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[11 This paper extends the finite difference heterogeneous multiscale method (FDHMM)
to simulate transient unsaturated water flow problems in random porous media. The
numerical method is based on the use of two different schemes for the original equation, at
different grid levels which allows numerical results at a lower cost than solving the
original equations. The main feature of FDHMM is that the necessary data for the
macroscopic model are supplied by solving the microscopic model on a sparse spatial
domain. The generated code is verified by applying the linearization model of the
Richards’ equation. Considering two different constitutive relationships, this method is
applied to several test examples with different soil textures and boundary conditions. Both
the Dirichlet and the periodic boundary conditions are considered for solving the local
microscopic model when the water flow in heterogeneous unsaturated soils is simulated by
FDHMM. The numerical experiments demonstrate that FDHMM can effectively simulate
the transient unsaturated water flow in the specific soils. The numerical experiments also
demonstrate that FDHMM can achieve accurate global mass balance and is a globally
convergent algorithm, and the spatial correlation length of random coefficients under the
specific standard deviation has relatively little influence on the accuracy of the method.

Citation: Chen, F., and L. Ren (2008), Application of the finite difference heterogeneous multiscale method to the Richards’
equation, Water Resour. Res., 44, W07413, doi:10.1029/2007WR006275.

1. Introduction

[2] Modeling of nonequilibrium flow and transport in
unsaturated soils/rocks has received increasing attention
during recent years since it concerns such vital problems
as protection of groundwater aquifers or securing of waste
depositories [Lewandowska et al., 2004]. Despite the
increased ability to model subsurface heterogeneity pro-
vided by stochastic simulation methods [e.g., Mantoglou
and Wilson, 1982; Tompson et al., 1989; Gutjahr et al.,
1994; Zhang et al., 1996], it is very difficult to simulate this
kind of relative realistic situation by using classical finite
difference method or finite element method based on
smaller scale for our restricted computational capabilities.
There is a corresponding increase in the need for new
numerical techniques to accommodate heterogeneity of
hydrodynamic parameters. The traditional approach for
such problems is to obtain either analytically or empirically
explicit equations for the scale of interest, eliminating other
scales in the problem [E and Engquist, 2003]. Recently,
several different but related multiscale approaches for
problems with oscillating coefficients have been proposed,
such as the multiscale finite element method (MSFEM)
[Hou and Wu, 1997; Hou et al., 1999], the heterogeneous
multiscale method (HMM) [E and Engquist, 2003] and the
numerical homogenization method [Efendiev and Pankov,
2004]. Here we should also mention the work of Babuska in
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the 70’s which motivated the so-called multiscale finite
element method [Babuska, 1976a, 1976b, 1977]. These
multiscale methods not only target the full problem with
the original resolution and attempt to capture the fine scale
behavior of the solution directly on coarser grids, but also
attempt to resolve scales below the coarse grid scale by
doing a significant amount of local work [He and Ren,
2005]. Besides, in multiscale methods the coarse equations,
which are required in upscaling procedures, are generally
not expressed analytically, but rather formed and solved
numerically, so that the fine scale information of the
differential operator is carried throughout the simulation
[He and Ren, 2006a].

[3] More recently, these multiscale methods have been
developed and applied to the linear elliptic and parabolic
equations which stem from the applications of the saturated
flow in heterogeneous porous media [e.g., Ye et al., 2004;
Abdulle and E, 2003; Aarnes et al., 2005; He and Ren,
2005, 2006b; Durlofsky et al., 2007]. For applying and
developing multiscale methods to nonlinear problems or
unsaturated flow and transport problems in heterogeneous
porous media, the published literature is limited. Efendiev et
al. [2004] presented an extension of MSFEM to nonlinear
problems by considering a multiscale map instead of the
base functions that were considered in linear MSFEM, and
applied the multiscale finite volume element method to
Richards’ equation describing water flow in unsaturated
porous media. He and Ren [2006a] incorporated main ideas
of both the Slodicka linear relaxation approximation scheme
and MSFEM, and proposed a multiscale finite element
linearization scheme to solve 2-D unsaturated water flow
problems. The goal of this method is to obtain the large-
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scale solution of Richards’ equation with heterogeneous
coefficients accurately on a coarse grid without resolving all
the small-scale details. £ et al. [2005] used HMM to
theoretically analyze linear and nonlinear elliptic homoge-
nization problem, and estimated the error between the
numerical solutions of HMM and the solutions of the
homogenized equation. Moreover, Yue and E [2005] devel-
oped HMM for linear and nonlinear transport equations
with multiscale velocity fields in heterogeneous porous
media and focused on the problem in which advection is
dominant at the small scale. Efendiev and Pankov [2004]
proposed the numerical homogenization method to solve
nonlinear random parabolic equations and applied the
method to the 2-D convection-diffusion equation. This
method uses general finite element procedure and solves
local problems that are further coupled in the global
formulation. Obviously, applications and developments of
multiscale method to unsaturated flow and transport prob-
lems in heterogeneous porous media are currently being
pursued. Numerical models of transient unsaturated flow in
heterogeneous media are commonly based upon the solu-
tion of the well-known Richards’ equation [e.g., Farthing et
al., 2003; Miller et al., 2006]. From the previous introduc-
tion, so far MSFEM has had a successful application in the
Richards’ equation [Efendiev et al., 2004; He and Ren,
2006a], but there’s no work on applying HMM or numerical
homogenization method to research this equation. Here, we
plan to extend a multiscale method based on the framework
of HMM to solve the Richards’ equation with geostatistical
random coefficients.

[4] Most of the multiscale methods presented to date have
been limited to the finite element method. To the best of our
knowledge, there is no literature on using multiscale tech-
niques based on the finite difference method to deal with the
unsaturated flow problems in heterogeneous porous media.
In fact, there are also many widely used finite difference
flow and solute transport models in both the groundwater
and oil industries today, for example, MODFLOW, the
modular finite difference groundwater flow model, is one
of the most popular groundwater modeling programs
[Winston, 1999]. Considering that the finite difference
method plays an important role in numerical simulation,
Abdulle and E [2003] proposed the finite difference
heterogeneous multiscale method (FDHMM) based on
the framework of HMM, and applied it to deal with
linear parabolic homogenization problems. The method
emphasizes theoretical analysis and considers the cell
problem subject to the periodic boundary to deal with
the multiscale parabolic equation with periodic and rough
nonperiodic coefficients, it embodies well the computa-
tional simplicity and efficiency of finite differences.
FDHMM includes a “heterogeneous” discretization which
cares about the fine scale only on small representative
region of the spatial domain, that is, FDHMM relies on
the use of two different schemes for the original equation,
at different grid levels which allows numerical results at a
much lower cost than solving the original equations
[Abdulle and E, 2003]. In this paper, we will demonstrate
how the FDHMM can be used to simulate the unsaturated
water flow problems in random porous media.

[5s] Yue and E [2007] pointed out that crucial to both
accuracy and efficiency of HMM are the boundary con-
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ditions that we impose on the microscale problems. These
boundary conditions are in some sense artificial— they are
required only because the computational domains are trun-
cated and localized. Durlofsky [1991] noted that the use of
periodic boundary conditions is common for a variety of
problems involving effective media calculations and flow
simulations even when the system is not strictly periodic.
Efendiev and Pankov [2004] selected the local problem
subject to the Dirichlet boundary to study the numerical
homogenization of nonlinear random parabolic equations.
Based on the careful choice of local problems, as well as the
formulation of the discrete problem, they proved the con-
vergence of the numerical method to the homogenized
solution of the equation. If we apply the Dirichlet or
periodic boundary condition to the local microscale problem
in FDHMM, what level of accuracy could be obtained
for extending this algorithm to simulate the transient unsat-
urated water flow problems (i.e., nonlinear parabolic prob-
lems) with random coefficients and the Dirichlet or
Neumann infiltration boundary condition?

