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In  this  paper,  we  propose  a robust  wood  cell  recognition  scheme  using  color  wood  cell  images.  First,  a
novel  2-D  cell  image  collection  system  is  devised,  and  the  wood  cell  images  are  segmented  by  using  a  dual-
threshold  segmentation  algorithm.  Second,  a geodesic  active  contour  (GAC)  is  applied  in  the segmented
eywords:
ood cell recognition

mage processing
rincipal component analysis

binary  image  to  extract  the edge  contours  of multiple  cells  simultaneously.  Third,  wood  cell  recognition
is  performed  based  on  the Mahalanobis  distances  calculated  by  using  the principal  component  analysis
(PCA)  algorithm.  We  have  experimentally  proved  that  this  scheme  improves  the  recognition  accuracy,
which  can  efficiently  discriminate  the intraspecific  cell’s  shape  variation  and  the  interspecific  cell’s  shape
variation.
hape

. Introduction

Wood cell detection is a significant issue in the wood industry
1]. It consists of the cell morphological analysis, cell density anal-
sis, and wood cell recognition. A variety of visual characteristics
as been used in the wood cell detection, and can be divided into
hree general categories: cell morphology [2–4], spectral analysis
5],  and Fourier spectra [6,7]. As for the wood cell recognition, the
nlarged cell images of the wood slice are usually picked up by the
maging camera. Then cell’s shape features including the cell’s area,
erimeter, centroid, profile and number are extracted by the image
rocessing algorithms for the subsequent wood cell recognition [8].

However, the current wood cell recognition based on shape fea-
ures is sometimes poor especially for those cell species which
ave similar cell’s morphological structures (e.g., for the two  wood
pecies Abies nephrolepis and Picea jezoensis, the cell’s morpholog-
cal structures are similar, as illustrated in Fig. 1). Moreover, for
very wood species, the shape variations of cells usually occur in

 cell image, as illustrated in Fig. 2. Therefore, the individual cell’s
hape variation consists of the intraspecific cell’s shape variation
nd the interspecific cell’s shape variation. The mixture of these two

hape variations may  decrease the cell recognition accuracy, since
he intraspecific cell’s shape variation may  blanket the interspe-
ific cell’s shape variation. In fact, the current recognition schemes
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do not take into account these two  shape variations with different
natures.

In this paper, we  propose a novel cell recognition scheme that
considers the above-mentioned cell’s intraspecific and interspecific
shape variations. This recognition scheme consists of two advan-
tages. First, it can efficiently discriminate the intraspecific cell’s
shape variation and the interspecific cell’s shape variation by using
the PCA algorithm. Second, a GAC model is applied in a binary
cell image, which can extract the edge contours of multiple cells
simultaneously in a parallel way. Therefore, this scheme is not only
time efficient by using a GAC model but also improves the cell
recognition accuracy by using the PCA algorithm which can both
effectively tolerate the intraspecific cell’s shape variation and effec-
tively identify the interspecific cell’s shape variation. We  provide
a fundamental experimental framework for a fast/accurate wood
cell recognition work by using the cell’s shape variation informa-
tion. This framework can effectively and quickly identify the wood
species by means of the cell recognition so as to judge the physical
property and economic value of different wood species correctly. It
can be used in some fields of the wood industry such as the wood
assortment and the wood price so as to decrease the economic
losses from the wood species misclassification.

2. Materials and methods
2.1. 2-D image collection system

One novel 2-D image collection system is devised as in Fig. 3.
The image aiming system is the main part of an image collec-

dx.doi.org/10.1016/j.ijleo.2012.02.032
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Fig. 1. Cell images of two  wood species Abies nephrolepis and Picea jezoensis. (a)
Abies nephrolepis; (b) Picea jezoensis.
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ig. 2. Cell image of wood species Picea koraiensis to illustrate the intraspecific cell’s
hape variations.

ion system. In Fig. 3, the ray from the radian goes through the
ollimation path and is projected onto the detected object’s sur-
ace (i.e., the wood microscopic slice). The cell image is formed in a
tereo microscope and then picked up by a color CCD camera. After a
hotoelectric transform, this image is sent into the computer by the

nterface circuit to form the digital image which will be used in the
ell recognition task. In our experimental setup, a XYH-3A stereo
icroscope and a Sony WV-CP240EXCH color camera are used to

btain the wood cell images. As for the accurate adjustment of the
ood slice position in the X direction or Y direction, the optical scale

an be used to fulfill this task, whose reading resolution is 0.1 �m
ere.

