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Multiconlitron: A General Piecewise
Linear Classifier

Li Yujian, Liu Bo, Yang Xinwu, Fu Yaozong, and Li Houjun

Abstract— Based on the “convexly separable” concept, we
present a solid geometric theory and a new general frame-
work to design piecewise linear classifiers for two arbitrarily
complicated nonintersecting classes by using a “multiconlitron,”
which is a union of multiple conlitrons that comprise a set of
hyperplanes or linear functions surrounding a convex region
for separating two convexly separable datasets. We propose a
new iterative algorithm called the cross distance minimization
algorithm (CDMA) to compute hard margin non-kernel support
vector machines (SVMs) via the nearest point pair between two
convex polytopes. Using CDMA, we derive two new algorithms,
i.e., the support conlitron algorithm (SCA) and the support
multiconlitron algorithm (SMA) to construct support conlitrons
and support multiconlitrons, respectively, which are unique and
can separate two classes by a maximum margin as in an SVM.
Comparative experiments show that SMA can outperform linear
SVM on many of the selected databases and provide similar
results to radial basis function SVM on some of them, while SCA
performs better than linear SVM on three out of four applicable
databases. Other experiments show that SMA and SCA may be
further improved to draw more potential in the new research
direction of piecewise linear learning.

Index Terms— Conlitron, cross distance minimization algo-
rithm, multiconlitron, piecewise linear classifier, piecewise linear
learning, support conlitron algorithm, support multiconlitron
algorithm, support vector machine.

I. INTRODUCTION

ONE of the main problems in pattern classification is
how to design decision functions that can classify a set

of observations correctly with the highest possible level of
generalization. An important method for pattern classification
is the support vector machine (SVM) [1], [2], by which a
linear decision surface separates two classes of data by a
maximum margin criterion. This has a very good level of
generalization. Since Vapnik [3], [4] proposed the concept of
a SVM, it has attracted a large amount of interest with many
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successful applications to classification problems [5]–[10].
There have been a number of new important achievements
and developments in the course of investigating the SVM
from the viewpoints of fast algorithm design [11]–[16], new
model exploration [17]–[24], kernel function selection [25]–
[29], geometric approach analysis [30]–[35], etc. In this paper,
we propose a new method that does not need to use kernels
and that can solve separable problems easily without scaling
and setting any hyperparameter. We try to make it as good
as any nonlinear SVM, but it should be noted that we mainly
consider two-class commonly separable problems (i.e., there
are no common points in the two different classes).

The primal SVM model is formalized as a quadratic op-
timization problem. If X, Y ⊂ Rn (R stands for the set of
all real numbers) denote two classes composed of finite data
points, the hard margin SVM (HM-SVM) without kernels can
be described as

min
1

2
‖w‖2

s.t. w · xi + b ≥ 1, xi ∈ X, 1 ≤ i ≤ |X | ;
w · y j + b ≤ −1, y j ∈ Y, 1 ≤ j ≤ |Y | . (HM − SVM)

Here,“‖ · ‖,” “·,” and “| · |,” respectively, stand for the L2
norm, the inner product, and the set cardinality.

In the case where X and Y are linearly separable, there
exists a unique solution (w∗, b∗) to (HM-SVM), whose so-
lution is just the hyperplane w∗ · x + b∗ = 0 with the
margin M = 2/‖w∗‖, i.e., the maximum distance between two
parallel hyperplanes w∗ · x + b∗ = 1 and w∗ · x + b∗ = −1.
However, there exists no solution to (HM-SVM) in the linearly
nonseparable case, where the usual strategy to compute the
SVM of X and Y is to use the soft margin SVM (SM-SVM)
models such as the linear cost soft margin SVM (LCSM-SVM)

min
1

2
‖w‖2 + C

⎛
⎝ ∑

1≤i≤|X |
ξi +

∑
1≤ j≤|Y |

ζ j

⎞
⎠

s.t. w · φ(xi ) + b ≥ 1 − ξi , xi ∈ X, ξi ≥ 0, 1 ≤ i ≤ |X | ;
w · φ(y j ) + b ≤ −1 + ζ j , y j ∈ Y, ζ j ≥ 0, 1 ≤ j ≤ |Y | .

(LCSM − SVM)

Note that C is a positive regularization constant chosen
to control the tradeoff between margin maximization and
classification violation, “w” in LCSM-SVM may have a
different dimension from “w” in HM-SVM because of the
introduced function φ, which usually maps input vectors
to a very high dimensional feature space, and is implicitly
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defined by a prescribed kernel function K (x, y) = φ(x) ·φ(y)
such as linear kernel K (x, y) = x · y and Gaussian radial
basis function (RBF), kernel K (x, y) = exp(−γ ‖x − y‖2). In
solving complicated classification problems, it is necessary to
choose a good kernel function for the SVMs, which cannot
generate any nonlinear separating boundaries without kernels.

Obviously, HM-SVM is a special case (C = ∞) of LCSM-
SVM, in which an appropriate nonlinear kernel should be
selected to get better performance for classification problems
especially with a nonlinear boundary that cannot be approx-
imated by a hyperplane. At present, LCSM-SVM is usually
solved by applying Platt’s SMO and others to their equivalent
dual models [11]–[16]. Of course, there are many other meth-
ods to compute SVMs, e.g., nearest point algorithm (NPA)
[30], relaxed online maximal margin algorithm [31], S–K
algorithm [32], and reduced convex hull algorithm [33]–[35].
It is worth noting that the basic idea of NPA, playing a very
important role in this paper, is to reformulate HM-SVM as a
problem to compute the nearest point pair between two convex
polytopes.