[6] An other feature of our numerical scheme is the
formulae estimating the macroscopic flux in which the
unsaturated hydraulic conductivity can be calculated as a
diagonal tensor. In order to determine a unique and sym-
metric hydraulic conductivity tensor, similar to the assump-
tion defined by Yeh et al. [1985], and Mantoglou and
Gelhar [1987], here we also assume “unsaturated hydraulic
conductivity tensor” with principal axes oriented in the
direction of the principal statistical anisotropy axes of the
local parameters, which means that the unsaturated hydrau-
lic conductivity tensor is diagonal.

[7] Taking a backward Euler method to Richards’ equa-
tion in time, one obtains a set of nonlinear parabolic
equations arising from a fully implicit finite difference
discretization at per time-step in the cell problem. For
quickly solving the resulting linear equations in iteration,
we choose the multigrid method to solve large sparse
systems of linear equations as a part of our algorithm. This
multigrid algorithm is incorporated in the numerical simu-
lator MGDOV [de Zeeuw, 1990]. For the principle of
choosing cell size, Abdulle and E [2003] and E et al
[2005] proposed that cell size should be larger than the
correlation length of the random coefficients to deal with the
linear problems. However, HMM proceeds as a standard
finite element method with the usual basis functions. The
new component comes in the computation of the stiffness
matrix which is obtained by solving a small “cell problem”
on each element. This flexibility of HMM means that it may
be applied to the problem for which the microstructure can’t
be entirely found beforehand [see E and Engquist, 2003].
Although using the finite difference scheme, FDHMM
inherits this advantage of HMM and may also deal with
the problem for which the microstructure has been partly
found beforechand. For this problem it is sometimes difficult
to obtain an explicit correlation length of the random
coefficients, it may be easy to choose the cell size as per
the coarse mesh size. Here we try to find a more applicable
principle of choosing cell size.

[8] The rest of this paper begins with a brief introduction
of the transient unsaturated flow equation in porous media
and the constitutive relationship used to close the equation.
Next an elaborate explanation of the numerical method used
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herein is described. Numerical results are presented to
illustrate the discussed algorithm under the cases of differ-
ent soils with two infiltration boundary conditions (the
Dirichlet infiltration boundary condition and the Neumann
infiltration boundary condition) and two constitutive rela-
tionships (the van Genuchten-Mualem model and the Gard-
ner-Basha model). This is followed by a general discussion
of the method, via a transient unsaturated water flow
problem with the van Genuchten-Mualem model and the
Dirichlet infiltration boundary. The application scope and
limitations of our method are also pointed out. Last, some
conclusions are given.

2. Introduction to FDHMM

2.1. Governing Equation and Constitutive
Relationships

[o] Let ¢ and 6 denote the pressure head and the
volumetric water content respectively. Three standard forms
of the Richards’ equation may be identified: the w-based
form, the #-based form, and the mixed form [Celia et al.,
1990]. A solution using the t-based formulation and a
backward Eular time discretization is shown to produce
unacceptably large mass balance errors for many example
calculations [e.g., van Genuchten, 1982; Allen and Murphy,
1985; Celia et al., 1990]. A numerical scheme which solves
a mixed form has been proposed to overcome mass conser-
vation difficulties, while maintaining the advantages of the
1-based formulation [Allen and Murphy, 1985; Celia et al.,
1990; Rathfelder and Abriola, 1994; Efendiev et al., 2004;
He and Ren, 2006a]. Thus the mixed form Richards’
equation is used as our model for transient unsaturated flow
with the absence of sources and sinks in porous media. The
governing equation is

P09 K (x ) V(-2 =0, )

where K(x, 1)) is the unsaturated hydraulic conductivity, x =
(x, z) is the spatial coordinate, and z denotes the vertical
coordinate that is positively oriented downward and ¢ is
time.

[10] The constitutive relationship to describe hydraulic
properties must be selected prior to application of the
numerical solution of the unsaturated flow model. For our
comparisons, we are interested mainly in two soil hydraulic
conductivity functions in widespread used: the van Genuchten-
Mualem model and the Gardner-Basha model.

[11] The van Genuchten-Mualem model [van Genuchten,
1980] has it that the van Genuchten soil-water retention
associates hydraulic conductivity functions with the Mualem
substitution [Mualem, 1976], and is defined as follows

0(¥) = 0, + (6, — 0,) [1 + (awle))"] ™,

2
1= ()" 1 (el ]
wa=&mmw=&®{ [u[ﬂﬂ]} °
(e 2

where 0, is the residual water content, 6, is the saturated
water content, n’ and m’ are empirical parameters relating to
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the pore size distribution, K is the saturated hydraulic
conductivity, and «, is the parameter related to the mean
pore size. C(v)) = db/dv) is the specific moisture capacity
function and has the following formulation in this van
Genuchten-Mualem model,

(' — Day(enfu)""

C(y) = (0(y)) — 6,) L+ (ay))”

3)

[12] Combining the Gardner equation [Gardner, 1958],
Basha [1999] used an exponential model, the Gardner-Basha
model, to describe soil properties. The Gardner-Basha model
has the following constitutive relation formulations

0() = 6, + (0, — 6,)e I,
| 4)
K(x,3) = K, (x)K,. (1)) = K,(x)e~ ¥l

where «, 0 are parameters of the porous media. 6, will be
assumed to be zero in the following. According to the
Gardner-Basha model, one obtains

C(Y) = B(b; — 0,)e™ VI, (5)

2.2. Principle and Algorithm of FDHMM

[13] FDHMM presented by Abdulle and E [2003] inherits
the advantages of HMM. HMM is a general methodology
that allows us to efficiently move between the macroscopic
and microscopic models, and to best exploit scale separation
in the problem for improving efficiency [E and Engquist,
2003]. The key to efficiency of such an approach is the
possibility that the microscopic model does not have to be
solved over the whole computational domain, but rather
over a small region near where data estimation is carried out
[E et al., 2003]. Abdulle and E [2003] embodied the idea of
HMM to the finite difference scheme, presented finite
difference HMM (FDHMM) and applied it to the multiscale
linear parabolic equation. Here, we extend FDHMM to
nonlinear parabolic problems for simulating unsaturated
water flows in heterogeneous soils with random hydraulic
parameters.

[14] Put briefly, the overall scheme for FDHMM contains
two main components. The first is a macroscopic scheme, in
which a macroscopic equation is evolved on a coarse mesh
(the mesh of interest) with unknown data recovered from
the solution of the microscopic model. This macroscopic
scheme does not rely on whether or not the macroscopic
model is explicitly known. The second component is a
microscopic scheme, in which the original equation is
solved on a sparse (heterogeneous) spatial domain. There
are divided into four steps for implementing this scheme.

[15] (1) Reconstruction for cell problem. To start the
evolution with the cell problem, the initial values and
boundary conditions of the cell problem are reconstructed
according to the coarse solution W” at the former time-
step 7.

[16] (2) Microscopic evolution. A set of original equa-
tions with given initial values and boundary conditions are
solved in every cell. In these cells, the fine solution /""" at
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Figure 1.
(bottom).

the next time- step 7! are obtained, that is, the fine scale

information at #**' is obtained.

