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We study the asymptotic behavior of the nonnegative solutions of a periodic reaction diffusion
system. By obtaining a priori upper bound of the nonnegative periodic solutions of the
corresponding periodic diffusion system, we establish the existence of the maximum periodic
solution and the asymptotic boundedness of the nonnegative solutions of the initial boundary
value problem.

1. Introduction

In this paper, we consider the following periodic reaction diffusion system:

∂u

∂t
= Δum1 + b1uα1vβ1 , (x, t) ∈ Ω × R

+, (1.1)

∂v

∂t
= Δum2 + b2uα2vβ2 , (x, t) ∈ Ω × R

+, (1.2)

with initial boundary conditions

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × R
+, (1.3)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.4)

where m1, m2 > 1, α1, α2, β1, β2 ≥ 1, Ω ⊂ R
n is a bounded domain with a smooth boundary

∂Ω, b1 = b1(x, t) and b2 = b2(x, t) are nonnegative continuous functions and of T -periodic
(T > 0) with respect to t, and u0 and v0 are nonnegative bounded smooth functions.



2 Journal of Inequalities and Applications

In dynamics of biological groups ([1, 2]), the system (1.1)-(1.2) was used to describe
the interaction of two biological groups without self-limiting, where the diffusion terms
reflect that the speed of the diffusion is slow. In addition, the system (1.1)-(1.2) can also
be used to describe diffusion processes of heat and burning in mixed media with nonlinear
conductivity and volume release, where the functions u, v can be treated as temperatures of
interacting components in the combustible mixture [3].

For case ofm1 = m2 = 1, we get the classical reaction diffusion system of Fujita type

∂u

∂t
= Δu + uα1vβ1 ,

∂v

∂t
= Δv + uα2vβ2 . (1.5)

This type reaction diffusion system (1.5) models such as heat propagations in a two-
component combustible mixture [4], chemical processes [5], and interaction of two biological
groups without self-limiting [6, 7]. The problem about system (1.5) includes global existence
and global existence numbers, blow-up, blow-up rates, blow-up sets, and uniqueness of weak
solutions (see [8–10] and references therein).

In this paper, we will work on the diffusion system (1.1)-(1.2); for results about single
equation, see [11–16] and so on. In the past two decades, the system (1.1)-(1.2) has been
deeply investigated by many authors, and there have been much excellent works on the
existence, uniqueness, regularity and some other qualitative properties of the weak solutions
of the initial boundary value problem (see [17–22] and references therein). Maddalena [20]
especially, established the existence and uniqueness of the solutions of the initial boundary
value problem (1.1)–(1.4), and Wang [22] established the existence of the nonnegative
nontrivial periodic solutions of the periodic boundary value problem (1.1)–(1.3)whenmi > 1,
αi, βi ≥ 1, and (αi/m1) + (βi/m2) < 1, i = 1, 2.

Our work is to consider the existence and attractivity of the maximal periodic solution
of the problem (1.1)–(1.3). It should be remarked that our work is not a simple work. The
main reason is that the degeneracy of (1.1), (1.2) makes the work of energy estimates more
complicated. Since the equations have periodic sources, it is of no meaning to consider the
steady state. So, we have to seek a new approach to describe the asymptotic behavior of
the nonnegative solutions of the initial boundary value problem. Our idea is to consider
all the nonnegative periodic solutions. We fist establish some important estimations on the
nonnegative periodic solutions. Then by the De Giorgi iteration technique, we provide a
priori estimate of the nonnegative periodic solutions from the upper bound according to the
maximum norm. These estimates are crucial for the proof of the existence of the maximal
periodic solution and the asymptotic boundedness of the nonnegative solutions of the initial
boundary value problem.

This paper is organized as follows. In Section 2, we introduce some necessary
preliminaries and the statement of our main results. In Section 3, we give the proof of our
main results.