Compared to other approaches, SVMs offer many advan-
tages such as global uniqueness, good generalization, and
a sound theoretical foundation. With the progress in SVM
theory, a number of new models have also been presented
to extend the standard SVM, including proximal SVM [17],
multisurface proximal SVM [18], twin SVM [19], least square
SVM [20], reduced SVM [21], Lagrangian SVM [22], rele-
vance vector machine [23], probabilistic classification vector
machine [24], additive SVM [36], etc. Though the great idea
of “kernel trick” can be used to solve nonlinear problems with
some difficulties in the selection of kernel functions [25]–[29],
the requirement of computational resources for large datasets,
and the interpretability/transparency of metric changes [36],
[37], there remains an important question as to whether margin
maximization in the original space is better than that in the
extended functional space. Therefore, we consider the problem
of how to construct SVM-like classifiers for any complicated
datasets without using kernel functions. A good strategy is
to develop the theory of piecewise linear classifiers (PLCs),
whose related works include CBP-based PLCs [37], locally
trainable PLCs [38]–[40], linear programming PLCs [41], [42],
decision tree PLCs [43], [44], etc. Conceptually speaking,
these PLCs cannot be regarded as a non-kernel extension of
SVM because they do not separate two datasets by a maximum
margin. To implement such an extension, we may use a set of
reflective convex hulls [45], but here we consider a novel and
more general geometric framework to construct PLCs from a
“multiconlitron,” which is a union of multiple conlitrons that
comprise a set of hyperplanes or linear functions surround-
ing a convex region for separating two convexly separable
datasets. This framework is fairly simple and takes special
advantages over linear SVM in separating “cross planes,”
which is obtained by perturbing points originally lying on
two intersecting planes (lines), and was used to demonstrate
the effectiveness of multisurface proximal SVM [18]. For
example, a conlitron/multiconlitron can completely separate
the 2-D dataset of two “cross planes” illustrated in Fig. 1, but
a linear SVM does poorly.
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Fig. 1. Two-line conlitron (a) surrounds a convex region and the four-
line multiconlitron contains two conlitrons; (b) both of them separate the
2-D cross-plane dataset completely (100% correct), but the linear SVM; and
(c) trained with C = 1 does poorly (72.5% correct).

In this paper, we mainly establish a solid geometric theory
and a general framework to design PLCs from the viewpoint of
conlitrons and multiconlitrons, which extend the relationship
between SVM and convex hulls. Along with description of
basic concepts, definitions, and theorems, we first present
a new iterative algorithm, i.e., cross distance minimization
algorithm (CDMA) to compute an HM-SVM via the nearest
point pair between two convex polytopes. Then, based on the
concept of “convexly separable” as an extension of “linearly
separable,” we build a general linear classifier to separate
two arbitrarily complicated nonintersecting classes from a
“conlitron” and a “multiconlitron.” Additionally, using CDMA
we derive two other new algorithms—the support conlitron
algorithm (SCA) and the support multiconlitron algorithm
(SMA), for constructing unique support conlitrons and unique
support multiconlitrons, respectively. These can be regarded
as a non-kernel extension of SVM because they separate
two arbitrarily complicated nonintersecting classes by certain
maximum margin. Finally, we test CDMA, SCA, and SMA
on a 3-D cross-plane dataset and a number of UCI benchmark
databases, compare their performance with linear SVM and
RBF SVM, and discuss their promise for future research.

II. BASIC CONCEPTS, DEFINITIONS, AND THEOREMS

Throughout this paper, we use X and Y to denote two
nonempty classes or datasets in Rn . If X∩Y = ∅, we call them
“commonly separable.” The basic pattern recognition problem
is to design a computable function f : Rn → R such that
∀x ∈ X, f (x) > 0(< 0) and ∀y ∈ Y, f (y) < 0(>0). Such
a function is called a decision (or discriminant) function of
X and Y , where f (x) = 0 represents the decision surface or
boundary. Strictly speaking, the boundary f (x) = 0 should
separate X and Y completely, but some errors are allowed
to improve anti-noise and generalizing abilities in practical
applications.

If there exist w ∈ Rn, b ∈ R such that f (x) = w · x + b
(x ∈ Rn) can separate X and Y without errors, we call them
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“linearly separable” and call f (x) their “linear discriminant
function.”

Definition 1: The distance function d is defined as follows:
1) d(x, y) = ‖x − y‖ = √

(x − y) · (x − y), ∀x, y ∈ Rn ;
2) d(X, Y ) = inf {d(x, y), x ∈ X, y ∈ Y }, ∀X, Y ⊂ Rn ;
3) d(x, Y ) = d(Y, x) = inf {d(x, y), y ∈ Y }, ∀x ∈ Rn,

∀Y ⊂ Rn .
Definition 2: ∀X ⊂ Rn , the convex hull of X is defined as

C H (X) =
{

x

∣∣∣∣x =
∑

1≤i≤|X |
αi xi ,

∑
1≤i≤|X |

αi = 1, xi ∈ X,

αi ≥ 0, αi ∈ R
}
.

Definition 3: The margin of f (x) = w · x + b with respect
to X and Y is defined as

D( f |X, Y ) = inf

{| f (x) − f (y)|
‖w‖ , x ∈ C H (X), y ∈ C H (Y )

}
.

It is well known that the SVM of X and Y is their
linear discriminant function with the maximum margin, if
they are linearly separable. Moreover, it could be proven
that, if (w∗, b∗) is the unique nonzero solution of HM-SVM
mentioned above, f (x) = w∗ · x + b∗ must be the SVM
of linearly separable X and Y [46]–[48]. However, note that
fμ(x) = μw∗ · x + μb∗ (for μ > 0) is also the SVM of X
and Y because it has the same margin as f (x) = w∗ · x + b∗.
Therefore, a SVM fμ(x) may not be the solution of HM-SVM.

If X, Y ⊂ Rn are two finite sets, there exists a very
close relationship between their SVM and convex hulls [47],
[48]. In fact, if X and Y are linearly separable, the problem
of constructing the SVM for them could be converted to
the following problem of computing the minimum distance
between CH(X) and CH(Y) [30]:

min ‖x − y‖ s.t. x ∈ C H (X), y ∈ C H (Y ). (NPP)

Although the solution (x∗, y∗) of NPP may not be unique,
it can be proven that f (x) = w∗ · x + b∗, with the maximum
margin of ‖x∗ − y∗‖, is always an SVM of X and Y for
λ = 0, w∗ = λ (x∗ − y∗) , b∗ = λ

(‖y∗‖2 − ‖x∗‖2
)/

2. If
λ = 2/‖x∗ − y∗‖2, the solution of HM-SVM can be easily
expressed as

w∗ = 2 (x∗ − y∗)
‖x∗ − y∗‖2 , b∗ =

(
‖y∗‖2 − ‖x∗‖2

)

‖x∗ − y∗‖2 .

In this section, we will further analyze how convex hulls are
related to SVM, summarizing some known results [49], [50]
in Theorems 2–4 and presenting new results in Theorems 1, 5,
and 6 in order to establish a common mathematical back-
ground, where Theorems 5 and 6 are original and significant
as far as we know. Moreover, in Appendix A we strictly prove
Theorems 1–6.