[17] (3) Estimating macroscopic flux. The macroscopic
flux F at the time /"' is estimated as an average of the
microscopic fluxes.

[18] (4)Macroscopic evolution. The macroscopic equation

00()
ot

—-V.F, (6)

is solved at the coarse mesh, where © is the macroscopic
volumetric water content, U is the macroscopic pressure
head corresponding to 1, F is the macroscopic flux tensor.
Then the coarse solution ¥"*' at the next time-step #**' is
obtained. We may notice that the macroscopic equation (6)
is not an explicit expression and this equation can express
the macroscopic behavior in that it is obtained according to
the principle of the flux balance.

[19] We now discuss this algorithm in more detail. For
simplicity, we assume that the solution domain 2 is a square
and a coarse equidistant mesh is constructed by uniformly

Schematic showing fine- and coarse-scale meshes (top) and d-cell at the coarse node

dividing Q into N x N subrectangles. (x;, y;) is the
coordinate of the corresponding node (i), ij = 1,---.\N +
1. H = Xx;11-x; = yj11-y; denotes the mesh size.
2.2.1. Step 1: Reconstruction for Cell Problem

[20] We first determine the position of the control vol-
ume, i.e., the cell, at the coarse mesh. We center the cell at
the midpoint of the line segment connecting any two
neighboring nodes except of two exterior nodes, and let it
be a square cell of size 6. Thus there are four §-cells I" +1
L 4l e(llgo%nd every interior coarse node (i,/) (Figure 1). Set

5 ,af+ = <H+§ , then [ip1, Ij. 1 are defined as
follows
Iiy =[Etd,xtd]x -4y +8.ij=2,,N,
7
L= —x+8 xy+d,y+dy], ij=2,---,N 7
z,/i'_[x’ 27xl+2] Xb}/ Y +]7l7j_ ) ’

In the following we will denote any cell by I°. Next, I° is
uniformly divided into a fine M x M mesh and the node in it
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is denoted by (k, /), k, [=1
7,;) are yielded by

-, M + 1. The coordinates (&,

f/c:]—[T_&+(k_l)]%7 k:177M+17
(®)
=g =1 Mt

[21] Suppose ¥}, a coarse numerical solution of equation
(6) on the coarse node (i) at time ¢". In every cell, initial
values and boundary conditions for the cell problem can be
determined by a reconstruction from W7

[22] We first define a reconstruction from ¥} by the
piecewise linear reconstruction.

n

\Ij’/ \Ijl;laf fi 8
¢kl - \Ijt 1/ + gk H ) or Iif%,f’
A ;
+1, 4 5
1/’2,1 = \II::/ + gk ’ /[_[ = ’ for [H'%W (9)
p = "V e g
wk,l — Fij-1 + ™ H ) or ij—b
v =
n J+1 ,
Uiy =0+ 7 +, for 1,J+

where 1/}, is the reconstruction value of fine node (k,/) at
time 7*, k,/ = 1,---,M+1. It means that /5, is reconstructed
along the x- d1rect10n for the cells 0 1 1 ; and along the z-
direction for the cells 1'5 41 respectlvely

[23] For the cell problem in the time interval [7", ¢*"'],
initial values t(x, ") can be defined as follows
B = (x) in I, (10)

[24] A key ingredient in FDHMM is the formulation,
particularly the boundary conditions, of the microscale
model. We will discuss the two boundary conditions: the
periodic boundary condition, and the Dirichlet boundary
condition. These have been used in one way or another in
previous literature [see Durlofsky, 1991; Abdulle and E,
2003; Efendiev and Pankov, 2004; E et al., 2005]. For the
periodic boundary condition, the local microscale problem
is subject to the following boundary condition:

W(x,t) — ¢ (x) is periodic with period I°. (11)

this can be described clearly as follows

d)k,OZQ/)k,M+Q/)z.O_¢Z‘M7 k:1>7M+17
(12)

Upriog = Vo + Wpny — Wy =1 M+ 1,
with similar formulas for v, and Yy a2 [see Abdulle and
E, 2003]. To more close the discrete model, we may also use

the following discrete form of (11):

Yo=Y o —Yin, k=1, M+1,
Vit = Ve T — Wng, k=1, M+1,
(13)
wM+1,1 - wlvl +¢X/I+l,l - rll.l7 I=1,---\M+1,
¢M+2,1:w2,1+7/’§(4+2,,* ;,,, I=1,...,.M+1,
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with similar formulas for 1o, V1, Yrare1 and Yy amo. The
Dirichlet boundary condition is such that

P(x, 1) = ¢"(x), on are, (14)

it can be expressed more clearly as

¢k,1 = ¢Z,177/1k.M+1 = Tl’Z‘MHv k=1,--,

1#1‘1 = ’(/]rlltlvaJr],[ = me I=1,-,

M+ 1,

(15)
M+1.

2.2.2. Step 2: Microscopic Evolution

[25] After defining the initial values and the boundary
conditions, in each cell I°, we need to solve the original
equation (1) subject to (10) and (11), or the original equation
(1) subject to (10) and (14).

[26] A problem is how to choose macro- and micro-time
steps. Abdulle and E [2003] solved the cell problems with a
micro-time step in a time interval much shorter than the
macro-time step to deal with the linear problem. However,
considering the complexity resulting from the nonlinearity
of unsaturated flow problems, a large macro-time steps may
make our algorithm inefficient. To assure the efficiency of
the algorithm used, we take a small macro-time step and let
the micro-time step be equal to the macro-time one. If
temporal discretization of (1) uses a backward Euler method,
the standard fully implicit finite difference approximation of
(1) may be written as

n+1.m+1 7 n+1,m+1 n+1,m+1
9/{,/ - 0k7l 1 |: n+1,m ¢ B 1/

k1,0
k1 A&

n+1,m+1 n+1,m+17
(s — Vi

At A€

kf%,l A £

wn+1,m+1 _tlmtl
n+1,m Yhkl+1 k.l
kl+) An

wn+l,m+l'
k-1

An

1

An

,(/)n+l ;m+1

n+1,m
_Kk -4

1

+ o, (KL - Ki) =0 (16)
where A 1= ¢""'-/" is the time step size, AE,An are the fine
mesh spacing for x- and z-direction, n and m are the time
and 1terat10n levels respectively, 1.0 = Ui Kiiiy =
(K1 K, 1)2 denotes the geometric mean between Ki1 “and
Ky, s1mllarly for K; 1, and Kj .. In fact, the geometric
mean for Kj.i; and Kj o is usually preferable over the
arithmetic mean [Haverkamp and Vauclin, 1979; Hornung
and Messing, 1983].