2. Preliminary

In this section, as preliminaries, we present the definition of weak solutions and some useful
principles. Since (1.1) and (1.2) are degenerated whenever u = v = 0, we focus our main
efforts on the discussion of weak solutions.
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Definition 2.1. A vector-valued function (u, v) is called to be a weak supsolution to the
problem (1.1)–(1.4) in Qτ = Ω × (0, τ) with τ > 0 if |∇um1 |, |∇vm2 | ∈ L2(Qτ), and for any
nonnegative function ϕ ∈ C1(Qτ) with ϕ|∂Ω×[0,τ) = 0 one has

∫
Ω
u(x, τ)ϕ(x, τ)dx −

∫
Ω
u0(x)ϕ(x, 0)dx −

∫∫
Qτ

u
∂ϕ

∂t
dxdt

+
∫∫

Qτ

∇um1∇ϕdx dt ≥
∫∫

Qτ

b1u
α1vβ1ϕdx dt,

∫
Ω
v(x, τ)ϕ(x, τ)dx −

∫
Ω
v0(x)ϕ(x, 0)dx −

∫∫
Qτ

v
∂ϕ

∂t
dx dt

+
∫∫

Qτ

∇vm2∇ϕdx dt ≥
∫∫

Qτ

b2u
α2vβ2ϕdx dt,

u(x, t) ≥ 0, v(x, t) ≥ 0, (x, t) ∈ ∂Ω × (0, τ),

u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), x ∈ Ω.

(2.1)

Replacing “≥” by “≤” in the above inequalities follows the definition of a weak
subsolution. Furthermore, if (u, v) is a weak supersolution as well as a weak subsolution,
then we call it a weak solution of the problem (1.1)–(1.4).

Definition 2.2. A vector-valued function (u, v) is said to be a T -periodic solution of the
problem (1.1)–(1.3) if it is a solution such that

u(·, 0) = u(·, T), v(·, 0) = v(·, T) a.e in Ω. (2.2)

A vector-valued function (u, v) is said to be a T -periodic supersolution of the problem (1.1)–
(1.3) if it is a supersolution such that

u(·, 0) ≥ u(·, T), v(·, 0) ≥ v(·, T) a.e in Ω. (2.3)

A vector-valued function (u, v) is said to be a T -periodic subsolution of the problem (1.1)–
(1.3) if it is a subsolution such that

u(·, 0) ≤ u(·, T), v(·, 0) ≤ v(·, T) a.e in Ω. (2.4)

A pair of supersolution (u, v) and subsolution (u, v) are called to be ordered if

u ≥ u, v ≥ v a.e. in QT = Ω × (0, T). (2.5)

Several properties of solutions of problem (1.1)–(1.4) are needed in this paper.

Lemma 2.3 (see [17]). If αi ≥ 1, βi ≥ 1, (αi/m1) + (βi/m2) < 1 with |Ω| < M0 and M0 is a
constant depending onmi, αi, βi, i = 1, 2, then there exist global weak solutions to (1.1)–(1.4).
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Lemma 2.4 (see [20]). Letting (u, v) be a subsolution of the problem (1.1)–(1.4) with the initial
value (u0, v0), and letting (u, v) be a supsolution of the problem (1.1)–(1.4) with the initial value
(u0, v0), then u ≤ u, v ≤ v a.e. in QT if u0 ≤ u0, v0 ≤ v0 a.e. in Ω.

Lemma 2.5 (regularity [23]). Let u(x, t) be a weak solution of

∂u

∂t
= Δum + f(x, t), m > 1, (2.6)

subject to the homogeneous Dirichlet condition (1.3). If f ∈ L∞(QT ), then there exist positive
constants K and β ∈ (0, 1) depending only upon τ ∈ (0, T) and ‖f‖∞ such that for any
(x1, t1), (x2, t2) ∈ Ω × [τ, T], one has

|u(x1, t1) − u(x2, t2)| ≤ K
(
|x1 − x2|β + |t1 − t2|β/2

)
. (2.7)

The main result of this paper is the following theorem.

