
1 23

Acta Applicandae Mathematicae
An International Research Journal
on Applying Mathematics and
Mathematical Applications
 
ISSN 0167-8019
Volume 116
Number 2
 
Acta Appl Math (2011) 116:227-235
DOI 10.1007/s10440-011-9639-1

Asymptotic Profile of Species Migrating on
a Growing Habitat

Qiulin Tang, Lai Zhang & Zhigui Lin



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Acta Appl Math (2011) 116:227–235
DOI 10.1007/s10440-011-9639-1

Asymptotic Profile of Species Migrating on a Growing
Habitat

Qiulin Tang · Lai Zhang · Zhigui Lin

Received: 17 August 2010 / Accepted: 30 August 2011 / Published online: 21 September 2011
© Springer Science+Business Media B.V. 2011

Abstract This paper deals with a diffusive logistic equation on one dimensional isotropi-
cally growing domain. The model equation on growing domains is first presented, and the
comparison principle is then proved. The asymptotic behavior of temporal solutions to the
reaction-diffusion problem is given by constructing upper and lower solutions. Our result
shows that when the domain grows slowly, the species successfully spreads to the whole
habitat and stabilizes at a positive steady state, while it dies out in the long run if the domain
grows fast. Numerical simulations are also presented to illustrate the analytical result.
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1 Introduction

As we know, reaction-diffusion systems are used to model many chemical and biological
phenomena in the natural world [15]. The diffusive logistic equation is a classical scalar
reaction-diffusion equation:{

ut = d�u + u(a − bu), x ∈ �, t > 0,
u(x, t) = 0, x ∈ ∂�, t > 0,
u(x,0) = u0(x), x ∈ �,

(1.1)
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where � is a bounded domain of Rn, a, b and d are positive constants. Ecologically, u(x, t)

represents the population density, a is the intrinsic growth rate of species, b is the rate
of intra-specific competition while d denotes the diffusion coefficient, the homogeneous
Dirichlet boundary condition means that the species migrates in a domain surrounded by a
hostile environment. Problem (1.1) plays an important role in understanding various popula-
tion models and some other problems in applied mathematics [8]. It also forms the nucleus
of more complex multi-species models in ecology, pattern formation and, most notably, epi-
demiology [9].

The parabolic problem (1.1) and its generalizations have been extensively studied in
literatures [1,3,4,17]. In particular, it is well known that problem (1.1) has only a trivial
steady-state solution u = 0 when a ≤ dλ1(�), and a unique nonnegative nontrivial steady-
state solution u∗(x) when a > dλ1(�), where λ1(�) is the first eigenvalue of −� under
the Dirichlet boundary conditions on �. Moreover, it is further proven that u(x, t) → 0
uniformly if a ≤ dλ1(�), and when a > dλ1(�), u(x, t) → u∗(x) uniformly as t → ∞,
where u(x, t) is any nonnegative nontrivial solution to system (1.1).

We note that all above works were researched on fixed domains, i.e. the domain � is
independent of time t . A natural question arises: What is the effect on behavior of solution
to problem (1.1) when the domain grows? Indeed, domain growth has been suggested as
an important mechanism in pattern formation and election, we refer to [2, 5–7, 10, 16]
and the references therein for more details. In understanding the effects of incorporating
domain growth to pattern formation, the main research method is numerical computation and
simulations [12, 13]. To our knowledge, there are few analytical results for local stabilities
and Turing patterns on growing domains. Moreover, very little analytical work has been
directly carried out to study the asymptotic behavior of solution to problem (1.1) on growing
domains. The main reason is that the presence of time-dependent transport coefficients in
the model equations which constructed on growing domain leads to difficulty in stability
analysis [11]. In this paper, we try to use the method of upper and lower solutions to study
the asymptotic behavior of solution to problem (1.1) on a one dimensional growing domain
which isotropically grows to infinity. Our results show that when the domain grows slowly
to all the new environment, the species will uniformly tend to a positive constant, while it
dies out in the long run if the domain grows fast.

The remainder of this paper is organized as follows. In the next section, a general
reaction-diffusion equation is first presented on a continuously growing domain, then a dif-
fusive logistic equation on one dimensional isotropically growing domain is derived. In
Sect. 3, we investigate the asymptotic behavior of solution for diffusive logistic equation. To
illustrate our analytical result, two numerical examples are presented in Sect. 4. Finally, we
give a brief discussion in Sect. 5.

