i.e., intrinsic CA larger than 90°). In this section, we
focus on how some of the above findings may be very different
should the intrinsic CA be smaller than 90° (note that the effect
of intrinsic CA is based on a specific surface texture presented
here).

Fig. 16 shows variations of normalized FE with respect to
apparent CA for the system with an intrinsic CA of 80° with
different pillar heights (a=b=2 μm). One can see that compared
with the system with an intrinsic CA larger than 90° (Fig. 6), the
FE of composite states for the present system is always higher
than that of noncomposite states for any pillar height. This
means that noncomposite states for this system are more stable
than composite states, especially when the apparent CA is low
and the pillar height is large. Moreover, when pillar height is
small (e.g., h=1.25 μm), the calculated equilibrium CA (with
lowest FE), θe, of noncomposite state exactly corresponds to
that predicted by Wenzel's equation, which is smaller than the
intrinsic CA and decreases with an increase in pillar height.
However, when pillar height is large enough (e.g., h=8.25 μm),
there is no minimum FE for a noncomposite state, which means
sufficiently high pillar height can lead to the surface wicking (as
discussed in detail in the J–D model [28]). The θe of composite
state also exactly corresponds to the predicted value by Cassie's
equation, which is larger than the intrinsic CA and does not
depends on pillar height. For an intrinsic CA smaller than 90°
(e.g., 30° or 60°), the same trend of FE variations with respect to
CA is found.

Fig. 17 shows variations of normalized FE with respect to
apparent CA for a system for the specific case of an intrinsic CA
of 90° for different pillar heights. One can see that FE curves of



Fig. 17. Variations of normalized FE with apparent CA of noncomposite (non)
and composite (com) wetting states with different pillar heights (h);
L=1×10−2 m, a=b=2 μm; intrinsic CA, θY=90°; the unit for h is micrometers.
The lines are to guide the eyes.
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both noncomposite and composite states overlap. This implies
that for this special intrinsic CA, FE variations do not depend on
pillar height, i.e. the FE of a composite and a noncomposite
system will be equal and these two states can coexist (also see
below). From Fig. 18 one can see that the FE curve for CA of
90° is the limiting case between that of composite and non-
composite states i.e., when either of these states would be
energetically favorable. Since the two FE curves of both non-
composite and composite states for the intrinsic CA of 90° are
the closest, from a thermodynamic point of view, such system
can exhibit the largest possibility for the transition from
noncomposite to composite states or vice versa. Compared
with intrinsic CA, pillar height can have an opposite effect on
the FE for the system with an intrinsic CA smaller than 90°, i.e.,
FE of noncomposite states dramatically decreases with pillar
Fig. 18. Comparison of variations of normalized FE with apparent CA for
systems with various intrinsic CAs and pillar heights (h); L=1×10−2 m,
a=b=2 μm; the unit for h is micrometers. non and com denote noncomposite
and composite states, respectively. The lines are to guide the eyes.
height, whereas FE of composite states dramatically rises with
pillar height. It is also noted that FE curves of noncomposite
states are farther spaced than those for composite states, es-
pecially for the systems with a small intrinsic CA and a large
pillar height. This implies that the FE of noncomposite states is
more sensitive to intrinsic CA and pillar height than that of
composite states. Therefore, once composite state is achieved
(mainly seen in superhydrophobic surfaces) there is no need to
have excessively tall pillars that would compromise the me-
chanical durability of the surface texture.