Theorem 2.6. If mi > 1, αi ≥ 1, βi ≥ 1, and (αi/m1) + (βi/m2) < 1 with |Ω| < M0 and M0 is
a constant depending on mi, αi, βi, i = 1, 2, then problem (1.1)–(1.3) has a maximal periodic solution
(U,V )which is positive inΩ+. Moreover, if (u, v) is the solution of the initial boundary value problem
(1.1)–(1.4) with nonnegative initial value (u0, v0), then for any ε > 0, there exists t1 depending on u0
and ε, t2 depending on v0 and ε, such that

0 ≤ u ≤ U + ε, for x ∈ Ω, t ≥ t1,
0 ≤ v ≤ V + ε, for x ∈ Ω, t ≥ t2.

(2.8)

3. The Main Results

In this section, we first show some important estimates on the solutions of the periodic
problem (1.1)–(1.3). Then, by the De Giorgi iteration technique, we establish the a prior
upper bound of periodic solutions of (1.1)–(1.3), which is used to show the existence of the
maximal periodic solution of (1.1)–(1.3) and its attractivity with respective to the nonnegative
solutions of the initial boundary value problem (1.1)–(1.4).

Lemma 3.1. Let (u, v) be nonnegative solution of (1.1)–(1.3). If αi ≥ 1, βi ≥ 1, (αi/m1)+(βi/m2) <
1 with |Ω| < M0 and M0 is a constant depending on mi, αi, βi, i = 1, 2, then there exists positive
constants r and s large enough such that

α2
m2 − β2 <

m1 + r − 1
m2 + s − 1

<
m1 − α1
β1

, (3.1)

‖u‖Lr(QT ) ≤ C, ‖v‖Ls(QT ) ≤ C, (3.2)

where C > 0 is a positive constant depending onm1,m2, α1, α2, β1, β2, r, s, and |Ω|.
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Proof. For r > 1, multiplying (1.1) by ur−1 and integrating over QT , by the periodic boundary
value condition, we have

4(r − 1)m1

(m1 + r − 1)2

∫
Ω

∣∣∣∇u(m1+r−1)/2
∣∣∣2dx dt =

∫∫
QT

b1(x, t)uα1+r−1vβ1dx dt, (3.3)

that is,

∫
Ω

∣∣∣∇u(m1+r−1)/2
∣∣∣2dx dt ≤ Cb(m1 + r − 1)2

4(r − 1)m1

∫∫
QT

uα1+r−1vβ1dx dt, (3.4)

where Cb = b1(x, t)
QT

. By the Poincaré inequality, we have

∫
Ω
um1+r−1
ε dx ≤ C

∫
Ω

∣∣∣∇u(m1+r−1)/2
ε

∣∣∣2dx, (3.5)

where C is a constant depending only on |Ω| and N. Notice that (α1/m1) + (β1/m2) < 1
implies α1 < m1. Furthermore, we have α1 + r − 1 < m1 + r − 1. Then, by Young’s inequality,
we obtain

uα1+r−1vβ1 ≤ 1
2
(r − 1)m1

CCb

(
2

m1 + r − 1

)2

um1+r−1 + C1v
β1(m1+r−1)/(m1−α1), (3.6)

where C1 is the constant of Young’s inequality. Then, from (3.4), we have

∫∫
QT

um1+r−1dx dt ≤ 1
2

∫∫
QT

um1+r−1dx dt + C1

∫∫
QT

vβ1(m1+r−1)/(m1−α1)dx dt, (3.7)

that is,

∫∫
QT

um1+r−1dx dt ≤ C1

∫∫
QT

vβ1(m1+r−1)/(m1−α1)dx dt. (3.8)

Similarly, we get an estimate for vs with s > 1, that is,

∫∫
QT

vm2+s−1dx dt ≤ C2

∫∫
QT

uα2(m2+s−1)/(m2−β2)dx dt. (3.9)

Hence,

∫∫
QT

um1+r−1dx dt +
∫∫

QT

vm2+s−1dx dt

≤ C1

∫∫
QT

vβ1(m1+r−1)/(m1−α1)dx dt + C2

∫∫
QT

uα2(m2+s−1)/(m2−β2)dx dt.