2 Model Formulation

In this section, we first present a general reaction-diffusion equation on a growing domain
in Rn and then derive the diffusive logistic model on a isotropically growing domain in one
spatial dimension.

As in [7], let �(t) ⊂ Rn be a time-varying domain with its growing boundary ∂�(t). For
any point x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ �(t), we assume that u(x(t), t) is the density of
a population, at position x(t) and time t ≥ 0.

According to the principle of mass conservation and Reynolds transport theorem, the
evolution equation for reaction diffusion on growing domain �(t) is readily obtained:

∂u

∂t
+ ∇u · a + u(∇ · a) = d∇2u + f (u) in �(t), (2.1)
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where d is the diffusive coefficient of u, a = (ẋ1(t), ẋ2(t), . . . , ẋn(t)) is a flow velocity field
due to the growth of domain. f (u) is the reaction term. In (2.1), the effect of domain growth
is given by introducing two extra terms into the problem: ∇u · a, an advection term repre-
senting the transport of material around �(t) at a rate determined by the flow a and (∇ ·a)u,
a dilution term due to local volume expansion [2].

We now look at the partial differential equation (2.1) from a Lagrangian point of view
[11, 14]. Let y1, y2, . . . , yn be fixed cartesian coordinates in fixed domain �(0) such that
x1(t) = x̂1(y1, y2, . . . , yn, t), x2(t) = x̂2(y1, y2, . . . , yn, t), . . . , xn(t) = x̂n(y1, y2, . . . , yn, t).

As t varies, the coordinates x1, x2, . . . , xn change position with time. These positions are
then mapped or transformed to a fixed position given by the y1, y2, . . . , yn coordinates. Un-
der this transformation, we suppose u is mapped into the new function defined as

u(x1(t), x2(t), . . . , xn(t), t) = v(y1, y2, . . . , yn, t). (2.2)

Thus (2.1) can be translated to another form which is defined on the fixed domain �(0) with
respect to y = (y1, y2, . . . , yn). However, the new equation is also more complicated for ar-
bitrary domain growth [14]. To further simplify the model equation (2.1), we assume that
domain growth is uniform and isotropic. By isotropic we mean that the boundary curve de-
forms continuously at the same rate in all directions at all times [11]. In mathematical terms,
x1(t) = x̂1(y1, y2, . . . , yn, t) = ρ(t)y1, x2(t) = x̂2(y1, y2, . . . , yn, t) = ρ(t)y2, . . . , xn(t) =
x̂n(y1, y2, . . . , yn, t) = ρ(t)yn, where ρ(t) is called growth function subject to ρ(0) = 1
and ρ̇(t) ≥ 0 for all t > 0.

Next we give the diffusive logistic equation on one dimensional isotropically growing
domain. Let �(t) = (−R(t),R(t)), where R(t) representing the domain size at time t , and
x(t) ∈ �(t) can be described as follows:

x(t) = ρ(t)y, y ∈ (−1,1). (2.3)

Clearly, the transformation (2.3) changes the growing interval (−R(t),R(t)) to the fixed
interval (−1,1).

By (2.3), we have a = ẋ(t) = ρ̇(t)y = ρ̇

ρ
x,∇ · a = ρ̇

ρ
. If denote v(y, t) = u(x(t), t)

(= u(ρ(t)y, t)), then ∂v
∂t

= ∇u · a + ∂u
∂t

,∇2u = 1
ρ2(t)

∂2v

∂y2 . So (2.1) becomes

∂v

∂t
= d

ρ2(t)

∂2v

∂y2
− ρ̇(t)

ρ(t)
v + f (v), −1 < y < 1, t > 0. (2.4)

Taking f (v) = v(a − bv) and considering the Dirichlet boundary condition, we then have
the following diffusive logistic problem on the growing domain �(t):⎧⎪⎨

⎪⎩
∂v
∂t

= d

ρ2(t)

∂2v

∂y2 − ρ̇(t)

ρ(t)
v + v(a − bv), −1 < y < 1, t > 0,

v(−1, t) = v(1, t) = 0, t > 0,

v(y,0) = v0(y)(= u0(y)), −1 < y < 1.

