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Unstructured Peer-to-Peer (P2P) networks have become a very popular architecture for content
distribution in large-scale and dynamic environments. Searching for content in unstructured P2P
networks is a challenging task because the distribution of objects has no association with the
organization of peers. Proposed methods in recent years either depend too much on objects replication
rate or suffer from a sharp decline in performance when objects stored in peers change rapidly,
although their performance is better than flooding or random walk algorithms to some extent. In this
paper, we propose a novel query routing mechanism for improving query performance in unstructured
P2P networks. We design a data structure called traceable gain matrix (TGM) that records every query’s
gain at each peer along the query hit path, and allows for optimizing query routing decision effectively.
Experimental results show that our query routing mechanism achieves relatively high query hit rate
with low bandwidth consumption in different types of network topologies under static and dynamic

network conditions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, peer-to-peer (P2P) networks have rapidly
evolved and have become an important part of the Internet. P2P
systems are application layer overlay networks that enable users
to share resources in a distributed manner. There are mainly two
kinds of overlays for P2P networks: structured and unstructured.
Structured P2P networks have been developed to improve the
performance of data discovery in such a way that each object is
identified by a key and peers are organized into a structured
graph, which maps each key to a corresponding peer. By far, the
most common-used structured P2P networks are based on
distributed hash table (DHT), in which a variant of consistent
hashing is used to assign ownership of each object to a particular
peer (Stoica et al., 2001; Ratnasamy et al., 2001; Rowstron et al.,
2001; Zhao et al., 2001). It is commonly believed that structured
P2P networks are more expensive to maintain than unstructured
P2P networks and the constraints imposed by the structure make
them hard to improve scalability. Unstructured P2P networks are
highly robust to peer failure or churn, and they are also relatively
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straightforward to implement multiple keyword search or partial
match (Zhang and Hu, 2007). So many P2P applications are still
deployed on unstructured P2P networks.

There are many successful applications of unstructured P2P
networks, such as Gnutella (Frankel and Pepper, 2000), Freenet
(Clarke et al., 2000), KaZaA (Heinla et al., 2001) and Skype (Heinla
et al., 2003). In these systems, a large number of peers collaborate
in a dynamic and ad hoc manner and share information in
large-scale distributed environments without any centralized
coordination.

Typically, a P2P network involves millions of peers, each of
which may join and leave the network in an unpredictable
manner, and the objects kept in peers are changing from time to
time. There is no correlation between a peer and the objects
managed by it in unstructured P2P networks. If a peer wants to
find a desired object in the network, the query message has to be
flooded through the network to search as many peers as possible.
Each query message has a unique message ID. A message that has
the same message ID as the one received previously by the same
peer is considered a redundant message and will be discarded. If
the object is kept by only a few peers, the search either is
prohibitively cost or fails eventually. So a challenging issue is how
to search the objects efficiently without incurring heavy traffic in
unstructured P2P networks.

Gnutella (Frankel and Pepper, 2000) uses flooding based
routing algorithm with time-to-live (TTL) to search for objects.
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This method is suitable for dynamic network environments but
may lead to too many messages, particularly in high connectivity
overlay networks. More than 70% of the generated messages are
redundant in a flooding with a TTL of 7 in a moderately connected
Gnutella network (Jiang et al.,, 2008). Also, it is not easy to
choose an appropriate TTL value when the overlay topology is
unknown.

Random walk algorithms have been studied in Gkantsidis et al.
(2004, 2005), Lv et al. (2002), and Bisnik and Abouzeid(2007),
which can achieve better results than flooding when the overlay
topology is clustered and similar search requests are re-issued
repeatedly, as well as the entire topology does not change
dramatically (less than 40%) (Gkantsidis et al., 2004). In a k-
walker random walk algorithm (Lv et al., 2002), the query is
forwarded to k randomly selected neighbors. Those neighbors in
turn forward to k randomly selected neighbors. Unlike flooding,
the overhead of random walk is independent of the underlying
topology, but the performance of random walk largely depends on
the choice of k and TTL value. Intuitively, the average number of
peers required to be probed for discovering an object is inversely
proportional to the popularity of the object (Bisnik and Abouzeid ,
2007). Choosing low values of k and TTL value for searching
objects with low popularity would result in low query hit rate and
high delays while choosing high values of k and TTL value for
searching objects with high popularity would result in excessive
bandwidth consumption.

Generally speaking, random walk based algorithms reduce the
network load generated by each query, but massively increase the
search latency compared with flooding based algorithms. There is
usually a tradeoff between random walk and flooding, and the
comparison of their performance is addressed in Lv et al. (2002).
Chawathe et al. (2003) presented a Gnutella-like P2P file-sharing
system called Gia, which replaces Gnutella’s flooding with
random walk. Gia incorporates heterogeneity into system design
and tries to direct queries towards the high-capacity nodes, which
are typically much better able to answer the queries.

In this paper, we propose a p ath-traceable g uery r outing (short
for PQR) mechanism for search in unstructured P2P networks. We
design a novel data structure called traceable gain matrix (short for
TGM) that records every query’s gain at each peer along the query
hit path, and allows for optimizing query routing decision. After a
query hit happens at a target peer, the query message will be
forwarded to all neighbors of the target peer for calculating the
number of query hit peers if its hop number is less than the TTL
value. The purpose is to increase the gain value if duplicated
objects are distributed in a clustering manner. The gain value will
be transferred iteratively between adjacent peers along the path
from the target peer to the source peer with exponential decay of
distance. When a peer receives a new query message, it calculates
the gain values of its neighbors to which the query has been
forwarded and terminated with query hit. The neighbor with the
highest gain value of current query will be selected as candidate
with the highest probability to forward the query message. PQR
exhibits the following merits:

e Can achieve relatively high query hit rate with low bandwidth
consumption.

e Be effective in different network topologies.

e Can be adapted to dynamic environments where peers join and
leave the networks randomly and continuously.