(3.10)
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Notice that, (αi/m1) + (βi/m2) < 1, i = 1, 2, implies α2β1 < (m1 −α1)(m2 − β2). Then there exist
r ≥ max{2(m1 + α1), 2α2} and s ≥ max{2(m2 + β2), 2β1} such that

β1
m1 − α1 <

m2 + s − 1
m1 + r − 1

<
m2 − β2
α2

. (3.11)

By Young’s inequality, we have

∫∫
QT

uα2(m2+s−1)/(m2−β2)dx dt ≤ 1
2C2

∫∫
QT

um1+r−1dx dt + C|QT |,
∫∫

QT

vβ1(m1+r−1)/(m1−α1)dx dt ≤ 1
2C1

∫∫
QT

vm2+s−1dx dt + C|QT |.
(3.12)

Together with (3.10), we obtain

∫∫
QT

um1+r−1dx dt +
∫∫

QT

vm2+s−1dx dt ≤ C. (3.13)

Thus, we prove the inequality (3.2).

Lemma 3.2. Let (u, v) be nonnegative solution of (1.1)–(1.3). If αi ≥ 1, βi ≥ 1, (αi/m1)+(βi/m2) <
1 with |Ω| < M0 andM0 is a constant depending onmi, αi, βi, i = 1, 2, then one has

∫∫
QT

|∇um1 |2dx dt ≤ C,
∫∫

QT

|∇vm2 |2dx dt ≤ C, (3.14)

where C > 0 is a positive constant depending onm1,m2, α1, α2, β1, β2, r, s, and |Ω|.

Proof. Multiplying (1.1) by um1 and integrating over QT , by Hölder’s equality, we have

∫∫
QT

|∇um1 |2dx dt ≤
∫∫

QT

uα1+m1vβ1dx dt

≤
(∫∫

QT

u2(α1+m1)dx dt

)1/2(∫∫
QT

v2β1dx dt

)1/2

.

(3.15)

Taking r ≥ max{2(α1 +m1), 2β2}, s ≥ max{2(β2 +m2), 2α1}, by Lemma 3.1, we can obtain the
first inequality in (3.14). The same is true for the second inequality in (3.14).

Before we show the uniform super bound of maximum modulus, we first introduce a
lemma as follows (see [24]).

Lemma 3.3. Suppose that a sequence yh, h = 0, 1, 2, . . . of nonnegative numbers satisfies the recursion
relation

yh+1 ≤ cbhy1+ε
h , h = 0, 1, . . . , (3.16)
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with some positive constants c, ε and b ≥ 1. Then,

yh ≤ c((1+ε)h−1)/εb((1+ε)h−1)/ε2−h/εy(1+ε)h

0 . (3.17)

In particular, if

y0 ≤ θ = c−1/εb−1/ε
2
, b > 1, (3.18)

then,

yh ≤ θb−h/ε, (3.19)

and consequently yh → 0 for h → ∞.

Lemma 3.4. Let (u, v) be a solution of (1.1)–(1.3). If αi ≥ 1, βi ≥ 1, (αi/m1) + (βi/m2) < 1 with
|Ω| < M0 andM0 is a constant depending on mi, αi, βi, i = 1, 2, then there is a positive constant C
such that

‖u‖L∞(QT ) ≤ C, ‖v‖L∞(QT ) ≤ C. (3.20)