Theorem 1: 0 ≤ D( f |X, Y ) ≤ d (C H (X), C H (Y )) for
any linear function f (x) = w · x + b.

Theorem 2: If X ⊆ Rn is a finite set, x0 ∈ Rn and x0 /∈
C H (X), then there exists a unique minimal point x∗ ∈ C H (X)
to x0 such that d(x0, x∗) = min {d(x0, x), x ∈ C H (X)}, which
holds if and only if ∀x ∈ C H (X), (x − x∗) · (x∗ − x0) ≥ 0.

(1) x* ∈ X; y* ∈Y;

(2) x1 = x*; y = y*;

Algorithm1–CDMA
Input: X, Y
Output: f(x) = w·x + b

(5) if d(x1, y1) − d(x*, y*) ≥ ε > 0, goto (2);

(6)  w = x*−y*; b = (‖y*‖2−‖x*‖2) / 2;

(7) if ∃ x ∈ X, w·x + b ≤ 0 or ∃ y ∈ Y, w·y + b ≤ 0, let f(x) = 0:

(8) else f(x) = w·x + b. 

(3) x* = argmin   d(z, y*) ;
<1, x2=�    x1, x2 ∈ X

|z ∈ X or

z = x1 + λ·(x2−x1), 0 < λ = 
(x2−x1)·(y

*−x1)
(x2−x1)·(x2−x1)

z

(4) y* = argmin   d(x*, z) ;
<1, y2=�    y1, y2 ∈ Y

|z ∈ Y or

z = y1 + μ·(y2−y1), 0 < μ = 
(y2−y1)·(x

*−y1)
(y2−y1)·(y2−y1)

z

Fig. 2. CDMA—the cross distance minimization algorithm.

Theorem 3: Two finite subsets X, Y ⊆ Rn are linearly
separable if and only if C H (X) ∩ C H (Y ) = ∅.

Theorem 4: If X, Y ⊆ Rn are two linearly separable finite
subsets given x1, x2 ∈ C H (X), y1, y2 ∈ C H (Y ) satisfying

d(x1, y1) = d(x2, y2) = dmin = d(C H (X), C H (Y )).

f (x) = w · x + b is an SVM of X and Y , where

w = x1 − y1 = x2 − y2, b =
(‖y1‖2 − ‖x1‖2

)

2

=
(‖y2‖2 − ‖x2‖2

)

2
.

Theorem 5: If Y ⊆ Rn is a finite set and d(x0, y∗) =
min{d(x0, y), y ∈ C H (Y )} given x0 ∈ Rn , then ∀y1 ∈
C H (Y ), y1 = y∗, ∃y2 ∈ Y, y2 = y1, such that

d(x0, y2) < d(x0, y1) or d (x0, y1 + α · (y2 − y1)) < d(x0, y1)
where

0 < α = (y2 − y1) · (x0 − y1)

(y2 − y1) · (y2 − y1)
< 1.

Theorem 6: If X, Y ⊆ Rn are two finite subsets given x∗ ∈
C H (X), y∗ ∈ C H (Y ) satisfying d(x∗, y∗) = min{d(x∗, y),
x ∈ C H (Y )} and d(x∗, y∗) = min{d(x, y∗), x ∈ C H (X)},
then (x∗, y∗) is the nearest point pair between CH(X) and
CH(Y)

d(x∗, y∗) = min {d(x, y), x ∈ C H (X), y ∈ C H (Y )} .

In the above-mentioned theorems, Theorem 4 shows that the
problem of constructing the SVM of X and Y can be converted
to that of computing the nearest point pair (x∗, y∗) between
their convex hulls CH(X) and CH(Y), where the margin of the
SVM is just d(x∗, y∗) = d(C H (X), C H (Y )). Theorems 5 and
6 indicate how to compute (x∗, y∗). Based on Theorems 4–6, it
is not difficult to design a new iterative algorithm to construct
a non-kernel HM-SVM, i.e., the CDMA, detailed in Fig. 2.

In Algorithm 1-CDMA, ε is called “precision parameter,”
for controlling the convergence condition, “ f (x) = 0” repre-
sents a linear function with a random normal vector, meaning
that X and Y are linearly nonseparable or very hard to separate
by CDMA at ε-precision, z = x1 + λ(x2 − x1) actually
represents the perpendicular point from y∗ to the line segment
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Fig. 3. z = x1 + λ(x2 − x1) represents the perpendicular point from y∗
to the line segment C H (x1, x2), if x1 is not the nearest point from y∗ to
C H (X), there must exist another point x2 such that d(x2, y∗) < d(x1, y∗) or
d(z, y∗) < d(x1, y∗).

y
1

x
1

y
m

x
n

θ

Fig. 4. Example of X and Y on two straight lines intersecting with a small
angle of θ .

C H (x1, x2) if 0 < λ < 1 (see Fig. 3), while z = y1 + μ(y2 −
y1) represents the perpendicular point from x∗ to the line
segment C H (y1, y2) if 0 < μ < 1. According to Theorem 5,
if x1 is not the nearest point from y∗ to C H (X), there must
exist another point x2 such that d(x2, y∗) < d(x1, y∗) or
d(x1 + l(x2 − x1), y∗) < d(x1, y∗); and if y1 is not the nearest
point from x∗ to C H (Y ), there must exist another point y2
such that d(x∗, y2) < d(x∗, y1) or d(x∗, y1 + μ(y2 − y1)) <
d(x∗, y1). Therefore, a nearer point pair (x∗, y∗) can be always
found if (x1, y1) is not the nearest one.