[27] The key to (16) is the expansion of 677" in a
truncated Taylor series with respect to 1), about the expansion
point w,ﬁ’“ " 1If all terms higher than linear are neglected,
there results [Celia et al., 1990]

n+1m+1 _ gn+lm n+1,m
Hk.l ~ 01@1 + Ckl <

(17)

n+1,m+1 n+1,m
k.l - wk.l ) .
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[28] Substituting (17) into (16), let A = An = a, and

putting all the unknowns on the left-hand and all the knows
on the right-hand side, we have

1

n+1m n+1,m+1 n+1,m_;n+1,m+1
__K L Vki-1 __K ljwk 1./
1
Cﬂ+1 m Kn+1 nz+Kn+llm+Kn+l m+Kn+l m )n+l‘m+l
At k45 kil
_iKr1+1rn1/n+1m+1 _ 1 n+1mwn+lﬁm+l
k+ " k+ll 2 k41

_71 n+1m7 n+1.m
- k1+z k%

1

<9n+l m_g )

+— A Cn+1 m )ZJ;I " (18)
[29] Let
+1, +1, +1, +1 +1,
K}i:l m —K;:l lm +Kﬂl+]m +K}’l m +Kﬂ 11’7[7
1
nt+lm _  * n+lm _ pntlm n+lm on
=) - ()
1 n+1.m ;n+l.m
+Atc (T (19)
then equation (18) can be simplified as follows
1 n+1m  n+1m+1 ]Kn+1m n+1,m+1
az k-t Tki-1 ) k=41 Tk=11
1 1 1 1, 1,m+1 1 1 1 1
+ (Kt CZ,J[r Jm + Kn+ m) ZJIF m-+ az ZI lmwzil?ﬁ
1 m 7 m
— ;KI:H]Z:I 1 IZJ[rJlrlwrl Rn+l, a (20)

[30] To solve the nonsymmetric nonlinear equation (20)
using iteration, we consider to use the multigrid method
which is among the fastest methods to solve large sparse
systems of linear equations arising from the discretization
of partial differential equations. For implementing this
multigrid algorithm, we directly use a code MGD9V [de
Zeeuw, 1990]. MGDYV is used to solve linear systems
resulting from the 9-point discretization of a general
linear second-order elliptic partial differential equation in
two dimensions, this code is designed to solve problems
which include dominant convection, discontinuous diffu-
sion coefficients and highly stretched grid cells. The
solver is based on multigrid with operator-dependent
prolongations (and restrictions), automatic derivation of
coarse grid matrices and incomplete line LU decomposi-
tion as a smoother.

[31] Setting error tolerance e equal to 107° in our
algorithm, the iteration stops if

|1/n+1m+1 1/n+1m|

(1)

2.2.3. Step 3: Estimation for Macroscopic Flux
[32] Based on the reasons described in section 1, we
apply the assumption defined by Yeh et al. [1985] and
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Mantoglou and Gelhar [1987] to derive the macroscopic
flux F,

b X x, ") — 2)dx
Fe—gi | [ Keov@ e -2

o

1 . K” 0 Ox
=~/ /,a .

dxdz
0z
-
= dxdz
|1 b| / /1* (LL . )
Oz
FX
[ (22)
FZ

where F* denotes the macroscopic flux estimated along the
x-direction, F° denotes the macroscopic flux estimated
along the z-direction. Here we assume that at the fine
scale, the porous medium exhibits no change in the
unsaturated hydraulic conductivity with respect to direction,
re, K. .=K...

[33] To estimate the macroscopic flux, Abdulle and E
[2003] presented a feasible idea, which is to compute an
average flux over a ¢-cell. E et al. [2005] pointed out that a
smaller cell I with § < § may be chosen to compute the
average flux in order to reduce the effect of the imposed
boundary condition on the cell problem. Here we follow
these ideas to compute approximations of F* and F° as
follows

=iy | ] ey

2 M—1 M— wn+1,m+l ¢11+1 ;m+1
~_ Y Z ZKn+lm+l k+1.1 for I°
e oo a ' =30
=2 =2
1 n
FF=—— K.|—=——1 |dxdz
6
1ol Jr 0z
> M—1 M—1 n+1,m+1 n+1,m+1
o~ KLt Vet — Ve 1
~ 5,2 k,l‘F% a ?
k=2 [=2 -
for]u.i%. (23)

2.2.4. Step 4: Macroscopic Evolution

[34] After knowing the macroscopic fluxes, we may
evolve the macroscopic equation (6) on the coarse mesh
with a time step size At. Macroscopic evolution is done via
the approximation of (6)

At H '
then
At
n+1 n
o = = L (Fry =y + Fo = F ). (29)
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Figure 2. Relative (a) L, and (b) maximum errors between
“exact” and two coarse solutions for the linearization model
of Richards’ equation with periodic coefficients.

According to the water retention function at point scale, the
macroscopic pressure head \Il?jl at coarse mesh point (i)
may be estimated using the latest estimation of ©f" at
coarse mesh point (i,j). For the van Genuchten-Mualem
model we have

| 0 P L/mr 1/nt
 Vn R R -1 26

) avzlj |:<®ln’/+1 _ er) :I ( )

For the Gardner-Basha model we have

1 Os — 0,
- ) <—> . (27)

i, o+l
/ Bo\ert -0,

[35] Thus the algorithm of FDHMM is completed.

3. Numerical Experiments

[36] In this section, a series of numerical experiments are
used to demonstrate the capabilities of the discussed algo-
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rithm, we will solve the microscale problem with two
different boundary conditions: the Dirichlet and periodic
boundary conditions. For convenience, we set that
FDHMM-D stands for FDHMM with the Dirichlet bound-
ary condition for local microscale problem, and FDHMM-p
stands for FDHMM with the periodic boundary condition
for local microscale problem. The coarse-grid models are
compared with the fine-scale models solved on a fine mesh.
Because Richards’ equation is nonlinear, analytical solution
is impossible except for special cases. Therefore the refer-
ence solution has been computed by the classical finite
difference method with multigrid on a fine mesh, we will
often refer to this solution as the “exact” solution.

[37] As a measure for the error we take the relative L,
norm and the relative maximum norm

1

N !
> (W= (x;))®
eer; = 1:1]\//7 7
> (‘D(Xz‘))z
. (28)
I:IPaXN/ |\Ij(xl)|

respectively, where N' is the total number of nodes on the
coarse mesh, V¥, denotes the coarse solution at x;, W(x,)
denotes the reference solution projected on the coarse mesh,
i.e., W(x;) is the “exact” solution of ¢ at the corresponding
node.

[38] In this paper, the heterogeneity in porous media
comes from the saturated hydraulic conductivity K and
the model parameter «. Field studies indicate that the
saturated hydraulic conductivity field in heterogeneous
media follows a lognormal distribution [e.g., Freeze,
1975; Gelhar, 1986; Tompson and Gelhar, 1990; Neuman
and Orr, 1993; Koltermann and Gorelick, 1996]. Similarly,
it has been observed that the distribution of the model
parameter « is lognormal [Russo and Bouton, 1992]. So
we assume that K and « follow a lognormal distribution
and their spatially correlated random fields are generated
with a random field generator TBM [Mantoglou and Wil-
son, 1982] which is a technique to create artificial fields of
physical quantities perceived to be random in various
statistical or stochastic models of natural processes [7omp-
son et al., 1989].

[39] In all test examples, the study domain €2 is a
rectangle covering 10.0 m x 10.0 m with point (0,0) as
the origin of coordinate. A uniform finite difference mesh is
constructed by uniformly dividing €2 into a N x N mesh.
The coarse mesh is 32 x 32 and the coarse solutions are
obtained by using the multiscale methods on this mesh. The
fine mesh is 256 x 256, the “exact” solution and random
fields of K, and « are obtained on this mesh. Cell size §
should be chosen such that K(x, 1)) restricted to I° gives an
accurate enough representation of the local variations of
K(x, ). In this section, for simplicity, we choose ¢ equal to
H which means that the microscopic information of the
study domain is obtained entirely beforehand. Each cell is
uniformly divided into an 8 x 8 mesh such that its mesh
size is equal to the size of the fine mesh.
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Figure 3. Relative (a) L, and (b) maximum errors between
“exact” and two coarse solutions for the linearization model
of Richards’ equation with random coefficients.