Proof. Let k be a positive constant. Multiplying (1.1) by (u−k)m1
+ and integrating overQT , we

have

1
m1 + 1

∫∫
QT

∂

∂t
(u − k)m1+1

+ dx dt +
∫∫

QT

∣∣∇(u − k)m1
+

∣∣2dx dt

=
∫∫

QT

b1(x, t)uα1vβ1(u − k)m1
+ dx dt,

(3.21)

where s+ = max{s, 0}. Denote that μ(k) = mes{(x, t) ∈ QT : u(x, t) > k}. By Lemma 3.1 (with
r and s large enough) and Hölder’s inequality, we have

1
m1 + 1

∫∫
QT

∂

∂t
(u − k)m1+1

+ dx dt +
∫∫

QT

∣∣∇(u − k)m1
+

∣∣2dx dt

≤ C
(∫∫

QT

(
uα1vβ1

)ξ′
dx dt

)ξ′(∫∫
QT

(u − k)m1ξ
+ dx dt

)1/ξ

≤ C
(∫∫

QT

(u − k)m1ξη
+ dx dt

)1/ξη

μ(k)(1−1/η)(1/ξ),

(3.22)
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where ξ, η > 1 are to be determined. Using the Nirenberg-Gagliardo inequality with
Lemma 3.1, we have

(∫∫
QT

(u − k)m1ξη
+ dx dt

)1/ξη

≤ C
(∫∫

QT

∣∣∇(u − k)m1
+

∣∣2dx dt
)θ/2

, (3.23)

where

θ =
(
1 − 1

ξη

)(
1
N

− 1
2
+ 1

)−1
∈ (0, 1). (3.24)

Substituting (3.22) and (3.23) in (3.21), we have

∫∫
QT

∣∣∇(u − k)m1
+

∣∣2dxdt ≤ C
(∫∫

QT

∣∣∇(u − k)m1
+

∣∣2dx dt
)θ/2

μ(k)(1−1/η)(1/ξ). (3.25)

Setting

w(k) =
∫∫

QT

∣∣∇(u − k)m1
+

∣∣2dx dt, (3.26)

from (3.25) we obtain

w(k) ≤ Cμ(k)(2/(2−θ))(1−1/η)(1/ξ). (3.27)

Take kh =M(2 − 2−h), h = 0, 1, . . . , andM > 0 is to be determined. Then, we have

(kh+1 − kh)m1ξημ(kh+1) ≤
∫∫

QT

(u − kh)m1ξη
+ dx dt ≤ Cw(kh)

ξηθ/2. (3.28)

From (3.26), we have

μ(kh+1) ≤ C2hm1ξημ(kh)
θ(η−1)/(2−θ) = Cbhμ(kh)

γ , (3.29)

where b = 2m1ξη and γ = (η − 1)(ξη − 1)N/(2ξη +N). For any constant ξ > 1, take η to be a
positive constant satisfying

η > max
{
2,

2ξ +N
ξN

− 1
}
, (3.30)

then we have γ > 1. By Lemma 3.1, we can selectM large enough such that

μ(k0) = μ(M) ≤ C−1/(γ−1)4−1/(γ−1)
2
. (3.31)
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According to Lemma 3.3, we have μ(kh) → 0, as h → +∞, which implies that u(x, t) ≤ 2M in
QT . The uniform estimate for ‖v(x, t)‖L∞(QT ) may be obtained by a similar method. The proof
is completed.

Let μ, ψ be the first eigenvalue and its corresponding eigenfunction to the Laplacian
operator −Δ on some domainΩ′ ⊃⊃ Ωwith respect to homogeneous Dirichlet data. It is clear
that ψ(x) > 0 for all x ∈ Ω.

Now we give the proof of the main results of this paper.

Proof of Theorem 2.6. We first establish the existence of the maximal periodic solution
(U(x, t), V (x, t)) of the problem (1.1)–(1.3). Define the Poincaré mapping

T = (T1, T2) : C
(
Ω
)
× C

(
Ω
)
−→ C

(
Ω
)
× C

(
Ω
)
,

T(u0(x), v0(x)) = (u(x, T), v(x, T)),
(3.32)

where (u(x, t), v(x, t)) is the solution of the initial boundary value problem (1.1)–(1.4) with
initial value (u0(x), v0(x)). A similar argument as that in [22] shows that the map T is well
defined.