(2.5)

3 Asymptotic Behavior of Temporal Solution

In this section, we assume that the size of �(t) tends to infinity, that is R(t) → ∞, as
t → ∞. According to (2.3), we correspondingly assume the growth function ρ(t) is contin-
uous differentiable on [0,+∞) and satisfies

ρ(0) = 1, ρ̇(t) > 0, lim
t→∞ρ(t) = +∞, lim

t→∞
ρ̇(t)

ρ(t)
= k. (3.1)
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A biologically reasonable example of ρ(t) is ρ(t) = exp(kt) or ρ(t) = 1 + mt [16].
Under the above assumptions, we investigate the asymptotical behavior of the solution

of (2.5). Firstly we give the following definition of upper and lower solutions.

Definition 3.1 A functions ṽ(y, t) is called an upper solution of (2.5) if ṽ ∈ C2,1((−1,1) ×
(0,∞)) ∩ C([−1,1] × [0,+∞)) and satisfies

⎧⎪⎨
⎪⎩

ṽt ≥ d

ρ2(t)
ṽyy − ρ̇(t)

ρ(t)
ṽ + ṽ(a − bṽ), −1 < y < 1, t > 0,

ṽ(−1, t) ≥ 0, ṽ(1, t) ≥ 0, t > 0,

ṽ(y,0) ≥ v0(y), −1 < y < 1.

(3.2)

Similarly, v̂(y, t) ∈ C2,1((−1,1) × (0,+∞)) ∩ C([−1,1] × [0,+∞)) is called a low solu-
tion of (2.5) if it satisfies all the reversed inequalities in (3.2).

To show our main result, we need the following lemmas.

Lemma 3.1 (Comparison Principle) Let v(y, t) be a solution of (2.5), ṽ(y, t) and v̂(y, t) are
upper and lower solutions of (2.5) respectively, then v̂(y, t) ≤ v(y, t) ≤ ṽ(y, t) in [−1,1] ×
[0,+∞).

Proof Define w = ṽ − v, and it is easy to see that w(y, t) satisfies

⎧⎪⎨
⎪⎩

wt ≥ d

ρ2(t)
wyy + (a − b(ṽ + v) − ρ̇

ρ
)w, −1 < y < 1, t > 0,

w(−1, t) ≥ 0, w(1, t) ≥ 0, t > 0,

w(y,0) ≥ 0, −1 < y < 1.

(3.3)

Applying the maximum principle leads to

w(y, t) ≥ 0, −1 ≤ y ≤ 1, t ≥ 0,

that is ṽ(y, t) ≥ v(y, t), −1 ≤ y ≤ 1, t ≥ 0. Similarly, v̂(y, t) ≤ v(y, t) can be proved. �

Lemma 3.2 Let v(y, t) be a nonnegative nontrivial solution of the following problem

⎧⎨
⎩

vt = d

ρ2(t)
vyy − ρ̇(t)

ρ(t)
v + v(a − bv), −1 < y < 1, t > 0,

v(−1, t) = v(1, t) = 0, t > 0,
v(y,0) = v0(y) ≥ 0, −1 < y < 1.

(3.4)

If v0(y) ∈ C2[−1,1], v0(−1) = v0(1) = v0,yy(−1) = v0,yy(1) = 0 and v0,yy(y) ≤ 0 in
[−1,1], then v(y, t) ∈ C2,1([−1,1] × [0,+∞)) and

vyy(y, t) ≤ 0 for y ∈ (−1,1), t > 0.

Proof Since the initial function v0 is smooth and satisfies the consistency condition:

d

ρ2(0)
v0,yy(y) − ρ̇(0)

ρ(0)
v0(y) + v0(a − bv0)(y) = 0 for y = −1,1,
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then the standard parabolic regularity theory shows that the solution v(y, t) ∈ C2,1([−1,1]×
[0,+∞)). Denote w = vyy , then it satisfies

wt ≤ d

ρ2(t)
wyy +

(
− ρ̇(t)

ρ(t)
+ a − 2bv

)
w. (3.5)

In addition, the condition vyy(y,0) ≤ 0 implies w(y,0) ≤ 0. Since v(−1, t) = 0, we have

w(−1, t) = vyy(−1, t) = ρ2(t)

d
(vt + ρ̇(t)

ρ(t)
v − v(a − bv))(−1, t) = 0. Similarly, w(1, t) = 0.