.2. Image segmentation

During the production of wood microscopic slices, the wood
lices are dyed by safranine. As a result of that, red is often the
rincipal color channel in cell walls for every wood species, while
o color exists in cell lumens. In our scheme, the RGB color infor-
ation is combined into one color feature (2R  + G + B)/4, since red
s often the principal color channel in cell images. Therefore, the
olor cell images are converted into the grey-scale cell images with
he combined color feature (2R  + G + B)/4.

Fig. 3. 2-D cell image collection system graph.
Fig. 4. The image histogram of the cell image.

For the converted grey-scale cell images, a dual-threshold seg-
mentation algorithm is used:

I(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 I(x, y) ≤ TS1

1  I(x, y) ≥ TS2{
0 sum ≤ 4

1 sum > 4

otherwise (1)

where TS1, TS2  are the dual thresholds of image I(x, y):{
TS1  = PV1 + 1

5 (PV2 − PV1)

TS2  = PV2 − 1
5 (PV2 − PV1)

(2)

where PV1, PV2 are the 1st and 2nd peak values in the image his-
togram as illustrated in Fig. 4; sum =

∑8
i=1Pi is the statistical value

in the 8-adjacent region of the processed pixel:

Pi =

⎧⎪⎨
⎪⎩

0 I(x, y) ≤ PV1  + PV2
2

1  I(x, y) >
PV1  + PV2

2

(3)

2.3. Parallel contour extraction by GAC

Active contours are introduced by Kass et al. for segmenting
objects in images using dynamic curves [9].  The existing active
contours are classified as either parametric active contours or
GACs. In particular, the parametric active contours are represented
explicitly as parameterized curves in a Lagrangian framework,
while the GACs are represented implicitly as level sets of the two-
dimensional functional that evolve in an Eulerian framework.

GACs present one advantage over the traditional parametric
active contours [10]. In fact, GACs represented by the level set func-
tional may  break or merge naturally during the evolution, and the
topological changes are automatically handled. Therefore, they can
detect multiple objects in an image simultaneously. In level set for-
mulation, moving active contours are represented by the zero level
set C(t) = { (x, y)

∣∣ϕ(t, x, y) = 0} of a level set functional ϕ(t,x,y). The
evolution equation of the level set functional ϕ can be written as
follow [11]:

∂ϕ

∂t
+ F

∣∣∇ϕ
∣∣ = 0 (4)

where the functional F is called the speed functional. For image seg-
mentation, F depends on the image data and the level set functional
ϕ.

Early GACs usually evolve the level set functional with a partial
differential equation (PDE). Compared to pure PDE driven level set
schemes, the variational schemes are more convenient and natu-

ral for incorporating additional information. In this work, we use a
variational level set formulation of curve evolution proposed by
Ming et al. [12]. For example, Fig. 5 shows the parallel contour
extraction result by GAC in a binary segmented cell image obtained
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percentage rate of correctly identified wood cells) is calculated. The
ig. 5. Parallel contour extraction result by GAC in a binary segmented cell image.
a)  Initial GAC; (b) result after 50 iterations; c result after 200 iterations.

y using the segmentation algorithm in Section 2.2.  Moreover,
very cell lumen’s area (unit: pixel) is computed as follows.

1) For a CCD image with multiple cells, we apply the variational
GAC firstly. Then we find the background pixels with the fol-
lowing method: a pixel p(x,y) is considered as one background
pixel, if its level set functional value ϕ(x,y) > 0.