It is not difficult to see that CDMA starts with any point pair
(x1, y1) in X × Y and repeatedly replaces them with a nearer
point pair (x∗, y∗) in C H (X)×C H (Y ) until convergence takes
place. No matter whether X and Y are linearly separable or
not, CDMA always converges to a nearest point pair (x∗, y∗)
between C H (X) and C H (Y ), according to Theorems 4–6.
And in the linearly separable case, it will output a unique SVM
constructed by (x∗, y∗). Otherwise, it may output f (x) =
0 because (x∗, y∗) converges to the zero vector (0, 0) in
this case. Note that CDMA cannot calculate the distance
from a point x0 inside C H (Y ) to the boundary of C H (Y ),
which is a NP-hard problem [51]. Principally, CDMA has
an adaptation rule as simple as the S–K algorithm [32] and
simpler than Keerthi’s method [30], and it is very easy to be
implemented with a linear space complexity of O(|X | + |Y |)
and a rough time complexity of O(I (ε)·|X |+|Y |), where I (ε),
actually involving the distribution of X and Y , represents the
total number of running loops for CDMA to converge at ε-
precision. For example, if X and Y are on two intersecting
straight lines illustrated in Fig. 4, I (ε) may be estimated as a
constant independent of |X | and |Y |

I (ε) ≈
[
log ε − log

(
d (x1, y1) sin2 θ

)]

log
(
cos2 θ

)

where 0 < ε < 1.0 and ε � d (x1, y1) sin2 θ with the angle
θ small enough. Therefore, we guess that I (ε) is possibly a

(a) (b)

Fig. 5. Two artificial examples of convexly separable datasets with “+”
standing for X and “×” for Y , where (a) Y is convexly separable to X with
a 3-line-segment boundary, and (b) X is convexly separable to Y with a 14-
line-segment boundary.

constant, mainly depending on the relative curvature of X and
Y around the nearest point pair (x∗, y∗) between them, but its
general proof in theory is an open problem.

III. CONLITRONS AND MULTICONLITRONS

In this section, we will consider the problem of how to
separate two arbitrarily complicated nonintersecting classes
by a number of linear functions, without using kernels. To
solve the problem, we first discuss the concept of “convexly
separable.”

Given any two finite subsets X, Y ⊆ Rn , X is called
convexly separable to Y if there exists a conlitron—convex
linear perceptron (CLP) from X to Y , namely, a finite linear
function set

L FS = {
fl(x) = wl · x + bl, (wl, bl) ∈ Rn × R, 1 ≤ l ≤ L

}

satisfying the following two conditions:

1) ∀x ∈ X,∀1 ≤ l ≤ L = |L FS| , fl(x) = wl · x + bl > 0;
2) ∀y ∈ Y, ∃1 ≤ l ≤ L = |L FS| , fl (y) = wl · y + bl < 0.

If C L P = L FS = { fl(x), 1 ≤ l ≤ L} is a conlitron from
X to Y , we define its decision function as

C L P(x) =
{

+1, ∀1 ≤ l ≤ L, fl (x) ≥ 0;
−1, ∃1 ≤ l ≤ L, fl (x) < 0.

We call X and Y convexly separable if X is convexly
separable to Y or Y is convexly separable to X . Obviously,
the two artificial examples in Fig. 5(a) and (b) are linearly
nonseparable, but both of them are convexly separable, where
the two separating boundaries are determined, respectively, by
3 linear functions and 14 linear functions. In Fig. 5(a), X is
convexly nonseparable to Y , while Y is convexly separable
to X , in Fig. 5(b), X is convexly separable to Y , while Y
is convexly nonseparable to X . It is worth noting that, if X
and Y are linearly separable, they must be convexly separable,
however, if X and Y are convexly separable, they may not be
linearly separable. For instance, provided that two triangles
internally intersect with the three vertices of one outside the
other, the two 3-vertex sets of them are convexly separable,
but linearly nonseparable, as is illustrated in Fig. 6.

We have Theorem 7 about convex separability.
Theorem 7: Given two finite sets X, Y ⊆ Rn, X is convexly

separable to Y if and only if ∀y ∈ Y, y /∈ C H (X).
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Fig. 6. X = {x1, x2, x3} is convexly separable to Y = {y1, y2, y3}, and vice
versa, although X and Y are convexly separable, they are linearly nonseparable
because CH(X) and CH(Y) intersect.

(1)  For 1 ≤ i ≤ M, g
j
(x) = CDMA (X, {y

j
});

(2)  l = 1; Y
1
 = Y:

(3) q = argmax{g
j
(y

j
), y

j  
∈

 
Y

l
}

(4) f
l
(x) = g

q
(x);

(5) Y
l +1

 = {y| f
l
(y) > g

q
(y

q
), y

  
∈

 
Y

l
};

(6) if Y
l +1

  =�    Ø, l = l + 1, goto (3);

Algorithm 2 − SCA

Input: X = {x
i
, 1 ≤ i ≤ N}, Y = {y

j
, 1 ≤ j ≤ M}

Output: CLP = {f
l
(x), 1≤ l ≤ L}

(7) L = l; 

(8) if ∃i∃l  f
l
(x

i
)≤ 0 or ∃j∀l  f

l
(y

j
)≤ 0, let CLP = Ø;

(9) else CLP = { f
l
(x), 1 ≤ l ≤ L}.

j

Fig. 7. SCA—the Support Conlitron Algorithm.

Proof:
1) If ∀y ∈ Y, y /∈ C H (X), let l = 1 and Yl = Y . Obviously,

∃y∗
l ∈ Yl , ∃x∗

l ∈ C H (X), such that

d(x∗
l , y∗

l ) = min {d(x, y), x ∈ C H (X), y ∈ Yl} > 0
by which we get

fl (x) = (
x∗

l − y∗
l

) ·
(

x − x∗
l + y∗

l

2

)

satisfying

∀x ∈ X, fl(x) ≥ d2(x∗
l , y∗

l )

2
> 0;

fl(y∗
l ) ≤ −d2(x∗

l , y∗
l )

2
< 0.

If Yl+1 = {
y

∣∣ fl (y) > fl(y∗
l ), y ∈ Yl

}
is nonempty, let l =

l + 1 and repeat to find (x∗
l , y∗

l ) for constructing fl (x) until
Yl+1 = ∅. Because Y1 = Y is a finite set and |Yl+1| < |Yl |,
the process must stop for some iterative number L satisfying
YL+1 = ∅.

Let L FS = { fl(x), 1 ≤ l ≤ L}, which is a conlitron from
X to Y , meaning that X is convexly separable to Y .

2) If X is convexly separable to Y , there exists a finite linear
function set

L FS = {
fl(x) = wl · x + bl, (wl , bl) ∈ Rn × R, 1 ≤ l ≤ L

}

y
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Fig. 8. Example to show the uniqueness for the solutions of SCA.
(a) g1(y2) = g2(y1). (b) g1(y2) = g2(y1).

satisfying the following two conditions:

1) ∀x ∈ X,∀1 ≤ l ≤ L, fl (x) = wl · x + bl > 0;
2) ∀y ∈ Y, ∃1 ≤ l ≤ L, fl (y) = wl · y + bl < 0.