The rest of this paper is organized as follows. Section 2 surveys
the related work. Section 3 presents technical details of our PQR
method. Section 4 describes performance evaluation. Finally,
Section 5 concludes the paper.

2. Related work

A number of solutions have been proposed to address the issue
of query routing in unstructured P2P networks.

Cohen et al. (2007) proposed a new class of decentralized P2P
architectures called associative overlays. The central ingredient in
their design is guided search on guide-rules overlays. The set of
peers belonging to some guide-rules should contain data items
that are semantically similar. The guide-rules compulsorily
require each peer, for each guide rule it belongs to, maintains a
small list of other peers belonging to the same guide rule. The
propagation of guided-search queries is restricted to guide-rules
specified by the originating peer, which can dramatically increase
the effectiveness of search for rare items. But the query
performance relies heavily on the automatically extracted guide
rules. If there are no correlation between items, guided-search has
no advantage over blind search. Moreover, this strategy becomes
less effective when items stored in each peer change from time to
time. The maintenance cost is also extremely large when peers
join and leave the network randomly and continuously.

Sarshar et al. (2004) introduced the percolation search
algorithm for locating and retrieving content in random networks
with power-law and heavy-tailed degree distributions. Each node
in the network duplicates its content list through a random walk
starting from itself. To start a query, a query request is implanted
through a random walk starting from the requester. When the
search begins, each node with a query implantation starts a
probabilistic broadcast search, where it sends a query to each of
its neighbors with probability. The percolation search algorithm
requires computing the number of high degree nodes in a given
network and choose appropriate random walk length in order to
ensure that the query can be passed to a highly connected node
with high probability. So this strategy can only be effective in
specific networks with given content distribution.

Michlmayr (2006) presented ant algorithms for distributed
query routing based on the ant colony optimization meta-heuristic.
This method depends on a large number of repeated queries to
build a pheromone trail and is feasible only in static network
environments. Morselli et al. (2005) proposed local minima search
(LMS) protocol for efficient lookup in unstructured P2P networks.
LMS borrows the ideas of namespace virtualization and consistent
hashing employed in most DHT based structured P2P networks. In
LMS, the owner of each object places replicas of the object on
several peers. Like in a DHT, LMS places replicas onto peers which
have IDs “close” to the object. This method need some mechanism
to compute how many replicas of its items a peer should place in
order to be easily found by others which is quite unlikely to occur
in a real P2P system.

Kumar et al. (2005) designed an exponential decay bloom filter
(EDBF) for space-efficient representation of routing tables and
used these probabilistic routing tables for forwarding queries. The
EDBF is a bandwidth-efficient data structure to compress the
query routing information in an array of bits. At a peer with
degree d, its query routing table consists of d EDBF data structures
of the same array size. Query objects can be added to the EDBF
conveniently (the more the objects are added to the array, the
larger the probability of false positive is), but removing one or
more objects from the EDBF is not permitted. Routing table
update must create fresh EDBFs periodically unless no object is
removed from the peers. The use of routing indices in P2P
networks was proposed by Crespo and Molina (2002). The authors
presented three routing indices schemes: the compound, the hop-
count, and the exponential routing indices to forward queries to
neighbors that are more likely to have answers, rather than by
selecting neighbors at random or by flooding the network. Their
schemes assume that the query documents are classified under
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particular topics, and all peers in the system need to index the
number of documents under each topic of interest through each
neighbor, which may consume a lot of storage space for storing
index information of each neighbor. Connelly et al. (2006)
proposed an adaptive query routing method to forward query
messages based on rules generated through the use of association
analysis, which has been widely studied in the data mining
community. The maintenance of effective rule sets is very difficult
in dynamic environments where peers joining and leaving the
network continuously. Tsoumakos and Roussopoulos (2003)
proposed an adaptive probabilistic search (APS) method for
unstructured P2P networks. In the forwarding process, a peer
chooses its next-hop neighbor(s) not randomly, but uses the
probabilities given by its index values. Upon walker termination,
if the walker is successful, index values relative to the requested
object along the walker’s path should be increased (optimistic
approach), and if the walker fails, related index values should be
decreased (pessimistic approach). The adaptivity of APS approach
is not so good when objects stored in peers change rapidly. If
objects with high forwarding probabilities are removed from the
network, the system will endure many rounds of failure to
decrease their index values in related peers unless the index table
update process comes soon.

3. Technique

In this section we present the PQR method in detail.

3.1. Query message

A query message mes initiated at peer ps is represented by a
tuple of six elements: (id, ps, state, hops, g;, path . id stands for
the unique identifier of a message in the network. ps refers to the
source peer that initiates the query. It consists of a 32-bit IP
address and a 16-bit port number. We define three states (initiate,
forward and terminate) for a query message. hops denotes the life
time of a query message. Its value increases 1 after being
transmitted from one peer to another. In order to prevent a query
from incurring too much traffic in the network, we define TTL
value as an upper bound to query message life time. Query vector
g; contains the objects requested by the query. path is a list of
peers that have processed the query, including peer p;.