3.3.2. The effect of intrinsic CA on FEB
Fig. 19 compares the effect of different intrinsic CAs (80°,

90°, and 110°) on normalized FEB. For the system with an
intrinsic CA smaller than 90°, advancing FEB or CA remains
unchanged with respect to the pillar height; it should be noted
that in the previous section it is shown that for the system with
an intrinsic CA larger than 90°, receding FEB or CA remains
unchanged. Furthermore, the CA at the intersection of the two
curves corresponds to Wenzel's CA, which is smaller than the
intrinsic CA (e.g. in Fig. 19, the advancing and receding FEB
curves intersect at an apparent CA value less than θY=80°). For
systems with θY less than 90°, the negative FEB values
represent a “barrier” for moving from one metastable local to
the next, whereas for systems with θY larger than 90° the
positive values represent a “barrier”. This stems from our sign
convention in our calculations (note that if θY is less than 90° a
positive value of FEB means no “barrier”, whereas for cases
with θY larger than 90° a negative value of FEB means no
“barrier” to movement of contact line).

For the system with an intrinsic CA of 90°, Wenzel's CA is
also 90°. It is interesting to note that the two curves also
Fig. 19. Variations of normalized FEB with apparent CA for noncomposite
wetting systems with intrinsic CAs, θY=110°,θY=90°, and θY=80°;
L=1×10−2 m, h=1, a=b=2 μm; re and ad denote receding and advancing,
respectively. Note that for systems with θY less than 90°, the negative FEB
values represent a “barrier” for moving from one metastable local to the next,
whereas for systems with θY larger than 90° the positive values represent a
“barrier” (note that if θY is less than 90° a positive value of FEB means no
“barrier”, whereas for cases with θY larger than 90° a negative value of FEB
means no “barrier” to movement of contact line); this stems from our sign
convention in our calculations. The lines are to guide the eyes.



Fig. 21. Variations of normalized FEB with apparent CA for various drop sizes
(L) in noncomposite wetting systems; h=1, a=b=2 μ m; intrinsic CA,
θY=120°; the unit for L is micrometers. The lines are to guide the eyes.
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intersect at apparent CA of 90° where both advancing and
receding FEBs are zero. This means that CAH for this system is
zero. In addition, for the system with an intrinsic CA larger than
90° (e.g., 110°), when pillar height exceeds a certain value, for
example, h=4 μm advancing and receding curves do not
intersect any longer; advancing curve does not intersect at zero
FEB either. In terms of the Wenzel's equation, this means that
roughness factor is so high that cosθwN1. In this case, the
advancing CA for the system could be assumed as 180°, and
receding CA can be found by intersection of receding FEB
curve with the x-axis.

3.3.3. The effect of intrinsic CA on CAH and wetting transition
Fig. 20 shows variations of CAH for various noncomposite

and composite systems with intrinsic CA and pillar height.
Intrinsic CA is an important factor in determining the magnitude
of the CAH. For composite states (i.e., horizontal lines in
Fig. 20) CAH decreases with the increase in intrinsic CA. CAH
for such systems is insensitive to the surface texture geometry,
e.g. pillar height as shown in Fig. 20. Comparatively, variations
of CAH with intrinsic CA for noncomposite systems are
complex. This complexity partly arises from the fact that CAH
is not constant for noncomposite systems as it is for composite
systems; and it depends on pillar height or generally surface
texture geometry. The curves can be divided into two
categories: one for intrinsic CA larger than 90°; another for
intrinsic CA smaller than 90°. For noncomposite systems with
the intrinsic CA larger than 90°, the larger the intrinsic CA, the
faster the CAH increases due to an increase in pillar height.
However, when the intrinsic CA is smaller than 90°, e.g., 80°,
CAH increases slowly with an increase in the pillar height.
Therefore, if there is a transition from noncomposite to
composite state, the CAH would be smaller for cases were
intrinsic CA is larger than 90° compared to the case where
intrinsic CA is smaller than 90° (compare the curves for CA of
80° and 120° in Fig. 20). It should however be noted that for
cases where intrinsic CA is less than 90° since the FE of
composite system is higher than that of noncomposite states
(see Fig. 18), the noncomposite state is preferable and there is
no transition possible for the microtexture geometry defined.
Fig. 20. Thermodynamically plausible variations of CAH versus the pillar height
for systems with various intrinsic CAs; a=b=2 μm.
Based on the above discussion, practically plausible variations
of CAH versus pillar height of various systems with various
intrinsic CAs can be represented by the solid curves in Fig. 20,
whereas the dashed curves may be impossible.