If ∃y ∈ Y, y ∈ C H (X), y = ∑
αi xi ,

∑
αi = 1, αi ≥ 0, we

have ∀1 ≤ l ≤ L, fl (y) = wl · y + bl = wl · (∑
αi xi

) + bl =∑
αi (wl · xi + bl) = ∑

αi f (xi) > 0.
This contradicts ∀y ∈ Y, ∃1 ≤ l ≤ L, fl (y) = wl ·y+bl < 0.
Therefore, ∀y ∈ Y, y /∈ C H (X). �
According to Theorem 7, if X is convexly separable to Y ,

we can use Algorithm 1-CDMA to directly derive an iterative
algorithm to compute the conlitron C L P from X to Y , namely,
the SCA, detailed in Fig. 7. If q = argmax j{g j (y j ), y j ∈
Yl} is unique for every l, the solutions of SCA are obvi-
ously unique. In the case that q is not unique, e.g., ∃y1 =
y2, g1(y1) = g2(y2) = max{g j (y j ), y j ∈ Yl } < 0, if g1(y2) =
g2(y1) [see Fig. 8(a)], fl (x) = g1(x) = g2(x); otherwise [see
Fig. 8(b)], either “ fl (x) = g1(x) and fl+1(x) = g2(x)” or
“ fl(x) = g2(x) and fl+1(x) = g1(x).” Therefore, the solution
of SCA(X, Y ) is always unique, although a general conlitron
is not unique for two convexly separable datasets X and Y .

In Algorithm 2-SCA, “C L P = ∅” represents a conlitron
containing linear functions with random normal vectors, which
means that X is convexly nonseparable to Y or very hard to
be convexly separated to Y at the chosen precision parameter
ε for SCA to call CDMA. No matter whether X is convexly
separable to Y or not, it is easy to determine that the SCA
always converges according to Theorems 4–7, with the same
space complexity of O(|X | + |Y |) as CDMA and but with
a different rough time complexity of O(Imax(ε)|X | · |Y |),
where Imax(ε), actually involving the distribution of X and
Y , represents the maximum number of running loops for
CDMA{X, {y j }}(1 ≤ j ≤ |Y |) called by SCA to converge
at the ε-precision. However, if X is convexly nonseparable
to Y , SCA may output “C L P = ∅,” as CDMA may output
“ f (x) = 0.”

In addition, we define the convex distance “from X to Y ”
as

dC H (X |Y ) = min {d (C H (X), y) , y ∈ Y } .

It is not difficult to see that the unique conlitron computed
by SCA(X, Y ) can separate X and Y by the maximum margin
of dC H (X |Y ), and thus may be regarded as an extension of
the SVM in the convexly separable case. For this reason,
we call it “support conlitron.” The two separating boundaries
given in Fig. 5(a) and (b) are actually determined by their
corresponding support conlitrons, the one in Fig. 5(a) is
computed by SCA(Y, X) for the case that Y is convexly
separable to X , the other in Fig. 5(b) by SCA(X, Y ) for
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Fig. 9. (a) and (b) Nonlinear separating boundaries determined by a soft
margin RBF SVM (C = 1.0, γ = 8.0) for the two datasets illustrated in
Fig. 5(a) and (b).

Fig. 10. Two-moon set with “+” standing for X and “×” for Y .

the case that X is convexly separable to Y . For comparison
with the kernel SVM, in Fig. 9(a) and (b) we provide the
separating boundaries computed by a soft margin RBF SVM
(C = 1.0, γ = 8.0) for the convex-concave set and the two-
circle set illustrated in Fig. 5(a) and (b).

In the case where X and Y are convexly separable, we
define the support conlitron of X and Y as SCA(X, Y )
if dC H (X |Y ) ≥ dC H (Y |X), SCA(Y, X) otherwise. Because
the margin of SVM is d(C H (X), C H (Y )), i.e., the distance
between the convex hulls of X and Y , we can similarly define
the margin of the support conlitron of X and Y as

dC H (X, Y ) = max {dC H (X |Y ), dC H (Y |X )}
which is called the convex distance “between X and Y ,” as a
measure of generalization for support conlitrons.

Although the convexly separable concept extends the “lin-
early separable” concept in theory, there remains a problem
that any two nonintersecting finite subsets in Rn may not
be convexly separable (e.g., the two moons in Fig. 10). For
solving this problem, we need to introduce the concept of a
“multiconlitron,” which is a union of multiple conlitrons. It can
be theoretically proven that a multiconlitron has the ability to
separate any two nonintersecting finite subsets in Rn .

Given two finite nonintersecting subsets X, Y ⊆ Rn , a
multiconlitron (abbr. MCLP) from X to Y is defined as a finite
conlitron set C L PS = {C L Pk , 1 ≤ k ≤ K } which satisfies the
following two conditions:

1) ∀x ∈ X, ∃1 ≤ k ≤ K = |C L PS| , C L Pk(x) = +1;
2) ∀y ∈ Y,∀1 ≤ k ≤ K = |C L PS| , C L Pk(y) = −1.
If MC L P = C L PS = {C L Pk , 1 ≤ k ≤ K } is a multiconl-

itron from X to Y , we define its decision function as

MC L P(x) =
{

+1, ∃1 ≤ k ≤ K , C L Pk (x) = +1

−1, ∀1 ≤ k ≤ K , C L Pk (x) = −1.

We have Theorem 8 about multiconlitrons.

(1) I = {i, 1≤ i ≤ N};

(2) k = 1; I
1
 = I;

(3) p = arg
 
min{d({x

i
}, Y ), i ∈ I

k
};

(4) CLP
k
 = SCA({x

p
}, Y );

(5) if CLP
k
 = Ø, MCLP = Ø and stop;

(5) I
k+1

 = {i|∃f ∈ CLP
k
, f (x

i
) < f (x

p
), i ∈ I

k
};

Algorithm 3 − SMA

Input: X = {x
i
, 1≤ i ≤ N}, Y = {y

j
, 1≤ j ≤ M}

Output: MCLP = {CLP
k
, 1≤ k ≤ K}

(6) if I
k+1

 	 Ø, k = k + 1, goto (3);

(7) K 	 k; 

�

i

Fig. 11. SMA—the support multiconlitron algorithm.

Theorem 8: If X, Y ⊆ Rn are two finite nonintersecting
sets, there must exist a multiconlitron from X to Y and a
multiconlitron from Y to X .