3.2. Traceable gain matrix

TGM is a key component of PQR with a compound data
structure that maintains query routing information. Before the

construction of TGM at a peer, we need two auxiliary data
structures: QueryTable and PeerTable. A peer’s QueryTable is a
query set that records all queries initiated or forwarded from this
peer with query hit. A peer’s PeerTable is a peer set that records its
neighbor(s) to which one or more queries once forwarded with
query hit. So a peer’s PeerTable is a subset of its neighbors. After a
query hit happens, the query that matches with one or more
objects will be stored at each peer’s QueryTable along the path and
each peer’s adjacent peer towards the target peer will be added to
its PeerTable one by one (NOT including the target peer).

Given an object set O with k elements, a query set Q with n
elements, and a peer set P with m elements. For an arbitrary
object 0, € O (1 << k), an arbitrary query ;€ Q (1 <j<n), and an
arbitrary peer p;eP (1 <i<m), the query object set of g; is
0g, =0 (1 <j<n). TGM is an m x n matrix like this:

a1 az e qj s qn
p1 /gainy;  gaingy gainy; gainy,
pi | gainy  gaing gainy; gainy, |,
DPm gainml gai”mz gainmj gainmn

where each item has a compound data structure. The number of
rows in a peer’s TGM is equal to the length of its PeerTable and the
number of columns in a peer’s TGM is equal to the length of its
QueryTable.

At the beginning of query processing, both QueryTable and
PeerTable are empty at each peer, as well as the corresponding
TGM. Fig. 1 illustrates the transfer of gain values with exponential
decay after query hit. Each circle denotes a peer in the P2P overlay
network. Each arrow denotes the transfer of gain value between
adjacent peers along a query hit path. More vertical lines across
an arrow mean more gains. There are three query hit paths
labeled as #1, #2 and #3 in Fig. 1. Suppose peer ps initiates a
query g; with the query object set o, = {01, 02} and sends a query
message to its neighbor peer p;. At last, the query hit happens at
the target peer p; (01 or 0, is found at peer p; for ‘OR’ query or o0q
and o, are found at peer p; for ‘AND’ query). If the current hops is
smaller than TTL, the query message will be forwarded to
p¢’s neighbors in order to search more peers that meet the
query (gray circles denote query hit peers). Suppose g; is the jth
element in ps’s QueryTable and p; is the ith element in ps's
PeerTable, then {{p;,pk....,Pu,P:},value) will be added to gain,j.
The value of gain;; is calculated as

; (-0 - wp+C-a
aing|= » ———F——— !
lgain;| pgn dist(ps, pe)’ @
#2 0/ N query hit of g; with
/,/ \\\ query object set {01,02}

Fig. 1. The transfer of gain values with exponential decay after query hit.
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with 0 <a <1 and 0 < 4 < oo, where D is a collection of peers at
which query hit happens (via peer p;). p; is one of the target peer
in collection D and wy, is the total query hit number at the target
peer p;’s neighbors. Duplicate elements are not allowed in D to
make sure that the gain value from the target peer p; and
p¢’s neighbors will not be calculated repeatedly no matter how
many query hit happens at the target peer p;.  is a parameter to
measure the importance between query hit at the target peer p;
and p;’s neighbors. C is a constant value to denote the weight of
the target peer p;. dist(ps,p;) denotes the path length from the
current peer ps to the target peer p; and exponential decay
parameter A is used to adjust the influence of dist(ps,p¢) on the
gain value. If 21— oo, then the gain value from the target peer p;
and p;’s neighbors can only be transferred to one peer along the
whole path; and if 2 — 0, then the gain value from the target peer
pr and p;’s neighbors will be equivalently transferred to all peers
along the query hit path one by one.
Suppose the TGM at peer ps has r rows, then the probability of
forwarding query g; to peer p; is calculated as follows:
|gain;;

ij
P(qj:pl) Z;=] |galnlj| (2)

After the transfer of gain value along the path #1
(Pt —Dus---»Pk—Di>Pi—Ds) With exponential decay of distance,
forwarding another query g; with the same query object set as g;
from peer p; to peer p, has more probability of query hit than
forwarding the same query from peer ps to peer p; under the same
conditions (q; = q; if o, = 0g;).

Note that |gainy| stands for the total gain value transferred
from peer p; to peer ps. Maybe a query g; sent to another neighbor
peer py also hits successfully at a target peer (NOT peer p;), but it
makes no contribution to gain; since peer py is not the ith
element in ps’s PeerTable. The arrows in path #3 denote the
transfer of gain value from another target peer (NOT peer p;) and
its neighbors to the source peer ps via peer py for the query g;
initiated at peer ps. So the gain value transferred along path
#3 will not be added to |gain|. The arrows in path #2 denote the
transfer of gain value from a target peer (NOT peer p;) and its
neighbors to the source peer ps via peer p; for the query g;
initiated at peer ps. So the gain value transferred from peer p; to ps
along path #2 can be added to |gaing| as well as path #1.
For example, suppose the gain value transferred from peer p; to ps
in path #1 is 5, the gain value transferred from peer p; to ps in
path #2 is 2 and the gain value transferred from peer p,, to ps
in path #3 is 3, then the probability of forwarding the query g;
from peer ps to peer p; is (5+2)/(5+2+3)=70%. Peer ps
cannot forward the query g; directly to the target peer p, because
peer p; is not recorded in peer ps’s PeerTable. If a new query
comes without matching with any element in current
peer’sQueryTable, it will be forwarded to a random neighbor
peer except the peer that has ever sent or forwarded this
query.