Using the comparison principle gives that w(y, t) ≤ 0 for y ∈ (−1,1), t > 0, which implies
that vyy(y, t) ≤ 0 for y ∈ (−1,1), t > 0. �

Lemma 3.3 Let v(t) be the solution to the following problem:{
v′ = − ρ̇(t)

ρ(t)
v + v(a − bv),

v(0) ≥ 0,
(3.6)

where ρ(t) is continuous differentiable on [0,+∞) and satisfies limt→∞ ρ̇(t)

ρ(t)
= k.

(1) If k < a, then limt→∞ v(t) = a−k
b

.
(2) If k > a, then limt→∞ v(t) = 0.

Proof (1) limt→∞ ρ̇(t)

ρ(t)
= k implies that for any ε > 0, we can find T1 > 0 such that k − ε ≤

ρ̇(t)

ρ(t)
≤ k + ε for t ≥ T1. Let v̄(t) be the solution of problem

{
v̄′ = −(k − ε)v̄ + v̄(a − bv̄), t > T1,
v̄(T1) = v(T1).

(3.7)

It follows from the comparison principle that v(t) ≤ v̄(t) for t > T1. By solving the problem
(3.7), we have

v̄(t) = a − k + ε

b
e(a−k+ε)(t−T1)

[
e(a−k+ε)(t−T1) − 1 + a − k + ε

bv(T1)

]−1

. (3.8)

It is easy to see that limt→∞ v̄(t) = a−k+ε
b

when a − k > 0. Thus we have lim supt→∞ v(t) ≤
a−k
b

since that ε can be chosen sufficiently small.
Similarly, if we denote v̂(t) be the solution to the following problem{

v̂′ = −(k + ε)v̂ + v̂(a − bv̂), t > T1,
v̂(T1) = v(T1),

(3.9)

then v(t) ≥ v̂(t) and limt→∞ v̂(t) = a−k−ε
b

. It follows that lim inft→∞ v(t) ≥ a−k
b

. So we
obtain limt→∞ v(t) = a−k

b
if k < a.

(2) If k > a, then we can choose ε > 0 sufficiently small such that a − k + ε < 0. Analo-
gously, by arguments similar to those in the proof of (1), we see that v(t) ≤ v̄(t) for t > T1

and limt→∞ v̄(t) = 0. In addition, v̂(t) = 0 is a lower solution of problem (3.6). Thus we
have limt→∞ v(t) = 0 when k > a. �

Theorem 3.1 Suppose that the growth function ρ(t) satisfies (3.1). If k < a, then the solu-
tion of problem (2.5) satisfies v(y, t) → a−k

b
uniformly in any compact subset of (−1,1) as

t → ∞.
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Proof Let λ1(= ( π
2 )2) be the principal eigenvalue of Laplace operator under the homoge-

nous Dirichlet boundary condition and φ (= sin π
2 y) be the corresponding eigenfunction

of λ1.
On one hand, the following problem⎧⎪⎨

⎪⎩
v̂t = d

ρ2(t)
v̂yy − ρ̇(t)

ρ(t)
v̂ + v̂(a − bv̂), −1 < y < 1, t > 0,

v̂(−1, t) = 0, v̂(1, t) = 0, t > 0,

v̂(y,0) = δφ(y), −1 < y < 1,

(3.10)

admits a unique solution v̂(y, t), where δ is a positive constant. First take δ sufficiently
small such that δφ(y) ≤ v0(y), then v̂(y, t) is an lower solution of (2.5). It follows from the
comparison principle that v̂(y, t) ≤ v(y, t) for y ∈ (−1,1), t > 0.

Since limt→∞ ρ(t) = +∞, then for any L >

√
d

a−k
π
2 , there exists a T2 > 0 such that

ρ(t) > L for t ≥ T2.