Proof: Because X ∩ Y = ∅, it is obvious that ∀xk ∈
X, {xk} is convexly separable to Y . It might be assumed that
C L Pk is a support conlitron from {xk} to Y , namely, C L Pk =
SCA(xk, Y ).

Let K = |X |, C L PS = {C L Pk , 1 ≤ k ≤ K }, which
satisfies the following two conditions:

1) ∀x ∈ X, ∃1 ≤ k ≤ K = |C L PS, | C L Pk(x) = +1;
2) ∀y ∈ Y,∀1 ≤ k ≤ K = |C L PS, | C L Pk(y) = −1.

Therefore, MC L P = C L PS is a multiconlitron from X to
Y . Similarly, we can get a multiconlitron from Y to X . �

Obviously, the multiconlitron MC L P constructed in the
proof of Theorem 8 may contain a number of redundant conl-
itrons, which can be deleted to change the MCLP to a smaller
multiconlitron. For example, if xi = xk and C L Pk(xi ) = +1,
then the conlitron C L Pi can be taken as a redundant conlitron
after C L Pk is chosen. By appropriately deleting some of these
redundant conlitrons, we can derive an iterative algorithm to
compute the multiconlitron MC L P from X to Y , namely, the
SMA, detailed in Fig. 11. It is obvious that the solutions of
SMA are unique if p = arg min

i
{d ({xi } , Y ) , i ∈ Ik} is unique

for every l. In the case that p is not unique

∃x1 = x2, d ({x1} , Y ) = d ({x2} , Y )

= min {d ({xi } , Y ) , i ∈ Ik}
one possibility is C L Pk = SCA({x1}, Y ) = SCA({x2}, Y ),
the other is either C L Pk = SCA({x1}, Y ) and C L Pk+1 =
SCA({x2}, Y ) or C L Pk = SCA({x2}, Y ) and C L Pk+1 =
SCA({x1}, Y ). Because SCA(x1, Y ) and SCA(x2, Y ) are both
unique, the solution of SMA(X, Y ) is always unique, although
a general multiconlitron is not unique for two commonly
separable datasets X and Y .

In Algorithm 3-SMA, “MC L P = ∅” means that X∩Y = ∅

(commonly nonseparable), i.e., X and Y can not be completely
separated by a multiconlitron. So long as X ∩Y = ∅, it is not
difficult to know that both SMA(X, Y ) and SMA(Y, X) can
always converge with the same space complexity of O(|X | ·
|Y |), but with different time complexities of O(|X |2 · |Y |)
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Fig. 12. Separating boundaries of the support multiconlitrons are marked by
the bold broken lines for the two-moon dataset. The support multiconlitron
from X to Y in (a) is a union of 18 conlitrons where there are totally 115
linear functions, while the support multiconlitron from Y to X in (b) is also
a union of 18 conlitrons, but containing only 72 linear functions in total.
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Fig. 13. Nonlinear boundary computed by RBF SVM (C = 1.0, γ = 8.0).

and O(|X | · |Y |2) for training. Moreover, the testing time
complexity of SMA can be estimated as O(K Mn), where
M = max

1≤k≤K
{|C L Pk |}, K is the number of conlitrons, and n

is the dimension of data.
It is easy to see in Fig. 12 that even the multiconlitron from

X to Y , SMA(X, Y ), is usually different from the multiconl-
itron from Y to X , SMA(Y, X), where both SMA(X, Y ) and
SMA(Y, X) are a union of 18 conlitrons, but they respectively
contain 115 and 75 linear functions as a whole. Nevertheless,
both SMA(X, Y ) and SMA(Y, X), here called a “support
multiconlitron,” can be regarded as a non-kernel extension of
SVM, because they can separate two nonintersecting classes
X and Y by the maximum margin of d(X, Y ) as a measure
of generalization for them.

If SMA(X, Y ) contains a total number of linear functions no
greater than SMA(Y, X), we define the support multiconlitron
of X and Y as SMA(X, Y ), otherwise SMA(Y, X). Thus, the
final support multiconlitron of the two-moon dataset in Fig. 10
is SMA(Y, X), as shown in Fig. 12(b). To compare this to
a kernel SVM, in Fig. 13 we also provide the separating
boundaries computed by a soft margin RBF SVM (C =
1.0, γ = 8.0) for the two-moon set.

IV. EXPERIMENTAL RESULTS

To validate and evaluate the performance of CDMA, SCA,
and SMA, we report results comparing them with SVM on
one synthetic dataset of two cross planes in R3 as well
as 11 publicly available two-class databases from the UCI
Repository [52]. The selected databases, including their codes,
size, dimensionality, separability, and margin, are presented
in Table I, with the “training + test” sets indicated for the
last four databases, but not for the first eight. The attribute
values of separability and margin in Table I are obtained by

computational experiments, where ε = 0.000001 is prescribed
for CDMA and ε = 0.001 for SCA to call CDMA (the
same choices of ε made in Tables II, V, and VII). The
value of separability is one of “CDMA,” “SCA,” “SMA,”
and “None,” meaning that the corresponding database can
be completely separated by one of the algorithms or none
of them, where “CDMA” (linearly separable) implies “SCA”
and “SMA,” and “SCA” (convexly separable) implies “SMA.”
In addition, “SCA(CDMA)” means that the total database
can be completely separated by SCA, the training set by
CDMA, while “None(SMA)” means that the total database is
“commonly nonseparable” (i.e., the two classes have common
points with the distance of 0.000), but the training set can be
completely separated by SMA.

For the last four databases including (Spe), (Mo1), (Mo2),
and (Mo3) in Table I, we directly compare CDMA, SCA, and
SMA with RBF SVM (SVM.rbf) and linear SVM (SVM.lin)
on the indicated training and test sets, reporting the accuracies
with testing (training) time. For the first eight databases,
however, we randomly split each of them into two halves
for 50 times, one half for training, the other for testing,
and report the mean accuracies and standard deviations with
average testing (training) time. We summarize the main results
in Table II, where the highest accuracies are in bold and
the time data are recorded on the same computer (DELL
GX620, 3.2-GHz CPU, 2.0-GB RAM). Table II provides many
blank results (i.e., outputs not comparable) for CDMA and
SCA because only a few databases in Table I are linearly or
convexly separable.