The space complexity of each peer is O(m x n). Such space cost
is not a burden in current P2P networks because TGMs are not
needed to be transmitted across the peers. Each peer needs only
to keep a small size of TGM and least-recently-used strategy is
used to update TGM when it is full. The space cost of QueryTable
and PeerTable is negligibly small compared with that of TGM at
each peer because of their linear length.

3.3. Query routing and TGM update
The Path-traceable query routing mechanism includes the

process of query routing and the process of update. Algorithm 1
describes them in detail.

Algorithm 1. Path-traceable query routing algorithm.

Input: network size, network topology model and related
parameters, TTL value, query peer number;
Output: message id, message hops and query result (1/0);
1: Peer p; gets a query message
mes {id, ps, state, hops, q;, path > ;

2: if g; hits at p; then
3: Forwards mes to p;’s neighbors and calculates the total
query hit number;
4: Peer ps < mes.ps;//Iterates all peers in mes.path for
update

5: for all peers in mes.path do

6: if ps.QueryTable # ¢ AND q; € ps.QueryTable then

7: return g;'s position j;

8: else

9: ps.QueryTable.Add(q;);

10: end if

11: Peer p; < mes.path.next();

12: if p; € ps.PeerTable then

13: return p;’s position i;

14: else

15: ps.PeerTable.Add(p;);

16: end if

17: Calculates the gain value value;, from p; to ps
according to formula (1);

18: gain; Add(mes.path, valuey);

19: Ps < Di;

20: end for

21: return mes.id, mes.hops and 1;//Query hit
22: else if mes.hops= TTL then

23:  Peer ps < mes.ps;

24: for all peers in mes.path do

25: Peer p; < mes.path.next();

26: if p; e ps.PeerTable AND g; € ps.QueryTable then
27: return p;'s position i and g;’s position j;
28: if p; € gain;.path, then

29: gain;i.Remove (pathy, valuey);

30: end if

31: if gain; = p(i=1,2,...m) then

32: ps-QueryTable.Remove (q;);

33: Removes the jth column from p;. TGM,
34: end if

35: end if

36: Ps < Dis

37: end for

38: return mes.id, mes.hops and 0;//Query miss

39: end if

40: /[ Query not hit at p; and mes.hops < TTL;

41: Forwards mes to p;'s neighbor py according to formula (2);

42: while p; receives an ERROR message after forwarding mes
to py do

43: return p,'s position i at p;.PeerTable;

44:  p¢.PeerTable.Remove (px);

45:  Removes the ith row from p;.TGM;

46: for all peers in mes.path do

47: for(i=1tom;j=1ton)do

48: if py e gain;.path; then

49: gain;.Remove (pathy, valuey);
50: end if

51: end for

52: end for

53: Forwards mes to p,'s neighbor p, according to formula (2);
54: end while
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After a query hit happens at a target peer p;, the query message
needs to be forwarded to all neighbors of the peer p; for
calculating the number of query hit peers if its hops is less than
TTL value. Then the gain will be transferred one by one at each
pair of adjacent peers along the path from target peer towards
source peer with exponential decay of distance as described from
line 1 to line 21.

As introduced formerly, gain; has a compound data structure.
Each item in gain; is denoted by {pathy, value, >, where path, is
an ordered peer list from current peer’s neighbor to the target
peer along the query hit path. For example, suppose peer ps in
Fig. 1 initiates a query message mes with query vector g;. Peer
ps’s TGM is

q1 q2 e q;
pi [ gainy  gainyg, gainy;
pw | gainy;  gainy, gainy;
pm \ &QiNyy  gaing, --- Y

where  gainy; = (<{{Pi, Pk, - - - Pu> Pt}, 5, {{Pi P> .- .}, 2)), gainy; =
({{pw>.-..}1,3>) and gain;=¢ (i=3,...,m). If mes arrives at the
last peer p; without query hit (mes.hops = TTL), the intermediate
routing peers (p;,Px.--.,Pu) Will check their TGMs as follows.
Firstly, each peer searches query vector g; in its QueryTable. If
query vector g; is not found in QueryTable, then no update process
is needed. Otherwise, query vector g;'s position in QueryTable will
be returned as a key to locate the corresponding column in
current peer’s TGM (suppose the column number is j). Secondly,
each item of the jth column must be scanned to find peer p;. If
peer p; is included in path of gainy, then {path, value, ) will be
removed from gain,-j. As a result, <{p;,Pk.-..,Du,Dt},5) is removed
from gain,; and the probability of forwarding query g; from peer ps
to peer p; drops to 2/(2+3)=40% according to formula (2).
Thirdly, if every item in the j th column of TGM equals to ¢, then
the whole column will be removed as well as the corresponding
element in current peer’s QueryTable. The whole process is
described from line 22 to line 39.

If query g; not hits at peer p; and p; is not the last peer
(mes.hops < TTL), it will calculate the gain values of its neighbors to
which the same query is once forwarded and terminated with query
hit. The neighbor with the biggest gain value on current query will
be selected as candidate with the highest probability to forward the
query message according to formula (2). If p, finds that the
candidate peer pyx fails or leaves the P2P network, the
update process will be handled as follows. Firstly, peer py will be
removed from peer p;’s PeerTable as well as its neighbor table.
Additionally, the corresponding row in peer p;’s TGM will also be
removed. Secondly, all peers along the path from source peer to peer
pr will scan each item in their TGMs to find peer py. If peer py is
included in path, of gainy, then {path,,value,> will be removed
from gainy. Thirdly, peer p; will forward mes to another neighbor
iteratively. The corresponding process is described from line 40 to
line 54.