Set T0 = max{T1, T2}, where T1 is taken as in the proof of Lemma 3.3. Since v̂yy(y,0) =
δφ′′(y) = −λ1δφ(y) ≤ 0, it follows from Lemma 3.2 that v̂yy(y, t) ≤ 0 for y ∈ (−1,1),
t > 0. Therefor v̂(y, t) satisfies

v̂t ≥ d

L2
v̂yy − (k + ε)v̂ + v̂(a − bv̂), −1 < y < 1, t > T0. (3.11)

Now consider the following problem⎧⎪⎨
⎪⎩

vt = d

L2 vyy + (a − k − ε)v − bv2, −1 < y < 1, t > T0,

v(−1, t) = v(1, t) = 0, t > T0,

v(y,T0) = δφ(y), −1 < y < 1.

(3.12)

Clearly, (3.12) admits a unique solution v̂ε(y, t). Using the comparison principle yields that
v̂ε(y, t) ≤ v̂(y, t), and therefore,

v̂ε(y, t) ≤ v̂(y, t) ≤ v(y, t), −1 < y < 1, t > T0. (3.13)

Since that L >

√
d

a−k
π
2 , we can choose sufficiently small ε > 0 such that a−k−ε > d( π

2L
)2.

It is well-known that v̂ε(y, t) → v∗(y) uniformly in [−1,1] as t → ∞, where v∗ is the
unique positive solution of{− d

L2 vyy = (a − k − ε)v − bv2, −1 < y < 1,

v(−1) = v(1) = 0.
(3.14)

It follows that lim inft→∞ v(y, t) ≥ v∗(y) uniformly in [−1,1]. Now for any fixed L >√
d

a−k
π
2 , we define z and w by z = Ly,w(z, t) = v( z

L
, t), then the problem (3.14) becomes

{−dwzz = (a − k − ε)w − bw2, −L < z < L,
w(−L) = w(L) = 0.

(3.15)

Let w∗(z) denote the unique positive solution of the problem (3.15). Using Lemma 2.2
of [8], we easily see that w∗(z) → a−k−ε

b
as L → +∞ uniformly in any compact subset

of (−∞,+∞). That is v∗(y) → a−k−ε
b

as L → +∞ uniformly in any compact subset of
(−1,1). Therefore lim inft→∞ v(y, t) ≥ a−k

b
in any compact subset of (−1,1).
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On the other hand, let ṽ(y, t) denote the unique solution of the problem:

⎧⎪⎨
⎪⎩

ṽt = d

ρ2(t)
ṽyy − ρ̇(t)

ρ(t)
ṽ + ṽ(a − bṽ), −1 < y < 1, t > T0,

ṽ(−1, t) = 0, ṽ(1, t) = 0, t > T0,

ṽ(y,0) = Mφ(y), −1 < y < 1,

(3.16)

where M is a sufficiently large constant. It follows from the comparison principle that
v(y, t) ≤ ṽ(y, t) for −1 < y < 1, t > T0. Note that ṽyy(y,0) = Mφ′′(y) = −λ1Mφ(y) ≤ 0,

we have ṽyy(y, t) ≤ 0 for y ∈ (−1,1), t > 0 according to Lemma 3.2. So ṽ(y, t) satisfies

ṽt ≤ − ρ̇(t)

ρ(t)
ṽ + ṽ(a − bṽ), −1 < y < 1, t > T0. (3.17)

Let v̄(t) denote the positive solution of following problem

{
v̄′ = − ρ̇(t)

ρ(t)
v̄ + v̄(a − bv̄), t > T0,

v̄(0) = M.
(3.18)

Using again the comparison principle, we have ṽ(y, t) ≤ v̄(t) for −1 < y < 1, t > T0. It
follows from Lemma 3.3 that limt→∞ v̄(t) = a−k

b
. So we deduce lim supt→∞ v(y, t) ≤ a−k

b

uniformly for y ∈ (−1,1). Therefore we have limt→∞ v(y, t) = a−k
b

uniformly for y in any
compact subset of (−1,1). This completes the proof. �

Theorem 3.2 Suppose that the growth function ρ(t) satisfies (3.1), If k > a, then the solu-
tion of problem (2.5) satisfies v(y, t) → 0 uniformly for y ∈ (−1,1) as t → ∞.