The above results indicate that intrinsic CA also affects the
possibility of the transition between noncomposite and composite
states. There is some experimental data that suggests, to the con-
trary of our findings, that composite state is plausible for a system
with an intrinsic CA smaller than 90° [45,46]. In these studies,
hydrophilic surfaces (intrinsic CA of 70° [45] or 77° [46]) were
employed, but a transition from noncomposite to composite states
was shown as the depth of surface topography pores (a similar
parameter to the pillar height in the present work) was very large or
reached a critical value. This, however, maybe explained by consi-
deration of line energy that is not included in the current study [42].

3.4. The effect of drop size

Fig. 21 illustrates variations of normalized FEB with
apparent CA for various drop sizes (L) for a noncomposite
system (a=b=2, h=1 μm, θY=120°). One can see that all the
FEB curves overlap, if L is larger than 50 μm, indicating
independence of CA variation for large drops (compare to size
of surface features). For the texture design here, similar trend
can be found for a composite state. However, when L is close to
pillar size, the drop size does affect the FEB. Fig. 22 shows
variations of advancing and receding CAs with respect to drop
size for the noncomposite system. One can see that both
receding and advancing CAs remain unchanged when drop size
is about two orders of magnitude larger than pillar size; both
receding and advancing CAs change when drop size approaches
pillar size; the decreases in receding and advancing CAs are
about 6° and 11°, respectively. To completely understand the
effect of drop size, calculations were done for other wetting
systems. For the noncomposite system with various pillar
heights or intrinsic CAs, a similar trend for the dependence of
CAs on drop size was found. The above results indicate that



Fig. 22. Variations of advancing and receding CAs with respect to drop size (L)
for the microstructure surfaces in noncomposite wetting systems; h=1,
a=b=2 μm; intrinsic CA, θY=120°. The lines are to guide the eyes.

Fig. 24. Variations of CAH for composite states with respect to the normalized
vibrational energy; the unit for a and b is micrometers. Intrinsic CA, θY=120°; f
is the solid fraction. The lines are to guide the eyes.
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superhydrophobic behavior can be affected for small drops that
are comparable in size with surface microtextures. This is
particularly important for micro/nano-scale drops in micro-
fluidic devices.

3.5. Vibrational energy effect

The above calculations and discussions are based on the
assumption that in an ideal case, the vibrational energy is equal
to zero. However, the vibrational energy as defined earlier (and
according to the J–D model [28]) may not necessarily be zero.
This is also shown experimentally, e.g. [34]. Regardless of the
physical nature of the vibrational energy, in the present study it
is important to investigate how the vibrational energy affects
receding and advancing CAs as well as CAH. As illustrated in
Fig. 5, plausible vibrational energy for the given system may
vary from 0 (ideal case) to 0.36 μm (the corresponding value at
intersecting point of advancing and receding FEB curves, i.e.,
equilibrium locus); note that for consistency, vibrational energy
is also normalized, and its unit is also meter. Thus, CAH varies
from a maximum (31°) to a minimum (0°). Fig. 23 illustrates
Fig. 23. Variations of CAH for noncomposite states with respect to the
normalized vibrational energy; the unit for a and b is micrometers. Intrinsic CA,
θY=120°; f is solid fraction. The lines are to guide the eyes.
variations of CAH for noncomposite states with various
vibrational energy levels for a system with θYN90°. One can
see that in general, CAH decreases with increasing vibrational
energy. In general terms, this is consistent with the experimental
results in [34] and [36] for heterogeneous and/or rough surfaces.
One can also see that for a given vibrational energy level, CAH
increases with an increase in solid fraction ( f ); note that the
roughness ratio remains unchanged in the present case.
However, in a composite state, surface exhibits a somewhat
different trend for CAH, as illustrated in Fig. 24. One can see
that CAH decreases with increasing vibrational energy but
hardly depends on the solid fraction.