When a neighbor peer fails or leaves the network, no update
happens until one peer needs to forward a query message to that
peer. The update cost includes sending update messages to the
peers in the current query routing path as well as scanning and
updating TGMs in these peers. Suppose all k walkers travel h hops
and find that the last peers leave the network, then the cost of
sending update messages is O(k - h). In the worst case, the cost is
k-TTL. Moreover, suppose the peer that fails or leaves the
network is included in each peer’s TGM along the query routing
path and the size of TGM is m rows and n columns, then the cost
of updating TGMs is O(k - h - m - n) in the worst case. In fact, the
update cost for handling peer failure or churn is not big in real

network environments. The reason lies in three aspects. First, the
value of k is very small. Our algorithm can achieve good query
performance even when k=1. Second, the probability of
forwarding a query message to a peer that is TTL hops away is
rather small. Third, if no query message is forwarded to the peer
that fails or leaves the network, then no update happens.

TGM needs update messages for its production as the index
table in the APS method does. Suppose there are r query requests
and k walkers. Theoretically, both PQR and APS produce O(r - k -
TTL) update messages in the worst case.

APS uses two update policies (optimistic and pessimistic
approaches) to reduce the number of update messages. After a
walker terminated, if the walker is successful, there is nothing to be
done in the optimistic approach. If the walker fails, the index table of
each peer along the walker’s query routing path, from the last-visited
peer towards the requester peer, must be updated. In the pessimistic
approach, this update procedure takes place after a walker succeeds,
and there is nothing to be done when a walker fails.

In order to minimize the number of update messages, PQR
takes three measures as follows:

e If a query fails after TTL hops, the peer before the last-visited
peer checks its TGM. If the requested object is not included in
any item of the TGM, no update message will be propagated to
any peer because the TGM does not account for the failure in
this situation. If the requested object is included in a certain
related item of the TGM, it means that the object stored ever in
the peer has been removed and at most TTL-2 update messages
will be produced in this situation. During the process of
update, update messages are propagated one by one in the
reverse direction of query message. At each step, the
intermediate peer checks the current path in its TGM. If the
path is not contained in any item of the TGM, the update
procedure will stop. In such a case, less than TTL-2 update
messages will be produced.

e After a query hit happens, the query message with query result
will be returned to the original peer that initiates the query
request. The original peer extracts the path from the query
message and scans the path in each item in the corresponding
row of its TGM. If the path is already included in the
corresponding items of the TGM, no update message will be
propagated to any peer because the gain value from the same
target peer cannot be calculated repeatedly according to
formula (1).

e No big value is used for the parameter k because even with a
small k our method can achieve a high query hit rate.

Our algorithm is totally distributed and each peer does not need
any global information of the network. In fact, each peer in the
network only knows its neighbors and has no explicit knowledge
of other peers.

4. Performance evaluation
We use PeerSim (Jesi, 2003) to implement and evaluate our

method. PeerSim is an open source, Java based, P2P simulation
framework for large-scale and dynamic environments.

4.1. Network topologies

We deploy query routing strategies in three representative
network topologies to compare their performance and to evaluate
the impact of network topologies on query performance.
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4.1.1. Random graph networks

Random graphs were first defined by Erdés and Rényi (1959). A
random graph can be denoted as G(n, p). It means every pair of a
set of n vertices is chosen to join an edge with probability p. Many
properties of the random graphs were studied by Erdés and Rényi
in a series of papers in the 1960s (Erdos and Rényi, 1959, 1960,
1961).

A random graph can be obtained by starting with a set of n
vertices and adding edges between them randomly. Different
random graph models produce different probability distributions
on graphs. The probability of a vertex having degree k is

n kpo—u
pk) = ( k)p"(l—p)”*" ~ B 3)

which has a Poisson degree distribution since the presence or
absence of edges is independent.

One of the most important properties of the random graph is
phase transition (Erdos and Rényi, 1959), from a low-density, low-
p state in which there are very few edges and all components are
small, having an exponential size distribution and finite mean
size, to a high-density, high-p state in which an extensive fraction
of vertices are joined together in a single giant component, and
the remain vertices occupy smaller components with an expo-
nential size distribution and finite mean size.

4.1.2. Small-world networks

Small-world networks have received a lot of attention from
many research fields in the last decade. There are different
realizations of small-world networks, but the original model
proposed by Watts and Strogatz (1998) is by far the most widely
studied. Generally speaking, the small-world network has two
structural properties: (1) characteristic path length and (2)
clustering coefficient (Watts and Strogatz, 1998).

To mathematically define the two properties, let G=(V,E) be
an undirected, simple (no self-loops, no multiple edges) graph
with a set of vertices V and a set of edges E between them. The
distance d;; between two vertices i and j in V is the number of
edges along the shortest path connecting them. The characteristic
path length L(G) is defined as the average distance between any
pair of two vertices in V, that is,

1 L

LG) = |V|(|V\—1)i;,d"’ i#]. )

The clustering coefficient C(G) is defined as follows. Suppose
that a vertex v e V has k, neighbors; then at most My = ky(k,—1)/2
edges can exist between them (this occurs when every neighbor
of v is connected at every other neighbor of v). Let N, denote the
actually existed edges between these neighbors; then the
clustering coefficient G, of vertex v is defined as N,/M,. Define
the clustering coefficient C(G) as the average of C, over all v:

1
C(G) = Vi > G, (5)

veV

A simple way to construct a small-world network starts by
building a ring R, with n vertices, each connected to its k nearest
neighbors by undirected edges. The small-world network is then
created by choosing a vertex and the edge that connects it to its
nearest neighbor in a clockwise sense and with probability f
reconnect this edge to a vertex chosen uniformly at random over
the entire ring. If rewiring an edge would lead to a duplicate edge,
it is left unchanged. The rewiring process makes the graph
transform from a regular ring (f =0) to a random graph (f=1),
with intermediate value of f3, the graph is a small-world network
(as f increases, the graph becomes increasingly disordered).