0 2 4 6 8 10

Figure 4. A realization of the random lognormal saturated
conductivity field. The ratio of maximum to minimum is
74 x 10%

CHEN AND REN: APPLICATION OF FDHMM TO THE RICHARDS’ EQUATION

W07413

0

Figure 5. A realization of the random lognormal alpha
field. The ratio of maximum to minimum is 5.2.
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Figure 6. Relative (a) L, and (b) maximum errors between
“exact” and two coarse solutions for van Genuchten-
Mualem model with Dirichlet infiltration boundary.
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Figure 7. Comparison of water contents between the fine-scale model (left) and FDHMM-D (right) at
times = 0.5, 1, 2, 3 d (from top to bottom) for van Genuchten-Mualem model with Dirichlet infiltration
boundary.
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Figure 8. Relative (a) L, and (b) maximum errors between
“exact” and two coarse solutions for van Genuchten-
Mualem model with Neumann infiltration boundary.

3.1.

[40] The algorithm of section 2 has been implemented in

a FORTRAN code. We verify this code by using the
linearization model for unsaturated equation (1)

%7 K(X7¢1) _K(Xﬂl}()) aﬂ_

C 5 V- KK (x) V] +—1/,1 -y 5=

with C, K,, 9o and 1, constant, and K(Xx,1)q), K(X,1);)

calculated by using (2) and Ky(x). We impose the following

initial condition and boundary conditions for the test example:

(30)

Verification of Code

0, (29)

¥(x,2z,0) = —10.0m, in Q.

Top (x,0,f) = —1.0m, 0 <x< 10m,t>0,
Bottom  ¢(x,10m,¢) = —10.0m, 0 <x < 10m,t > 0,

: (1)
Left %h:o:(’, 0<z<10m,t>0,

Right %] 0, =0, 0<z<10m,>0.
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Here the upper and lower boundaries of the solution domain
are the Dirichlet boundaries, the other two boundary
conditions are for no-flow boundaries.

[41] Let C=02m™ ", K,=0.2,1y=—10.0m,¢);=—1.0m,
W =16 and a, = 03 m . Fix a time step size At =
5.0 x107* d. If Ky(x) has the following periodic form

B 0.44
T2+ 1.8sin(2w(2x — z)/1.25)’

Ks(x,2) (32)

The relative errors of pressure head for FDHMM-D and
FDHMM-p at times ¢ = 0.5, 1, 2 and 3 d are showed in
Figure 2. We observe that both FDHMM-D and FDHMM-p
have about the same accuracy. If K(x) has a random form,
we assume that the geometric mean of K is 0.44 md ™', the
standard deviation of /nK; is 1.2, and the correlation lengths
Ay and A, are 5.0 m and 3.0 m respectively. The relative
errors of pressure head for FDHMM-D and FDHMM-p at
times £ = 0.5, 1, 2, and 3 d are showed in Figure 3. The
errors of results of FDHMM-p are very close to those
of FDHMM-D, both FDHMM-D and FDHMM-p give a
reasonable accuracy.

[42] The correctness of the compiled code is verified by
the above two linear examples. Next we use this verified
code to simulate the transient unsaturated water flow prob-
lems with random coefficients for the nonlinear parabolic
equation of Richards’ type.

3.2. van Genuchten-Mualem Model With
Dirichlet Infiltration Boundary

[43] Statistical parameters used to describe heterogeneous
fields are loosely based on hydraulic parameters of silt
according to USDA textural class [Soil Survey Staff
Division, 1993]. Let K, &, be the geometric means of K,
and «, respectively, we take 6, = 0.489 m m>, 0 =
005m>m>, n =16 and K, = 044 md™!, &, = 0.3
m~'. For the realization considered here the correlation
lengths A, and ), are 5.0 m and 3.0 m, the standard
deviations of /nK; and /na, are 1.2 and 0.3, respectively. A
realization of the random saturated conductivity field is
plotted in Figure 4. This hydraulic conductivity K, varies
by over two orders of magnitude over the solution domain,
from a minimum of 3.1 x 1072 md ™~ to a maximum of 23.1
md ™. Figure 5 shows a realization of the model parameter
«,, and the ratio of maximum to minimum for it is 5.2.

[44] Assume the test example has the same initial con-
dition and boundary conditions used in section 3.1. Fix a
time step size Ar = 5.0 x 107* d, and choose the van
Genuchten-Mualem model as the constitutive relationship.
The relative errors of pressure head for FDHMM-D and
FDHMM-p at times ¢ = 0.5, 1, 2, and 3 d are shown in
Figure 6. Figure 6 indicates that both FDHMM-D and
FDHMM-p give a reasonable accuracy in relative L, and
maximum norms. FDHMM-D has a relative L, error of less
than 1.7% and makes the relative maximum error monot-
onously decrease from 18.6% to 6.4%. Water content
distributions in the whole soil profile at times ¢ = 0.5, 1,
2, and 3 d obtained from the fine-scale model and
FDHMM-D are plotted in Figure 7. We observe that
FDHMM-D can capture the local microstructure at coarse
mesh points.
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Figure 9. Comparison of water contents between the fine-scale model (left) and FDHMM-D (right) at
times ¢ = 2, 4, 6, 8 d (from top to bottom) for van Genuchten-Mualem model with Neumann infiltration
boundary.
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Figure 10. A realization of the random lognormal
saturated conductivity field. The ratio of maximum to
minimum is 4.0 x 10°.

3.3. van Genuchten-Mualem Model With
Neumann Infiltration Boundary

[45] We use the same test example discussed in section
3.2 except for top and bottom boundary conditions. In this
section, boundary conditions are defined as follows

Top —K(x,z0)2 2| _=¢, 0<x<10m, >0,
Bottom  2Y| 0 =0, 0<x<10m,t>0,

(33)
Left 22| =0, 0<z<10m ¢>0
Right 2| 0. =0, 0<z<10m, t>0.

q is the constant infiltration rate and is slight as less than the
minimum value of the saturated conductivity, here ¢ = 3.1
%x107% md™". The lower boundary is for free drainage and
the lateral boundaries are for no-flow conditions.

[46] Fix a time step size Az =2.0 x 107> d. Choose the
van Genuchten-Mualem model as the constitutive relation-
ship. Figure 8 plots the relative errors for FDHMM-D and
FDHMM-p at times ¢ = 2, 4, 6, and 8 d. As in the example
discussed in section 3.2, both FDHMM-D and FDHMM-p
give a satisfying accuracy. Moreover, the results obtained in
this case are more accurate than those obtained in section 3.2.
This is likely because the Neumann infiltration boundary
condition is a softer boundary condition than the Dirichlet
one, for the transient unsaturated water flow problem in silt,
FDHMM is more powerful for the Neumann infiltration
boundary than the Dirichlet infiltration boundary. We also
note that FDHMM-D gives comparable accuracy with
FDHMM-p. Water content distributions in the whole soil
profile at times =2, 4, 6, and 8 d obtained from the fine-scale
model and FDHMM-D are depicted in Figure 9. For
FDHMM-D, it gives excellent agreement between the coarse
mesh and fine mesh calculations.
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Figure 11. A realization of the random lognormal alpha
field. The ratio of maximum to minimum is 8.0.

x107°

—4A— FDHMM-D
—— FDHMM-p

relative L2 error

1.5 2 2.5 3
time (day)

0.0361 b
—A— FDHMM-D
——

FDHMM-p

0.034

0.032

0.03

0.028

0.026

0.024

relative maximum error

0.022

0.5 1 1.5 2 25 3
time (day)

Figure 12. Relative (a) L, and (b) maximum errors
between “exact” and two coarse solutions for Gardner-
Basha model with Dirichlet infiltration boundary.
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Figure 13. Comparison of water contents between the fine-scale model (left) and FDHMM-D (right) at

times £=0.5, 1, 2, 3 d (from top to bottom) for Gardner-Basha model with Dirichlet infiltration boundary
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Figure 14. Relative (a) L, and (b) maximum errors
between “exact” and two coarse solutions for Gardner-
Basha model with Neumann infiltration boundary.