In case of the change in surface chemistry (intrinsic CA), the
effect of the vibrational energy on CAH remains the same, i.e.
with increased vibrational energy, the CAH will decrease and
eventually reach zero (see Fig. 25). It should be noted that in
Fig. 25, the absolute value of FEB is plotted, since a negative
value of FEB indicates a “barrier” for systems with θY less than
90 in contrast to cases with θY larger than 90 that a positive
value of FEB represents a “barrier” (this is due to the sign
convention used in our calculations).
Fig. 25. Variations of CAH of noncomposite states for different intrinsic CAs
with respect to the absolute value of the normalized vibrational energy (see
Section 3.5).



Fig. 26. CAH as a function of pillar width, height, and spacing for a system with
an intrinsic CA of 120°. Fig. 28. Comparison of CAH as a function of solid fraction ( f ) for various

intrinsic CAs; non and com denote noncomposite and composite states,
respectively.
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From the above results, it becomes clear that the effect of
vibrational energy on the superhydrophobic behavior can
depend on both the surface texture dimension and chemistry.
However, to fully understand the physical nature of above
findings, experimental studies similar to ones in [34–36] are
needed, but specific for textured surfaces (i.e. fabricating
various model textured surfaces and subjecting them to
mechanical vibrations to verify the relations between surface
texture geometry and CAH as predicted here).

3.6. Concurrent effect of various parameters

The basic approach employed in the present study was to
investigate one at a time the primary parameters in determining
superhydrophobic behavior. As a summary, here we discuss the
concurrent effect of various parameters on CAH to gain a
comprehensive understanding, with an emphasis on the surface
geometry. Fig. 26 illustrates variations in CAH for a system
with an intrinsic CA of 120°. As shown, for the noncomposite
state, pillar width and spacing hardly affect CAH when pillar
height is low, but as pillar height increases, its role becomes
Fig. 27. The transition in CAH as a function of pillar width and spacing for a
system with an intrinsic CA of 60°and pillar height of 1 μm.
prominent. As a result, the larger the pillar height, a larger pillar
spacing is needed for the transition from a noncomposite to a
composite state. However, for an intrinsic CA of 60°, there is no
such transition no matter how pillar width and spacing is
changed, as shown in Fig. 27. This further stresses the crucial
role of intrinsic CA in determining the transition, as demon-
strated in the above calculations based on a constant summation
for pillar width and spacing (i.e. a+b=const.). To further
demonstrate the effects of solid fraction and roughness, Figs. 28
and 29 illustrate a comparison of CAH for various intrinsic
CAs. One can see that the CAH for composite states is higher
than that for noncomposite states until the intrinsic CA reaches
120° no matter how solid fraction or roughness ratio is changed.
This implies that for the presented surface microtexture,
composite or superhydrophobic states are almost unstable or
energetically unfavorable since the intrinsic CAs of materials is
always smaller than 120°. Thus, the present study emphasizes
an important conclusion that in most cases, the transition from a
noncomposite to composite state is usually difficult unless
intrinsic CA is large enough. To demonstrate the concurrent
Fig. 29. Comparison of CAH as a function of roughness ratio (r) for various
intrinsic CAs; non and com denote noncomposite and composite states,
respectively.



Fig. 30. The transition in CAH as a function of solid fraction and roughness ratio
between noncomposite and composite states. The intrinsic contact angle is 120°.
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effects of all the geometrical parameters on transition between
noncomposite and composite states, a plot of CAH as a function
of solid fraction and roughness ratio can be examined (Fig. 30).