Kleinberg (2000) defined an infinite family of network models
that naturally generalized the small-world model in Watts and

Strogatz (1998) and then proved that there is exactly one model
within this family for which a decentralized algorithm exists to
find short paths with high probability.

4.1.3. Scale-free networks

Barabasi and Albert found that several important networks
such as the World Wide Web, protein regulatory networks, and
metabolic networks also have the small-world properties but
their degree distribution function is different (Barabasi and Albert,
1999; Albert and Barabasi, 2002). In these networks, some nodes
which they called hubs, have many more connections than other
nodes and the networks as a whole have a power-law distribution
of the number of links connecting to a node. These networks have
been called scale-free because the degree probability distribution
function follows a power law. The mechanism of preferential
attachment has been proposed to explain power law degree
distributions in some networks. The nodes with larger degree are
more likely to be candidates for attachment of new nodes, which
lead to a class of graphs with power-law degree distribution as
follows:

P(ky=k7, (6)

where k is the number of connections to other nodes and y is a
constant value.

The Barabasi and Albert model starts with a small number mg
nodes. At each time step add new node with m <mg links to
existing network. The probability that a new node will be
connected to node i depends on its degree k;:

k,‘
ijj '

where X denotes all the nodes in network.

Palmer and Steffan (2000) presented two algorithms for
generating network topologies that obey power-law. The algo-
rithms in Palmer and Steffan (2000) can provide more control
over the network structures and generate more complicated
topologies such as weighted graphs. For simplicity, we generate
the scale-free network according to the Barabasi and Albert
model, which satisfies the requirement of simulating network
environments for our experiments.

n(k;) = W)

4.2. Experimental setting

Peers initiate queries for various objects. These objects are
distributed across the network according to a replication
distribution model, which indicates what objects are stored at
each peer. All of our experiments are based on the Zipf-like
distribution model, which is frequently used to simulate the
replication objects on the web and in P2P systems such as Napster
and Gnutella (Almeida et al., 1996). We assume that there are m
objects and let g; be the relative popularity of the ith object, then

1
qicc PR 3

where 3" qi=1.

Constant rate of replication distribution model is not con-
sidered here because it is unlikely to occur in real P2P systems.

The query distribution determines the frequency of each object
appeared in queries. Generally speaking, popular objects get more
requests than unpopular ones and Zipf-like distribution model is
also appropriate under this circumstance. We only simulate
queries for content actually hosted in the network and only
‘AND’ query type is considered in this paper for simplicity.
Experimental parameters and their default values are listed in
Table 1.
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We define “one-peer-one-query” and “one-peer-multi-query”
modes in this paper. The former means each peer can initiate only
one query and the latter means each peer can initiate multiple
queries.

Two performance metrics including query hit rate and average
number of messages per query are used to evaluate the query
performance of three query routing strategies. A good query
routing strategy should try to achieve high query hit rate with low
average number of messages per query. In addition, memory
space consumption and replacement frequency are also consid-
ered for APS and PQR, which are negligibly small for random walk.

4.3. Experimental results

Here, we put the performance evaluation results into three
parts: the first part is obtained from static network environments,

Table 1
Experimental parameters and their default values.

Experimental parameters Default values
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where during each experiment the size of network is fixed and no
peer failure and churn; the second part is from dynamic network
environments with peer failure/departure; and the third part
covers the results of memory and message consumption for TGM
generation and maintenance.

4.3.1. Results in static network environments

Here, we try to evaluate the performance of three query
routing strategies PQR, APS and random walk in static network
environments where no node failure/departure happens.

In the first set of experiments, we adopt “one-peer-one-query”
mode and deploy only one walker in each network. Fig. 2 shows
the query hit rate for different TTL values in “one-peer-one-
query” mode. There are 1000 query request peers and 1000 query
messages that follow the Zipf-like query distribution. The curves
of APS intertwine with those of random walk in the three
networks. The query hit rate of PQR noticeably exceeds that of APS
and random walk by about 10% when TTL value is greater than 4.
The corresponding curves of average number of messages per
query in different environments are illustrated in Fig. 3. The
average number of messages per query in APS is almost the same

Eetwlfrk Slize . }888010000 as that of random walk in random graph network, but is slightly
umber of query request peers b .
Tigeheardion chodbuion Zipf (= 0.82) lower in scale-free .network .and small-world network. The
Query distribution Zipf (2= 0.9) performance of PQR is only a little better than APS and random
Number of objects 50000 walk. For example, when TTL value is 10, the average number of
Number of walkers 13 messages per query in random walk is 6.906 and the average
Qﬁlﬁew?”ery length 3';17 number of messages per query in PQR is 6.355, as shown in
4 in TGM 2 Fig. 3(c). _
Cin TGM 10 In the second set of experiments, we adopt the “one-peer-
TGM size 20 x 50 multi-query” mode with Zipf-like query distribution at each
Qverage noge gegree ) ranld";“ grapth “eiwork ;8 query peer and deploy three walkers in each network. There are
verage node degree in scale-iree networ! . P . .
e T — 05 10000 query request peers with each peer 1mF1at1ng 40 queries.
Other parameters take default values listed in Table 1. Fig. 4
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Fig. 2. Query hit rate vs. TTL value (“one-peer-one-query” mode). (a) Random graph network. (b) Scale-free network. (c) Small-world network.
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Fig. 3. Average number of messages per query vs. TTL value (“one-peer-one-query” mode). (a) Random graph network. (b) Scale-free network. (c) Small-world network.
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displays the query hit rate for different TTL values in “one-peer-
multi-query” mode. We can see that in all networks, PQR
performs the best, and APS the second. Particularly, as shown in
Fig. 4(c), in small-world network the query hit rate of PQR exceeds
that of APS and random walk by 17.2% and 32.5% in the best cases,
respectively. Fig. 5 shows the average number of messages per
query in different networks. The performance of PQR is better
than that of APS and random walk. Especially, in the small-world
network, when TTL value comes up to 13, the average number of
messages per query of PQR is only 58.2% of random walk and
75.4% of APS. We can conclude that the performance of PQR
benefits much from small-world network.