2) Let’s consider pixels as squares. The pixel p(x,y) with its
ϕ(x,y) < 0 and with all its four corner pixels (i.e., the upper,
down, left and right pixels) having ϕ < 0 is considered as the
cell’s interior pixel, and then this pixel contributes one unit to
the cell’s pixel area integration.

3) Let’s find the cell’s boundary pixels. The pixel p(x,y) with its
ϕ(x,y) < 0 and with at least one pixel having ϕ > 0 among its
four corner pixels is considered as the cell’s boundary pixel. The
area computation in those boundary pixels is based on count-
ing those pixel squares that are divided by the zero level set
computed before.

After every cell lumen’s area Sl is calculated, it is compared
ith two thresholds T1

S , T2
S and those cells whose areas satisfy that

1
S ≤ Sl ≤ T2

S are retained to discard those small tissues and large
dherent cells.

.4. Shape recognition with PCA

.4.1. Shape analysis of training cells
We use the GAC to simultaneously extract every cell’s contour

dge for each training cell image, species by species, to investi-
ate characteristic shape variations of wood cells within the same
pecies. Before the real analysis of shape variations could take place,
t is necessary to align the set of training cell shapes. The alignment
s achieved by scaling, rotating and translating the training shapes
o that they correspond as closely as possible with each other. Each
f the aligned training cell shapes gives rise to a vector xi describing

 boundary points:

i = (xi,1, yi,1 . . . xi,n, yi,n)T (5)

here i = 1, 2, . . .,  N, and (xi,j, yi,j) is the jth point of the ith cell
hape; N is the number of training shapes for every species. The
ean/standard cell shape vector x̄ is  calculated as:
¯ = 1
N

N∑
i=1

xi (6)
ik 124 (2013) 949– 952 951

The modes of shape variations, i.e. the ways in which the cell’s
contour edge points tend to move together, can be found by apply-
ing a PCA to the deviations from the mean vector:

�xi = xi − x̄ (7)

From these deviations, the 2n × 2n covariance matrix S can be
computed as follow:

S = 1
N

N∑
i=1

�xi�xi
T (8)

The modes of variations of the cell shape points can be described
by the 2n unit eigenvectors, p1, . . .,  p2n, and the corresponding 2n
eigenvalues, �1, . . .,  �2n, of the covariance matrix S. Any shape in
the aligned training set can be approximated as a sum of the mean
shape and a weighted sum of the first t(t < 2n) eigenvectors:

xi ≈ x̄ + Pbi (9)

where P = (p1p2 . . . pt) is a matrix of the first t(t < 2n) eigenvectors;
and bi = (bi,1, . . .,  bi,t)T is a vector of weights.

2.4.2. Recognition
Eq. (9) permits the generation of a new shape example by replac-

ing bi with a new vector of weight b. Provided that the weights are
not too far from zero, the new synthetic example will be similar
to those in the training set. For an unknown cell shape vector xl
in a cell image of unknown species (i.e., l = 1, 2, . . .,  K; K is the cell
number to be recognized), the weight vector bl = (bl,1, . . .,  bl,t)T is
computed as follows:

bl = PT (xl − x̄) (10)

Define the Mahalanobis distance Dl as follow:

D2
l =

t∑
h=1

(
b2

l,h

�h

)
(11)

The final classification distance is:

D =
K∑

l=1

Dl (12)

Therefore, an unknown cell image should be classified as a
species to which the minimum distance Dmin is obtained.

3. Results and discussion

3.1. Results

The wood cell images are acquired by the experimental platform
as illustrated in Fig. 3. To process the cell image sequence efficiently,
DH-CG400 video image collector is used to achieve a fast transmis-
sion speed of 132 MB/s. Experiments are performed in the Pentium
2.80 GHz computer with the internal memory of 1.0 GB by using
the Matlab 6.5.