3.7. The basic guidelines for design of superhydrophobic
surfaces

The present study reveals that even if a wetting system with
zero-vibrational energy is in composite state, receding and
advancing CAs do not depend on surface texture dimension. As
a result, the CAH for this system cannot be lowered by changing
surface texture dimension alone. However, receding and
advancing CAs as well as CAH may change dramatically
with the vibrational energy. Thus, based on the consideration of
the vibrational energy we propose that for a practical super-
hydrophobic surface it is necessary to achieve a large
equilibrium CA (instead of advancing or maximum CA) and
small CAH, so that drop adhesion can be minimized for self-
cleaning or water-repellent properties. Another key point is that
even for a composite state, the minimum CAH for the system
studied is about 60°due to practical available maximum intrinsic
CA of 120°. However, CAH of 60° is a theoretical upper bound
for the studied texture and may be minimized even to reach zero
by imposing suitable vibrational energy. This also indicates the
uncertainty of superhydrophobicity because of its dependence
on external sources. Such uncertainty can, however, be
exploited to have surfaces with tunable wettability.

The general principles for the design of superhydrophobic
surfaces based on the present study are as follows:

(1) To meet the proposed geometrical criterion, adequately
large roughness (high pillars), if trough geometry (i.e.,
pillar spacing and height) remains unchanged, is needed
to reach a composite state. Large intrinsic CA is needed to
guarantee a stable composite state.

(2) Small solid fraction (thin pillars) is needed to achieve a
large equilibrium CA.

(3) Large intrinsic CA is needed to minimize CAH.
(4) Small pillar spacing is needed for composite states,
whereas large pillar spacing is needed for large stable CA;
to achieve large CA and small CAH simultaneously, a
compromise between pillar spacing and other geometrical
parameters such as pillar height and width spacing is
therefore necessary.

(5) Compromise in designing for surface texture and
chemistry may be needed to meet other demands of
surface properties such as mechanical durability and/or
optical transparency. For example, thin pillars are always
beneficial to superhydrophobicity, in particular to large
stable CA. However, if one is concerned with the strength
of microtextures, using a large trough width, instead of
extremely small pillar width is a better choice; dual scale
texture can be helpful to meet some of the competing
requirements.

Acknowledgements

The financial assistance of Natural Science and Engendering
Research Council of Canada, Alberta Science and Research
Authority, Canada Research Chair Program, and Petro-Canada
Young Innovator Award are acknowledged.

References

[1] Barthlott W, Neinhuis C. Planta 1997;202:1.
[2] Neinhuis C, Barthlott W. Ann Bot 1997;79:667.
[3] Tavana H, Amirfazli A, Neumann AW. Langmuir 2006;22:5556.
[4] Öner D, McCarthy TJ. Langmuir 2000;16:7777.
[5] Bico J, Marzolin C, Quéré D. Europhys Lett 1999;47:220.
[6] Bico J, Tordeux C, Quéré D. Europhys Lett 2001;55:214.
[7] Patankar N. Langmuir 2003;19:1249.
[8] He B, Patankar N, Lee J. Langmuir 2003;19:4999.
[9] Miwa M, Nacajima A, Fujishima A, Hashimoto K, Watanabe T. Langmuir

2000;16:5754.
[10] Lee J, He B, Patankar NA. J Micromechanics Microengineering 2005;15:

591.
[11] Wu X, Zheng L, Wu D. Langmuir 2005;21:2665.
[12] Lin F, Li S, Li Y, Li L. Adv Mater 2002;14:1857.
[13] Della Volpe C, Siboni S, Morra M. Langmuir 2002;18:1441.
[14] Nacajima A, Hashimoto K, Watanabe T. Monhefte Chem 2001;132:31.
[15] Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Langmuir 2002;18:

5818.
[16] Nakae H, Yoshida M, Yokota M. J Mater Sci 2005;40:2287.
[17] CalliesM,ChenY,Marty F, PépinA,QuéréD.MicroelectronEng2005;78–79:

100.
[18] Fürstner R, Barthlott W, Neinhuis C, Walzel P. Langmuir 2005;21:956.
[19] Berim GO, Ruckenstein E. Langmuir 2005;21:7743.
[20] Chen Y, He B, Lee J, Patankar NA. J Colloid Interface Sci 2005;281:458.
[21] Wenzel RN. In Eng Chem 1936;28:988.
[22] Cassie ABD, Baxter S. Trans Faraday Soc 1944;40:546.
[23] Onda T, Shibuichi N, Satoh N, Tsuji K. Langmuir 1996;12:2125.
[24] Extrand CW. Langmuir 2002;18:7991.
[25] Extrand CW. Langmuir 2004;20:5013.
[26] Marmur A. Langmuir 2004;20:3517.
[27] Roura P, Fort J. Langmuir 2002;18:566.
[28] Johnson Jr RE, Dettre RH. Adv Chem Ser 1964;43:112.
[29] Lafuma A, Quéré D. Nat Mater 2003;2:457.
[30] Amirfazli A, Hanig S, Muller A, Neumann AW. Langmuir 2000;16:2024.
[31] Gaydos J, Neumann AW. J Colloid Interface Sci 1987;120:76.
[32] Li D, Neumann AW. Colloids Surf 1990;43:195.
[33] Marmur A. J Colloid Interface Sci 1994;168:40.



68 W. Li, A. Amirfazli / Advances in Colloid and Interface Science 132 (2007) 51–68
[34] Decker EL, Garoff S. Langmuir 1996;12:2100.
[35] Meiron TS, Marmur A, Saguy IS. J Colloid Interface Sci 2004;274:637.
[36] Della Volpe C, Maniglio D, Morra M, Siboni S. Colloids Surf A

Physicochem Eng Asp 2002;206:47.
[37] Noblin X, Buguin A, Brochard-Wyart F. Eur Phys J E 2004;14:395–404.
[38] Russell TP. Science 2002;297:964.
[39] Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D. J Am Chem Soc

2004;126: 62.
[40] Della Volpe C, Siboni S. J Colloid Interface Sci 1997;195:121.
[41] Li W, Amirfazli A. J Colloid Interface Sci 2005;292:195.
[42] Amirfazli A, Neumann AW. Adv Colloid Interface Sci 2004;110:121.
[43] Lou KKS, Bico J, Teo KBK. Nano Lett 2003;3:1701.
[44] Carbone G, Mangialardi L. Eur Phys J E 2005;16:67.
[45] Abdelsalam ME, Bartlett PN, Kelf T, Baumberg J. Langmuir 2005;21:

1753.
[46] Martires E, Seunarire K, Morgan H, Gadegaard N, Wilkirson CDW.

Langmuir 2006;22:11230.


	Microtextured superhydrophobic surfaces: A thermodynamic analysis
	Introduction
	Surface geometry
	Criterion for the transition from noncomposite to composite wetting states
	Contact angle hysteresis (CAH)
	The effect of drop size
	The effect of external environment
	Thermodynamic analysis of superhydrophobic surfaces

	Thermodynamic analysis
	The FE analysis for the transition between noncomposite and composite wetting states
	Calculations of equilibrium CA, receding and advancing CAs, and CAH

	Results and discussion
	The effects of pillar height
	The effect of pillar height on FE
	The effect of pillar height on FEB and the transition between noncomposite and composite states

	The effects of pillar width and spacing (or solid fraction)
	The effect of pillar width on FEB and FE
	The effect of solid fraction on FEB and FE
	The effect of pillar spacing and solid fraction on the wetting transition

	The effect of intrinsic CA
	The effect of intrinsic CA on FE
	The effect of intrinsic CA on FEB
	The effect of intrinsic CA on CAH and wetting transition

	The effect of drop size
	Vibrational energy effect
	Concurrent effect of various parameters
	The basic guidelines for design of superhydrophobic surfaces

	Acknowledgements
	References