Let (un(x, t), vn(x, t)) be the solution of the problem (1.1)–(1.4)with initial value

(u0(x), v0(x)) = (u(x), v(x)) =
(
K1ψ1, K2ψ2

)
, (3.33)

where K1, K2, ψ1, and ψ2 are taken as those in [22]. Then, by comparison principle, we have

(un(x, T), vn(x, T)) = Tn(u(x), v(x)),

un+1(x, t) ≤ un(x, t) ≤ u(x), vn+1(x, t) ≤ vn(x, t) ≤ v(x).
(3.34)

A standard argument shows that there exist (u∗(x), v∗(x)) ∈ C(Ω)×C(Ω) and a subsequence
of {Tn(u(x))}, denoted by itself for simplicity, such that

(u∗(x), v∗(x)) = lim
n→∞

Tn(u(x), v(x)). (3.35)

Similar to the proof of Theorem 4.1 in [25], we can prove that (U(x, t), V (x, t)), which is the
even extension of the solution of the initial boundary value (1.1)–(1.4) with the initial value
(u∗(x), v∗(x)), is a periodic solution of (1.1)–(1.3). For any nonnegative periodic solution
(u(x, t), v(x, t)) of (1.1)–(1.3), by Lemma 3.4, we have

u(x, t) ≤ C0, v(x, t) ≤ C0 for (x, t) ∈ QT. (3.36)

Taking

K1 ≥ C0

minx∈Ω ϕ
1/m1
1 (x)

, K2 ≥ C0

minx∈Ω ϕ
1/m2
2 (x)

, (3.37)
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to be combined with the comparison principle and u∗(x) ≥ u(x, 0), v∗(x) ≥ v(x, 0), then we
obtain U(x, t) ≥ u(x, t), V (x, t) ≥ v(x, t), which implies that (U(x, t), V (x, t)) is the maximal
periodic solution of (1.1)–(1.3).

For any given nonnegative initial value (u0(x), v0(x)), let (u(x, t), v(x, t)) be the
solution of the initial boundary problem (1.1)–(1.4), and let (ω1(x, t), ω2(x, t)) be the solution
of (1.1)–(1.4) with initial value (ω1(x, 0), ω2(x, 0)) = (R1ϕ1(x), R2ϕ2(x)), where R1, R2 satisfy
the same conditions as K1, K2 and

R1 ≥
‖u0‖L∞

minx∈Ω ϕ
1/m1
1 (x)

, R2 ≥
‖v0‖L∞

minx∈Ω ϕ
1/m2
2 (x)

. (3.38)

For any (x, t) ∈ QT , k = 0, 1, 2, . . . , we have

u(x, t + kT) ≤ w1(x, t + kT), v(x, t + kT) ≤ w2(x, t + kT). (3.39)

A similar argument as that in [25] shows that

(
ω∗

1(x, t), ω
∗
2(x, t)

)
=
(
lim
k→∞

ω1(x, t + kT), lim
k→∞

ω2(x, t + kT)
)
, (3.40)

and (ω∗
1(x, t), ω

∗
2(x, t)) is a nontrivial nonnegative periodic solution of (1.1)–(1.3). Therefore,

for any ε > 0, there exists k0 such that

u(x, t + kT) ≤ ω∗
1(x, t) + ε ≤ U(x, t) + ε,

v(x, t + kT) ≤ ω∗
2(x, t) + ε ≤ V (x, t) + ε,

(3.41)

for any k ≥ k0 and (x, t) ∈ QT . Taking the periodicity of ω∗
1(x, t), ω

∗
2(x, t), U(x, t), and V (x, t)

into account, the proof of the theorem is completed.
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