By comparing Figs. 2 and 4, Figs. 3 and 5, we can see that the
more queries are issued, the better query hit rate and the lower
network consuming are obtained, for both PQR and APS as well as
random walk. However, carefully comparing the results of Figs. 3
and 5, we notice that the difference in the average number of
messages per query is not so big as expected. The reason lies in
the fact: in Fig. 3, only one walker is employed, while in Fig. 5,
three walkers are employed. And more walkers will cause more
messages. This factor counteracts in some degree the benefit
brought by larger number of queries. It is worthy of noting that
the value of TTL also affects the difference in network consuming
between Figs. 3 and 5. As we can see, when TTL = 10, the average
number of messages per query of PQR in random graph network is
6.328 in “one-peer-one-query” mode and 4.937 in “one-peer-
multi-query” mode, while for TTL =25, the average number of
messages per query is 13.086 in “one-peer-one-query” mode and
8.265 in “one-peer-multi-query” mode. The reason is as follows:
when TTL value is not big (TTL<10), there are not many
overlapping edges in different query hit paths and the difference
in the average number of messages per query is not so big
between the two modes. With the increase of TTL value, many
overlapping edges in different query hit paths emerge. Thus, more
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and more queries have a higher probability of choosing shorter
paths to the target peers, and subsequently the difference in the
average number of messages per query becomes larger between
the two modes.

To further check how the number of queries issued by each
peer impacts query processing performance of PQR, we conduct
another set of experiments, and the results are illustrated in Fig. 6,
where three networks of different topologies are used and each
network has 10 000 query request peers with one walker for each
query. We can see that as the number of queries issued by each
peer increases, the query hit rate first goes up steadily and then
enters a relatively stable level. On the contrary, network
consuming first goes down sharply and then turn to a very
slowly decreasing trend. The reason is that as more queries are
processed, more experiences are amassed and recorded in the
TGMs, which will help the handling of following queries, and
consequently improve query hit rate and lower network
consuming.

We also see that PQR obtains the best performance in small-
world network due to its characteristics of small average path
length and high clustering coefficient, while the performance in
scale-free network is worse than that in random graph network
because data objects are not distributed over peers according to
their degrees. Therefore, high-degree peers in scale-free network
get more possibility of being visited, but they cannot provide
more objects than low-degree peers can.

Three default values are assigned to parameters o, 4 and C of
TGM in PQR. In fact, the value of /. affects query hit rate in a
obvious way. Fig. 7 shows how A impacts query hit rate of PQR
when the values of o and C are chosen according to Table 1. The
width of the central peak on PQR curve is narrow. As 21— 0, the
query hit rate of PQR approaches to that of APS. When the value of
/ increases beyond the central peak area, the query hit rate of PQR
falls rapidly towards that of random walk.
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Fig. 4. Query hit rate vs. TTL value (“one-peer-multi-query” mode). (a) Random graph network. (b) Scale-free network. (c) Small-world network.
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4.3.2. Dynamic network environments

In order to evaluate the query routing performance in dynamic
environments, we conduct a series of experiments under churn
and peer failure conditions. The total experimental runtime is
divided into 1000 cycles. During the churn period, the network
size N(t) will be the function of time 7 with upper bound Ny,,qx and
lower bound N,,;;;, in our experiments. The network size is defined
as follows:

T*xT

ND = periodJ ’

Nmax'2|‘Nmin n \‘Nmax_Nmin )

where parameter period is used to define the length of churn
period and 7 is derived from cycle id (1,2, ...,1000) in simulation.
We set Npgy=12000, N, =8000 and period=127 in our
experiments. If a peer leaves the network, the objects stored in
this peer will be discarded. If a peer joins the network, it will also
get data objects with Zipf-like replication distribution. Further-
more, the objects stored in 20% of peers will be reallocated in
simulation of churn.

We assign each peer a failure probability p for the purpose of
comparing query routing performance of the three strategies
under peer failure. We set p=0.2 in simulation.

Fig. 8 shows the comparison of query hit rates of the three
query routing strategies under churn in a random graph network.
We find that the query hit rate of APS is a little bit lower than that
of random walk in “one-peer-one-query” mode and the query hit
rate of PQR exceeds both random walk and APS by about 8.6% on
average. In the “one-peer-multi-query” mode, the query hit rate
of PQR exceeds APS by about 13.1% on average, as shown in
Fig. 8(b), while the query hit rate of APS is 5.1% better on average
than that of random walk.