Proof Clearly, v̂ = 0 is a lower solution of (2.5). We define ṽ(y, t) and v̄(t) as in the proof
of Theorem 3.1. So

v(y, t) ≤ ṽ(y, t) ≤ v̄(t) (3.19)

holds for (y, t) ∈ (−1,1) × (T0,+∞). By Lemma 3.3, we have v̄(t) → 0 if k > a. Us-
ing (3.19) yields lim supt→∞ v(y, t) ≤ 0 uniformly for y ∈ (−1,1). So we obtain that
v(y, t) → 0 uniformly for y ∈ (−1,1) as t → ∞ if k > a. �

Remark 3.1 From the proofs of Theorems 3.1 and 3.2, we can see that, if k < a, then the
solution to the corresponding problem of (2.1) satisfies u(x, t) → a−k

b
uniformly in any

compact subset of (−∞,+∞) as t → ∞. If k > a, then u(x, t) → 0 uniformly for x ∈
(−∞,+∞) as t → ∞.

Remark 3.2 Theorems 3.1 and 3.2 show that when the habitat increases to infinity, for the
fixed birth rate a, if k is small, then the species will uniformly tend to a positive constant; if
k is large, then the species will be extinct.

4 Numerical Simulations

In this section, we present numerical simulations to illustrate our theoretical analysis using
Matlab in one dimensional space.
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234 Q. Tang et al.

Fig. 1 Numerical simulations of the asymptotic behavior of the solution to problem (2.5) corresponding to
the growth function ρ(t) = exp(kt). Left: k = 1 < a = 1.5. Right: k = 2 > a = 1.5

Fig. 2 (Color online) Numerical simulations of the asymptotic behavior of the solution to problem (2.5) cor-
responding to the growth function ρ(t) = 1+ t . Left: The developing process of domain growth corresponding
to the growth function ρ(t) = 1 + t . Right: Convergence of temporal solutions to the positive constant 1.5
(red dashed line)

Regarding the domain growth and symmetry, we choose the growing domain [0,R(t)),
t ≥ 0. For any compact subset [0, x(t)] (= [0, ρ(t)y],0 ≤ y ≤ 1), we choose exponential
growth function ρ(t) = exp(kt), k > 0, or linear growth function ρ(t) = 1 + mt,m > 0. It
is easy to see that domain grows from initial size ρ(0) = 1 to the final size ρ∞ = +∞.

Firstly we choose parameters in system (2.5): a = 1.5, b = 1, d = 1, and the growth
function ρ(t) = et (k = 1 < a), then according to Theorem 3.1, solution v(y, t) to problem
(2.5) asymptotically converges to a−k

b
= 0.5 uniformly in any compact subset of (−1,1)

as t → ∞. If we choose ρ(t) = e2t , then k = 2 > a. By Theorem 3.2, solution v(y, t) to
problem (2.5) asymptotically converges to 0 uniformly for y ∈ (−1,1) as t → ∞. These
are showed in Fig. 1, where the process of domain growth is presented. If we choose an-
other growth function ρ(t) = 1 + t , then k = 0 < a. By Theorem 3.2, we know that v(y, t)

asymptotically converges to a
b

= 1.5, see Fig. 2.
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5 Discussion

We investigated a single species diffusive logistic model on a growing domain which grows
isotropically to infinity. In order to simplify the reaction-diffusion equation (RDE) on a
continuously growing domain, we assumed that the domain growth is isotropic, and then it
was transformed into RDE on fixed domain in the Lagrangian coordinate system [7]. But this
transformation bring about time-dependence diffusive coefficient and dilution terms which
make it difficult to carry out stability analysis. To our knowledge, most works in studying
pattern formation in literatures were done through numerical simulations [6, 7, 12, 13, 16]. In
this paper, we succeeded carrying out the analysis of asymptotic behavior of the solution to
system (2.5) using the method of upper and lower solutions. Numerical simulations are also
given. Our results show that if the relative growth rate of domain is small, then the species
will spread and tend to a positive constant state, if the relative growth rate of domain is large,
then the species will be extinct. Ecologically, it implies that slow growth of domain takes
a positive effect on spreading of the species while fast growth of domain takes a negative
effect on the existence of the species.

Domain growth is not a new but interesting topic attracting a lots of attention. However,
whether our method can be applied to reaction-diffusion systems modelling two or more
species in high dimensional space also need to further investigation. From both theoretical
and applied points of view, this provides challenging work in the future.
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