In Table II, the training and testing process of CDMA,
SCA, and SMA is very simple, neither choosing kernels
and parameters nor normalizing features for data, while it
is much more complex for SVM. We scaled each feature
to [0, 1] for all the databases before training and test-
ing, then used library of support vector machine [53] to
conduct experiments on these normalized databases for C-
parameterized SVM.lin and (C, γ )-parameterized SVM.rbf
in the soft margin model, where we adopted an exponen-
tially growing grid search scheme recommended in [54] and
10-fold cross validation to identify the optimal values for the
two parameters C and γ , respectively, from the candidate sets
{2i |i = −4,−3, . . . , 3, 4} and {2i |i = −7,−6, . . . , 4, 5} (the
same for Tables IV–VII if not indicated). The training time
for SVM.lin and SVM.rbf includes in part the time to choose
optimal parameters.

From Table II, we can see the following.
1) Without considering blank results, all the training accu-

racies for CDMA, SCA, and SMA were 100.0%, while
those for SVM.rbf and SVM.lin were less than 100.0%.
On one hand, this means that the algorithms of CDMA,
SCA, and SMA could easily and completely separate
two classes with the corresponding separabilities. On
the other hand, it means that a “soft margin” with the
proper selection of C and γ is very useful for SVM.rbf
and SVM.lin to produce error-allowed training models
with better generalization.

2) SMA outperforms SVM.lin on many of the selected
databases and provides similar results to SVM.rbf on
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TABLE I

UCI DATASETS USED IN THE EXPERIMENTS

Database Code Size Dim Separability Margin

Cross planes (Crp) 8000 3 SCA 4.187

Ionosphere (Ion) 351 34 SMA 0.467

Sonar (Son) 208 60 SCA 0.324

Musk (Version 1) (Mus) 476 166 CDMA 7.876

Breast Cancer
(Bre) 569 30 SMA 10.922

Wisconsin(Diagnostic)

MAGIC Gamma
(Mag) 19020 10 SMA 0.773

Telescope

Parkinsons (Par) 195 22 SMA 0.132

Pima-indians-diabetes (Pim) 768 8 SMA 4.275

Spectf Heart (Spe) 80 + 187 44 SCA(CDMA) 13.283 (3.353)
Monks-1 (Mo1) 124 + 432 6 None(SMA) 0.000 (1.000)

Monks-2 (Mo2) 169 + 432 6 None(SMA) 0.000 (1.000)

Monks-3 (Mo3) 122 + 432 6 None(SMA) 0.000 (1.000)

TABLE II

TESTING (TRAINING) ACCURACIES (%) AND TIME (S) IN COMPARATIVE EXPERIMENTS

Accuracy
Time CDMA SCA SMA SVM.rbf SVM.lin

(Crp) 97.8 ± 2.1(100 ± 0.0)
2.66 × 10−4(187.52)

99.7 ± 0.1(100.0 ± 0.0)
2.219 × 10−3(52.68)

98.1 ± 0.2(98.1 ± 0.6)
0.078 (1153.06)

60.5 ± 3.9(60.9 ± 3.9)
1.25 × 10−4(125.53)

(Ion) 87.3 ± 2.0(100.0 ± 0.0)
6.09 × 10−4(0.15)

93.5 ± 1.6(99.1 ± 0.9)
0.016 (8.71)

85.7 ± 2.1(93.8 ± 2.9)
1.6 × 10−5(0.81)

(Son) 80.2 ± 3.2(100 ± 0.0)
3.29 × 10−4(0.17)

79.7 ± 3.5(100.0 ± 0.0)
9.37 × 10−4(0.24)

82.8 ± 3.3(99.2 ± 1.3)
0.016 (4.93)

75.6 ± 3.5(88.0 ± 3.4)
1.6 × 10−5(0.28)

(Mus) 80.1±2.1(100.0±0.0)
7.8 × 10−5(64.02)

86.5 ± 2.3(100 ± 0.0)
6.187 × 10−3(30.53)

83.7 ± 2.3(100.0 ± 0.0)
0.016 (1.35)

91.5 ± 1.6(99.7 ± 0.6)
0.031 (45.96)

81.4 ± 2.8(93.1 ± 3.2)
7.8 × 10−5(2.71)

(Bre) 91.9 ± 1.3(100.0 ± 0.0)
7.18 × 10−4(0.25)

92.2 ± 1.2(92.9 ± 1.0)
9.5 × 10−3(13.64)

90.9 ± 1.4(91.1 ± 1.2)
3.1 × 10−5(0.54)

(Mag) 77.6 ± 0.4(100.0 ± 0.0)
3.468 (624.58)

83.1 ± 0.3(83.8 ± 0.3)
6.235 (15 973.00)

79.1 ± 0.3(79.1 ± 0.3)
3.43 × 10−4(560.23)

(Par) 82.3 ± 3.0(100.0 ± 0.0)
1.4 × 10−4(0.04)

81.7 ± 1.9(86.7 ± 2.5)
9.54 × 10−3(2.15)

78.6 ± 2.9(81.7 ± 4.0)
1.6 × 10−5(0.10)

(Pim) 66.9 ± 1.9(100.0 ± 0.0)
2.406 × 10−3(0.29)

76.0 ± 1.4(78.2 ± 1.8)
0.016 (24.85)

75.2 ± 1.3(75.9 ± 1.3)
1.6 × 10−5(0.80)

(Spe) 72.2(100.00)
1.5 × 10−5(0.77)

59.4 (100.00)
2.97 × 10−4(0.28)

60.4 (100.0)
1.047 × 10−33(0.28)

71.7 (95.0)
1.5 × 10−3(2.60)

70.6 (90.0)
1.5 × 10−5(0.13)

(Mo1) 85.7 (100.0)
2.81 × 10−4(0.08)

89.6 (97.6)
1.25 × 10−3(3.61)

67.8 (69.4)
1.6 × 10−5(0.14)

(Mo2) 81.0 (100.0)
6.25 × 10−4(0.20)

75.7 (94.7)
1.83 × 10−3(6.72)

67.1 (62.1)
1.6 × 10−5(0.21)

(Mo3) 83.6 (100.0)
2.661 × 10−4(0.28)

95.1 (93.4)
1.22 × 10−3(3.36)

81.5 (84.4)
1.6 × 10−5(0.12)

some of them, while SCA performs better than linear
SVM on three out of four applicable datasets. The
performance of SMA may have something to do with the
dimensionality of data, for it is often unsatisfactory on
high-dimensional cases such as (Mus), (Spe), and (Ion).