3.4. Gardner-Basha Model With Dirichlet
Infiltration Boundary

[47] In this section, the statistical parameters used to
describe heterogeneous fields are loosely based on hydraulic
parameters of peat given by Varado et al. [2006]. Let ag be
the geometric means of ag, we take §,=0.47m> m>,60,=0.0
m’m—>, 3=0.104 m ! and K, = 0.053 md™!, a; = 0.104
m~'. For the realization considered here the correlation
lengths A\, and )\, are 5.0 m and 1.0 m, the standard deviations
of InK; and Inag are 1.2 and 0.3, respectively. The saturated
hydraulic conductivity K, varies by over three orders of
magnitude over the solution domain and the ratio of maxi-
mum to minimum for o is 8.0. The random fields of K and
« are respectively plotted in Figure 10 and Figure 11.

[48] We assume the test example based on the Gardner-
Basha model with the same initial condition and boundary
conditions used in section 3.1. Fix a time step size Az=1.0 x
107 d. Figure 12 plots the relative errors of pressure head for
FDHMM-D and FDHMM-p at times = 0.5, 1, 2, and 3 d.
We note that the results indicated in Figure 12 are similar to
those in Figure 6 and Figure 8, both FDHMM-D and
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FDHMM-p give a satisfying accuracy in relative L, and
maximum norms. Moreover, FDHMM gives more accuracy
in this test example than in the test example described in
section 3.2. FDHMM-D gives the relative L, and maximum
errors of less than 0.7% and 3.2% respectively. FDHMM-p
gives the relative L, and maximum errors of less than 0.8%
and 3.4% respectively. The reason may be that near the
wetting front, gradient of slope of the Gardner water retention
curve gives less change than that of the van Genuchten water
retention curve, then near the wetting front the solutions by
using the Gardner-Basha model are less change than those by
using the van Genuchten-Mualem model. The results of
FDHMM-D are slightly better accurate than those of
FDHMM-p. Figure 13 shows the comparison of water
content distributions in the whole soil profile at times ¢ =
0.5, 1,2, and 3 d between the fine-scale model and FDHMM-
D. It illustrates excellent agreement between the water con-
tents obtained by FDHMM-D and the water contents
obtained by the fine-scale model.

3.5. Gardner-Basha Model With Neumann
Infiltration Boundary

[49] In this section, we suppose that our test example has
the same hydraulic parameters and random fields described
in section 3.4 and has the same initial condition and
boundary conditions used in section 3.3 except for the
constant infiltration rate ¢. Here ¢ = 6.0 x 10~* md™".

[s0] Fix a time step size Ar=2.0 x 107> d. Choose the
Gardner-Basha model as the constitutive relationship. We
show in Figure 14 the relative errors of solutions of
FDHMM-D and FDHMM-p at times ¢ = 2, 4, 6, and 8 d.
Both FDHMM-D and FDHMM-p give a satisfying accura-
cy. FDHMM-D has relative L, and maximum errors of less
than 0.3% and 1.0% respectively, FDHMM-p has relative
L, and maximum errors of less than 0.3% and 1.2%
respectively, the accuracies of both methods are compara-
ble. We plot in Figure 15 water content distributions in the
whole soil profile at times ¢ =2, 4, 6, and 8 d obtained from
the fine-scale model and FDHMM-D. The water contents
obtained by FDHMM-D give excellent agreement with the
water contents obtained by the fine-scale model over the
whole simulating time. Different from the previous exam-
ples, water contents near the infiltration front keep a
decreasing trend because the constant infiltration rate ¢ is
too low.

4. Discussion

[s1] While the discussed algorithm has a successful
application on the test examples in section 3, we hope to
know more about FDHMM in this section. We first consider
the computational cost of FDHMM. Next dependence of
algorithm error on cell size is discussed. Following this the
global mass conservative property and the convergence
behavior of FDHMM are illustrated. We also reconstruct
the fine scale information from the coarse scale solution if it
is necessary. For simplicity, our discussions are mainly
based on the test example described in section 3.2, i.e.,
the case for the transient unsaturated water flow problem in
the spatially random silty soil with the van Genuchten-
Mualem model and the Dirichlet infiltration boundary.
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Figure 15. Comparison of water contents between the fine-scale model (left) and FDHMM-D (right) at
times ¢ =2, 4, 6, 8 d (from top to bottom) for Gardner-Basha model with Neumann infiltration boundary
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Figure 16. Relative (a) L, and (b) maximum errors
between the fine-scale model and FDHMM-D for different
cell sizes.

4.1.

[52] Itis of interest to consider the computational require-
ments for the fine- and coarse-scale simulations. The first
saving in memory storage in the FDHMM strategy is
achieved by reducing the computation of the fine grid on
the whole domain. The fine-scale global flow solution is
decomposed into a series of cell problems, the main
memory cost of FDHMM is the cost of solving of 2N(N-
1) cell problems, when 6 = H, it has (M — 1)* unknowns for
FDHMM-D and has (M + 1)* unknowns for FDHMM-p in
every cell, the computation of these cell problems can be
carried out sequentially, it can obtain an obvious decrease in
memory. In addition, when 6 = %H, the coarse scheme needs
to solve a series of small nonlinear algebra equation
systems, while the fine scheme needs to solve a very large
nonlinear algebra equation system. The computational time
of solving a nonlinear algebra equation system may be
nonlinear with its degrees of freedom, this may be a reason
why FDHMM can save the computational time. For the
specific problem, when § = %H, the results have been
obtained on an IBM ThinkCentre running Windows XP

Computational Cost
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Pro with Intel(R) Pentium(R)4 CPU 2.80 GHz processor,
and 1 GB of RAM. Costs of memory using conventional
finite difference method, FDHMM-D and FDHMM-p are
about 35.0, 7.4, and 7.4 megabytes respectively, costs of
CPU time using three above methods are about 3.3 h, 0.8
h and 3.2 h respectively. Compared with the computational
cost of conventional finite difference method, in our test
example, FDHMM-D can save about 78.9% memory and
about 75.8% CPU time, FDHMM-p can save about 78.9%
memory and about 3.0% CPU time. Moreover, this advan-
tage will be embodied more obviously when the researched
domain increases or number of fine mesh increases. Notice
that each é-cell computation in FDHMM is independent, so
that the computation of the cell problems can be done in
parallel. Since the macro computation is very fast the
parallel implementation can highly speed up the computa-
tional time.