Five different wood cells including A. nephrolepis, Picea koraien-
sis, Pinus koraiensis,  Cunninghamia lanceolata,  P. jezoensis cells are
tested, as illustrated in Fig. 6. For every wood cell species, 30 images
are picked up by the camera. Among these 30 cell images for every
species, 15 images are selected as the training cell images. Then the
pattern recognition experiment is performed to the remaining 15
images and the relevant recognition rate of accuracy (RRA, i.e., the
relevant RRAs for five wood species A. nephrolepis, Picea koraiensis,
Pinus koraiensis,  C. lanceolata,  P. jezoensis are approximately 85%,
83%, 89%, 80% and 91%, respectively.
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ig. 6. Cell images of five wood species. (a) Abies nephrolepis cell; (b) Picea koraiensis
ell;  (c) Pinus koraiensis cell; (d) Cunninghamia lanceolata cell; (e) Picea jezoensis cell.

.2. Discussion

To accelerate the recognition speed and improve the recogni-
ion accuracy, two issues should be remarked. First, the original
ell image size is large (i.e., with a resolution 1392 × 1040) and
here are hundreds of cells in one image. Obviously, it is not practi-
al/possible for a GAC to converge to the contour edges of all these
ells simultaneously. Therefore, we segment the original cell image
nto many small sub-images (i.e., with a resolution 128 × 128). In
hese sub-images, there are usually 10 wood cells approximately
nd our GAC will often converge to the contour edges of the inte-
ior 5 cells simultaneously. The following cell recognition work is
erformed in these cell sub-images. For each sub-image, a classifi-
ation distance D is computed and the final classification distance
or the original cell image is the mean value of all classification
istances in sub-images.

Second, to ensure the contour extraction accuracy of the GAC,
he initial GAC must be placed near the contour edges of the
etected cells manually; otherwise, the GAC may  converge to the
rong contour edges. Some initialization examples of GAC are illus-

rated in Fig. 7. We  do admit that it is a drawback for a GAC to be
nitialized manually near the cell’s contour edges. In fact, the GAC
an only perform a semi-automatic contour extraction work, since
he initial GAC must be given by an experienced/expert operator.
ut until now we have not found automatic GAC research work
hich can automatically set the initial GAC.
.3. Comparisons

For the recognition comparisons, another scheme based on the
ray and shape information is also performed [8].  The Freeman code

ig. 7. Contour extraction comparisons by GAC with different initializations. (a)
ood initial GAC; (b) good result after 200 iterations; (c) poor initial GAC; (d) poor

esult after 200 iterations.

[

[

[

ik 124 (2013) 949– 952

is used in this scheme to extract the cell’s contour edges. Then cell
features including the cell’s area, perimeter, centroid, profile and
number are extracted by the image processing algorithms for the
subsequent wood cell recognition. To ensure the objectivity/justice
of experimental comparisons, the same image preprocessing pro-
cedure is used (i.e., for every wood cell species, 15 images are
selected as the training cell images. Then the pattern recognition
experiment is performed to the remaining 15 images. We  also seg-
ment the original cell image into many small sub-images with a
resolution 128 × 128). The relevant RRAs for five wood species A.
nephrolepis, Picea koraiensis,  Pinus koraiensis,  C. lanceolata,  P. jezoen-
sis are approximately 80%, 75%, 85%, 77% and 88%, respectively,
which indicates our scheme outperforms Ren’s recognition algo-
rithm in terms of the RRA.

4. Conclusions

In this paper, we  propose a novel cell’s shape recognition scheme
that considers the wood cell’s intraspecific and interspecific shape
variations. This recognition scheme consists of two advantages.
First, it can efficiently discriminate the intraspecific cell’s shape
variation and the interspecific cell’s shape variation by using the
PCA algorithm. Second, a GAC model is applied in a binary cell
image, which can extract the edge contours of multiple cells simul-
taneously in a parallel way. Therefore, this scheme is not only time
efficient by using a GAC model but also improves the cell recogni-
tion accuracy by using the PCA algorithm which can both effectively
tolerate the intraspecific cell’s shape variation and effectively iden-
tify the interspecific cell’s shape variation.
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