Fig. 9 illustrates the comparison of query hit rate of the three
query routing strategies under peer failure in a random graph
network. The query hit rate of APS is slightly better than that of
random walk under peer failure, for both “one-peer-one-query”
and “one-peer-multi-query” modes. The query hit rate of PQR
exceeds that of APS by about 8.9% in “one-peer-one-query” mode
and 11.8% in “one-peer-multi-query” mode.

Fig. 10 presents the comparison results of the three query
routing strategies in the “one-peer-multi-query” mode, under the
situations that churn or peer failure happens in a small-world
network. The query hit rate of APS exceeds that of random walk
by about 6.1%, and the query hit rate of PQR surpasses that of APS
by about 17.3% on average under churn as shown in Fig. 10(a), and
by about 12.4% on average under peer failure as shown in
Fig. 10(b).

4.3.3. Cost for TGM generation and maintenance

PQR achieves high query hit rate and low number of messages
for query answering at the cost of memory space. APS also
consumes a certain amount of memory space for the maintenance
of its index table. A TGM is a matrix of 20 rows and 50 columns,
which is similar in size to the index table of APS in our
experiments. We employ least recently used (LRU) strategy to
replace items in PQR’s TGM and APS’ index table.

Figs. 11 and 12 illustrate the comparisons of space cost per
peer and total number of replacements for different query
number per peer between APS and PQR in “one-peer-multi-
query” mode. Although PQR consumes more memory space than
APS under the same condition, the cost is quite acceptable. For
example, PQR consumes 393 kb memory per peer in a small-world
network, where there are 10000 query request peers and each
peer initiates 40 queries. The total number of replacements in APS
is smaller than that of PQR when the query number per peer is not
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quite large. But with the increase of query number per peer, the
curves of APS turn more steep than that of PQR.

Fig. 13 displays the comparisons of the total access times to
TGM in PQR and to index table in APS per query for different
numbers of query peers, each of which initiates 40 queries in
random graph and small-world networks. Generally, the total
access times is proportional to the number of query peers and TTL
value in both cases, and the total access times to TGM of PQR is
more than that to the index table of APS under the same

conditions, which means that TGM of PQR has a higher utility
than the index table of APS.

In the last set of experiments, we compare the cost of TGM
maintenance in PQR and the cost of index table maintenance in
APS under different conditions in a small-world network. Four
cases are considered: “one-peer-one-query” mode, ‘“one-peer-
multi-query” mode, with peer failure and with peer churn. In the
case of “one-peer-one-query” mode, 1000 query request peers are
deployed and the total 1000 queries follow the Zipf distribution.
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Fig. 12. Total number of replacements vs. query number per peer (“one-peer-multi-query” mode). (a) Random graph network. (b) Small-world network.
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experiment. And in the fourth case, there are 2000 peers join and
leave the network. Corresponding experimental results are
presented in Figs. 14(a)-(d). From Fig. 14, we can see that PQR
needs more update messages than APS in “one-peer-one-query”
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mode, but the difference is quite small. In the “one-peer-multi-
query” mode, PQR consumes more update messages than APS
when TTL < 10. However, when TTL > 10, PQR performs better
than APS. Figs. 14(c) and (d) show similar trends to that in
Fig. 14(b), both APS and PQR consume the most update messages
under peer failure.

4.4. Discussion

We deploy only 1 and 3 walkers in our experiments in order to
compare the query routing performance directly. With the
walkers increasing, performances of three query routing strate-
gies become more and more closer, which deviates from our
goal—achieving high query hit rate with low bandwidth con-
sumption. Network topologies can affect the query routing
performance to a certain extent. PQR benefits most from small-
world network because of its characteristics of small path length
and high clustering coefficient. Parameters’ values are fixed in the
simulation of network churn because their effects on the three
query routing strategies are the same. The space cost of
QueryTable and PeerTable is not evaluated in this paper because
both QueryTable and PeerTable are two vectors with linear length,
which are negligibly small compared with that of TGM at each
peer. The length of PeerTable does not exceed the length of
neighbor table and the length of QueryTable is also not large
because it records only the queries with different query objects
set.

From the extensive experiments carried out in this paper, we
can see that PQR is more capable to reduce the consumption of
messages for query answering in different networks compared
with the other two compared strategies. In other words, the
number of query processing messages of the proposed method is
smaller than that of the other two ones. The reason lies in two
aspects. First, successful query history information recorded in
TGMs can help to improve query hit rate. If a query request does
not hit, it will produce TTL query processing messages; otherwise,
it will produce less query processing messages unless the query
request hits at the last node. PQR achieves higher query hit rate
than the other two strategies. These successful queries normally
produce less query processing messages than those produced by
unsuccessful queries in the other two strategies. Second, with the
increase of TTL value, many overlapping edges in different query
hit paths emerge in our algorithm. Thus, some queries may have
higher probability of choosing shorter paths to the other target
peers.

5. Conclusion

In this paper, we propose a novel query routing mechanism for
improving query performance in unstructured P2P networks. We
design a data structure called traceable gain matrix (TGM) that
records every query’s gain at each peer along the query hit path,

10 15 20

TTL Value

25
TTL Value

“One-peer-one-query” mode. (b) “One-peer-multi-query” mode. (c) Peer failure.

and allows for optimizing query routing decision effectively.
When a peer receives a query message, it calculates the gain
values of its neighbors to which the query will be forwarded and
terminated with query hit. The neighbor with the highest gain
value of current query will be selected as candidate with the
highest probability to forward the query message. Experimental
results show that our query routing mechanism can achieve
relatively high query hit rate with low bandwidth consumption in
different types of network topologies under static and dynamic
network conditions.
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