4.2. Dependence of Algorithm Error on Cell Size
and Correlation Length

[53] As pointed out by E ef al [2003], the key to
efficiency of such an approach is the possibility that the
microscopic model does not have to be solved over the
whole computational domain, but rather over a small region
near where data estimation is carried out. Here, we will
discuss the effects of different cell sizes on the results of
FDHMM-D. For the transient unsaturated water flow prob-
lem described in section 3.2, we fix the coarse mesh size H
= 10/32 m, and change cell size 6. Let 6 = H, %H, %H
respectively, the calculated results obtained by using differ-
ent cell sizes at times ¢ = 0.5, 1, 2, and 3 d are depicted in
Figure 16. This figure indicates that a reasonable accuracy
in eer, and eer,, norms is given by using three different cell
sizes. The larger cell size is, the more accurate the results
are. The results obtained under § = H are the best, the results
obtained under 6 = %H are less accurate than those obtained
under 6 = H, the results obtained 6 = %H are the worst, but in
this case FDHMM-D also has relative L, and maximum
errors of less than 4.7% and 35.6% respectively. Figure 17
plots water content distributions in the whole soil profile at
time ¢ = 2 d obtained from the fine-scale model and
FDHMM-D for different cell sizes. We observe that, for
different cell sizes, FDHMM-D can capture the local
microstructure at coarse mesh points. For the cases of ¢ =
%H and 6 = %H, we actually use 87.5% and 50.0% of total
data at the small scale respectively. This flexibility of
choosing cell size means that FDHMM can be applied to
more complicated problem for which the microstructure can
be partly found beforehand.

[s4] Also investigated is the influence of the spatial
correlation length of random coefficients (K, and «) on
the accuracy of FDHMM. In the test example discussed in
section 3.2, we consider three random fields with A, =5.0 m
and \,=3.0m, A\, =20.0 mand A\, =10.0 m, A\, = 100.0 m
and A, = 20.0 m respectively. The results of FDHMM-D for
different random fields at times ¢t = 0.5, 1, 2, and 3 d are
plotted in Figure 18. Figure 18 indicates that, if cell size 6 =
H determined, the spatial correlation length of random
coefficients under the given standard deviations o, = 1.2
and 0, = 0.3 has relatively little influence on the accuracy
of FDHMM.

[s5] From the above test examples, choosing 6 = H may
be preferred in unsaturated flow problems. Thus we may
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Figure 17. Water contents for (a) the fine-scale model and FDHMM-D in (b) 6 = H, (¢) 6 = %H and

(d) § = 1H at time ¢ = 2d.

choose cell size ¢ be equal to H if the microstructure has
been completely found, we also may choose cell size § such
that § = 3H, § = 1H or other suitable sizes if the microstruc-
ture cannot be completely found beforehand. In addition,
cell size ¢ in the above all examples is actually smaller than
the correlation length of random coefficients, it is different
from the principle of choosing cell size in the linear problem
presented by Abdulle and E [2003] and E et al. [2005]. It
seems that there is a significant difference in the principle of
choosing cell size between the unsaturated water flow
problem and the saturated water flow problem.

4.3. Global Mass Conservative Property

[s6] In FDHMM, we determine the macroscopic equation
by estimating the macroscopic flux F using the integral of
the fluxes at the fine mesh, in other words, we choose
methodologically the finite volume approach as the macro-
scopic scheme. Thus FDHMM may satisfy the mass con-
servation law from the viewpoint of the flux balance. One
measure of a numerical method is its ability to conserve
global mass over the domain of interest. To measure the
ability of the proposed method to conserve mass, let mass
balance measure be defined as follows [Celia et al., 1990]:

MB(t) = total additional mass in the domain

34
total net flux into the domain (34)

where the additional mass is measured with respect to the
initial mass in the system. For our test example, this is
calculated by

N+1 N+1

MB() =a)

=1 j=1

((9;7;1 _ @?J.) / {At}g

N 1 ! ! !
I (! vy =W Y2 =Wy
- N+Lj a 1+4) a
N A 1
1 iN+1 iN
) K,YN%( . 1)
v, -0,
~Kj 1 (T -1 ; (35)

where @?J is the initial macroscopic volumetric water
content at coarse mesh point (7,)).

[57] The influence of maintaining mass balance is plotted
in Figure 19. The solution of FDHMM-D exhibits mass
balance errors of less than 3.7% although it costs 6000 time
steps to attain the end of the simulating time #= 3 d. This fact
indicates that FDHMM satisfies the global mass conservative
property under the Dirichlet infiltration boundary.

4.4. Convergence Behavior

[s8] Convergence should be a necessary condition for
FDHMM as a good numerical method. Fix § = H, the
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Figure 18. Relative (a) L, and (b) maximum errors
between the fine-scale model and FDHMM-D for different
correlation lengths.
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Figure 19. Mass balance results for van Genuchten-
Mualem model with Dirichlet infiltration boundary in silt.
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Figure 20. Relative L, and maximum errors of the
solution of FDHMM-D at ¢ = 3 d for coarse grids with
8 x 8,16 x 16, 32 x 32 and 64 x 64 elements.

relative errors for coarse meshes with 8 x 8, 16 x 16, 32 x
32 and 64 x 64 elements at 1 = 3 d are plotted in Figure 20,
here the coarse solutions are obtained by FDHMM-D.
Notice that both eer, and eer., monotonically decrease as
the total number of coarse elements increases and tend to
zero. It implies that the solution of FDHMM converges as
the coarse mesh is refined.

4.5. Reconstruction of the Fine Scale Information

[59] The heterogeneity determines asymmetry of infor-
mation what we need to grasp. It can sometimes be
important to recover information about the fine scale at
some points outside the coarse mesh. We reconstruct the
fine mesh solution by bilinear interpolating in the fine mesh,
i.e., the fine mesh solution is obtained by simple linear
reconstruction based on the coarse mesh solution. If the
coarse solution W/, is known, r denotes the ratio of
the size of coarse grid cell to that of fine grid cell,

S
)
o
=
©
o
0.051 1
A N R
0.5 1 1.5 2 25 3
time (day)
Figure 21. Relative errors between “exact” and recon-

structed fine-scale solutions for van Genuchten-Mualem
model with Dirichlet infiltration boundary.
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Figure 22. “Exact” and reconstructed fine-scale solutions at times (a) t=0.5d,(b)t=1d,(c)t=2d

and (d) =3 d in section x = 5 m for van Genuchten-Mualem model with Dirichlet infiltration boundary.

for any reconstructed fine-scale solution 1)/, the
bilinear interpolating function is

n n k/ n u l, n
Yoy =V, + 70 (‘I'f+1,/ - ‘1’1,/) +70 <‘1’i,/+1 - ‘I’zn;)
_,’_ % <\IJV1 + \Ijn _ \Ijn _ ‘1,)1 ) (36)
2 i+1,+1 ij i+1, ij+1 )
where
Ko=(G—1)r+k+1, k=01 7r—1
37)
I'=(G-Dr+L+1, =01 ,r—1,

in which i—1 and j—1 are the integer parts of k'/r and ['/r,
respectively.

[60] We did the reconstruction starting with the solution
of FDHMM-D on a coarse 32 x 32 mesh. Figure 21 shows
the calculated results of reconstructed fine scale solution for
the transient unsaturated water flow problem described in
section 3.2 at times ¢ = 0.5, 1, 2, and 3 d. This figure
indicates that the reconstructed fine scale solution gives a
satisfying accuracy in eer, and eer., norms. The compar-
ison between the ‘“exact” solution and the reconstructed
fine scale solution at times ¢ = 0.5, 1, 2, and 3 d in section
x =5 m is illustrated in Figure 22. The similar result of

Figure 21 is found, FDHMM illustrates a high accuracy
in reconstruction of the fine scale information.

4.6. Application Scope and Limitations for FDHMM

[61] Our test examples above are mainly based on hy-
draulic parameters of silt and peat, the numerical experi-
ments also show that FDHMM has been successful for the
transient unsaturated water flow problem in loam and loamy
sand if we emphasize the relative L, error and ignore the
relative maximum error, but the proposed method fails to
deal with the transient unsaturated water flow problem in
sand. Several test examples based on the van Genuchten-
Mualem model with the Dirichlet infiltration boundary are
done to hold out this result. The study domain and its
discretization are the same as those of section 3.

[62] For loam, we loosely take hydraulic parameters of
loam according to USDA textural class: 6, = 0.399 m®> m >,
0,=0.061 m’m >, n'=15K,=0.12md" ", 0)i, = 1.0, &,
=09 m ', 0y, =03, \, =40 m, \, = 1.0 m. Let the
initial pressure head be ¥(x,z,0) = —10.0 m; the upper
boundary is 9(x,0,f) = —0.5 m, the bottom boundary is
P(x,10 m,7) = —10.0 m, the other boundary conditions are for
no-flow boundaries. Fix a time step size At =2.0 x 107°d.
Over the study time 7= 12 d, FDHMM-D can control the
relative L, error less than 9.9%, but FDHMM-D cannot
control the relative maximum error which is about 70.0%.
Figure 23 plots water content distributions in the whole soil

19 of 23



Wo07413

CHEN AND REN: APPLICATION OF FDHMM TO THE RICHARDS’ EQUATION

W07413
exact at t=3d

FDHMM-D at t=3d

4 6

exact at t=6d

4

I

6

’ 10
E : .
N
10 4 6 ’ 1 OO 2 4 6 8 10 )
exact at t=9d FDHMM-D at t=9d
4 6 ’ 4 6 0 )
exact at t=12d
10O 2 6 8 10 4 6 0 ’
x (m) X (m)

Figure 23. Comparison of water contents between the fine-scale model (left) and FDHMM-D (right) at
times =3, 6, 9, 12 d (from top to bottom) for the unsaturated flow problem with van Genuchten-Mualem
model and Dirichlet infiltration boundary in loam.
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Figure 24. Comparison of water contents between the fine-scale model (left) and FDHMM-D (right) at
times ¢ = 0.5, 1, 1.5, 2 d (from top to bottom) for the unsaturated flow problem with van Genuchten-
Mualem model and Dirichlet infiltration boundary in loamy sand.
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profile at times ¢ = 3, 6, 9, and 12 d obtained from the fine-
scale model and FDHMM-D. It illustrates that the water
contents obtained by FDHMM-D are in rough agreement
with those obtained by the fine-scale model.

[63] For loamy sand, we loosely consider the data
reported by Diersch [2002]: 0, = 0.47 m®> m>, 6, =
0.17m>m >, n=20,K,=075md" !, o = 1.0, @, =
1L.0m™", 040, = 0.2, A\, = 4.0 m, \, = 0.5 m. Let the initial
pressure head be (x,z,0) = —5.0 m; the upper and lower
boundaries of the solution domain are the Dirichlet bound-
aries, head on the top side is —0.5 m and on the bottom side
is —5.0 m, the other boundary conditions are for no-flow
boundaries. Use a constant time step of Ar=5.0 x 10~ d.
Over the study time 7'= 2 d, FDHMM-D can control eer,
less than 6.7%, FDHMM-D also fails to handle eer,, which
waves from 48.5% to 64.5%. Two test examples above
mean that FDHMM-D can simulate a general tendency of
the transient unsaturated water flows in loam and loamy
sand for the specific examples. Figure 24 shows water
content distributions in the whole soil profile at times ¢ =
0.5, 1, 1.5, and 2 d obtained from the fine-scale model and
FDHMM-D. We find that the water contents obtained by
FDHMM-D can approximate those obtained by the fine-
scale model.

[64] For sand, we loosely take hydraulic parameters of
sand according to USDA textural class: 6; = 0.375 m’
m>, 0, =0053m’m >, n =32 K, =643 md"" o,
=10,&=352m ", 04, =02, \,=1.0m, A, =03 m.
Let the initial pressure head be ¢(x,z,0) = —5.0 m; the upper
and lower boundaries of the solution domain are the
Dirichlet boundaries, head on the top side is —0.3 m and
on the bottom side is —5.0 m; the other boundary conditions
are for no-flow boundaries. For the study time 7=2 d, use a
constant time step of Az = 5.0 x 10~* d. While £ = 0.5 d,
eer, and eer, of the results of FDHMM-D attain to 30.7%
and 95.0% respectively. Moreover, eer, of the results of
FDHMM-D raises to 46.7% at ¢t = 2 d. FDHMM-D fails to
work in this test example.

5. Conclusion

[65] The finite difference heterogeneous multiscale meth-
od has been extended for solving transient unsaturated water
flow problems in random porous media. The correctness of
the compiled code is verified by using the linearization
model of Richards’ equation, the numerical experiments
demonstrate that both FDHMM-D and FDHMM-p have
about the same accuracy for the linear cases. A set of test
examples, involving five soil textures, two constitutive
relationships and two infiltration boundary conditions, are
applied to test our scheme. For the transient unsaturated
water flow problems in silt with the van Genuchten-Mualem
model and the Dirichlet or Neumann infiltration boundary,
our numerical experiments give convincing evidence that
the FDHMM is effective to solve these problems accurately,
the same conclusion is also arrived at applying FDHMM to
simulate the transient unsaturated water flow problems in
peat with the Gardner-Basha model and the Dirichlet or
Neumann infiltration boundary. For the transient unsaturated
water flow problem in silt with the van Genuchten-Mualem
model, FDHMM is more powerful with the Neumann
infiltration boundary than the Dirichlet infiltration boundary,
the same result is found for the unsaturated water flow

CHEN AND REN: APPLICATION OF FDHMM TO THE RICHARDS’ EQUATION

W07413

problems in peat with the Gardner-Basha model. In our
numerical experiments, FDHMM-D often gives comparable
accuracy with FDHMM-p. For the transient unsaturated
water flow problems in loam and loamy sand with the van
Genuchten-Mualem model and the Dirichlet infiltration
boundary, FDHMM-D can also simulate a general tendency
of the flows, however, FDHMM-D fails to work for the
transient unsaturated water flow problem in sand with the van
Genuchten-Mualem model and the Dirichlet infiltration
boundary. For the transient unsaturated water flow problem
in silt with the van Genuchten-Mualem model and the
Dirichlet infiltration boundary, the spatial correlation length
of random coefficients under the specific standard deviation
tested may not play an important role in the accuracy of
FDHMM, cell size 6 may be chosen to be equal to H for the
case in which the microstructure has been completely found
beforehand, it also may be chosen to be equal to 3H or 1 for
cases in which the microstructure can only be partly found
beforehand. Based on an efficient coupling between the
macroscopic and microscopic models, when 6——;H, FDHMM
can offer a big saving in the memory storage, and FDHMM-
D can save the computational time, that is, FDHMM-D need
only about one-fourth of the computational cost of standard
finite difference method for the transient unsaturated water
flow problem in silt with the van Genuchten-Mualem model
and the Dirichlet infiltration boundary. In addition, our results
indicate that, for the transient unsaturated water flow problem
in silt with the van Genuchten-Mualem model and the
Dirichlet infiltration boundary, FDHMM satisfies the global
mass conservative property, and has the global convergence
property, and also shows a high accuracy in reconstruction of
the fine scale information.

[66] Our study is limited to 2-D unsaturated water flow
through specific heterogeneous soils. In the future, we plan
to further develop this algorithm for simulating unsaturated
water flow problems in more soils with heterogeneity.
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