3) On the convexly separable databases (Son) and (Mus),
SCA has testing accuracies of 80.2 ± 3.2% and
86.5 ± 2.3%, both higher than SVM.lin (75.6 ± 3.5%
and 81.4 ± 2.8%), this shows that SCA may be indeed
better than SVM.lin in some practical applications, as
expected.

4) On the database (Spe), which is convexly separable as
a whole but with a linearly separable training set, the

testing accuracy of CDMA is 72.2%, slightly higher
than SVM.rbf and SVM.lin, while that of SCA (59.4%)
and that of SMA (60.4%) are both lower than SVM.rbf
(71.7%) and SVM.lin (70.6%). This demonstrates
that SCA and SMA may be sometimes influenced
by the overfitting phenomenon which leads to bad
generalization, as too many linear functions are used in
the training process.

5) In the training process, both SCA and SMA run
faster than SVM.rbf on all the applicable databases.
For example, to finish 50-times training on (Crp), it
takes SCA and SMA about 187.52 × 50 ≈ 9376 s
and 52.68 × 50 ≈ 2634 s, respectively, but it takes
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TABLE III

TIME COMPLEXITIES FOR SMA, SVM.rbf AND SVM.lin

Classifer
Time complexity

Training Testing

SMA O(|X ||Y |(|X | + |Y |)) O (K Mn)

SVM.rbf O
(
(|X | + |Y |)3)

O (Sn)

SVM.lin O(U(|X | + |Y |)) O (n)

SVM.rbf about 1153.06 × 50 ≈ 57 650 s, to finish
50-times training on (Mag), it takes SMA about
624.58 × 50 ≈ 31 229 s (<9 h), but it takes SVM.rbf
about 15 973.00 × 50 ≈ 798 650 s (>220 h).

6) Compared to training time, most of the testing time
on different databases are relatively small and may be
neglected, but those for SMA are generally faster than
SVM.rbf and slower than SVM.lin. For a large and
complicated database such as (Mag), the testing time of
SMA (3.468 s) may be in the same order of magnitude
as that of SVM.rbf (6.235 s), but several orders of
magnitude slower than that of SVM.lin (3.43 ×10−4 s).

It is worth noting that the testing accuracies of SCA and
SMA are largely lower than SVM.rbf mainly because they
are sometimes sensitive to noise and may be influenced by
the overfitting phenomenon that results from using too many
linear functions to separate a training set completely. Here
we have no intention to solve this problem, but try to show in
theory that it may be alleviated or avoided after improvements
achieved by using certain techniques. Theoretically speaking,
a multiconlitron is a general classifier that can separate two
arbitrarily nonintersecting classes, so it can approximate any
complicated boundaries such as those generated by SVM.rbf.
This means we can always have a multiconlitron performing
at least as well as a SVM.rbf, allowing for classification
violation. Thus, we may further improve the generalizing
ability of SCA and SMA by introducing a “soft margin”
(like SVM) and controlling the appropriate number of linear
functions in the training process with a good balance between
the margin and the number. Usually, we would expect a larger
margin and a lower number, and if the balance between them
is better, the generalization will be better. A more detailed
discussion of this topic will be included in future work, as it
is beyond the scope of this paper.

It should also be noticed that the experimental training and
testing time for SMA, SVM.rbf, and SVM.lin could largely
conform to the theoretical time complexities of them, which
are summarized in Table III. From Table III, we can see that
O(|X ||Y |(|X |+ |Y |)) is the training time complexity of SMA,
which is faster than the worst O((|X |+|Y |)3) of SVM.rbf with
general complexity of O(S3) [55] and even linear complexity
of O(|X | + |Y |) for many algorithms taking SMO strategy
in special cases [56], but slower than the O(U(|X | + |Y |)) of
SVM.lin using the cutting-plane algorithm [57], where S is the
number of support vectors and U is the number of nonzero
features. Similarly, the testing time complexity of SMA is
O(KMn), probably in the same order of magnitude as the
O(Sn) of SVM.rbf, but obviously slower than the O(n) of
SVM.lin, where K is the number of conlitrons, M is the size

0 10 20 30 40

Dim

50 60 70 80 90
40

50

60

70

80

90

100

R
at

e

SCA
SMA
SVM.rbf
SVM.lin

Fig. 14. Test correct rates on n-dimensional unit-sphere problems.

of the largest conlitron, and n is the dimension of the data.
In addition, we run SMA and SVM.rbf again on the training
sets randomly selected for the first eight databases as well
as already indicated for the last four databases, and provide
the numbers of conlitrons for SMA and support vectors for
SVM.rbf in Table IV, which is helpful to confirm the validity
of the theoretical testing time complexities for SMA and
SVM.rbf.

In order to further demonstrate how the performance of SCA
and SMA is related to the dimensionality of data, we randomly
generate a series of n-dimensional unit spheres containing
2000 samples that satisfy ‖x ‖ ≤ 1 and take each of these
spheres as a two-class dataset with the separating boundary
‖ x ‖ = 0.5. Then we randomly split each of the obtained
datasets into two halves only once, one half for training, the
other for testing, and report the performance (accuracy or
testing correct rate) of SCA, SMA, SVM.rbf, and SVM.lin
in Table V with a dim-rate graph illustrated in Fig. 14. On
these n-dimensional unit-sphere problems, the experimental
results clearly show that the accuracies for SVM.rbf and
SVM.lin vary in a relatively small range, but those for SCA
and SMA decrease with the dimension numbers, from 99.1%
and 98.5% to 53.1% and 50.2%, respectively. This means that
SCA and SMA may encounter a serious overfitting problem
on high-dimensional databases if not using any soft-margin
strategies.

In order to further show that a soft margin with the proper
selection of C and γ may play an important role in improving
the generalizing ability of SVM.rbf, it is necessary to evaluate
the performance of HM-SVM on the selected databases. Be-
cause we do not have a publicly available software package for
this purpose, we use LCSM-SVM to approximate HM-SVM
with a very large C = 108, run it on the selected datasets and
summarize the mean accuracies and average training time in
Table VI. On comparing with Table II, it takes SVM.rbf much
more time to converge on (Pim) and (Mo2), and so much time
on Mag that we cannot finish training on it. This means that
SVM.rbf sometimes “suffers from the problem of converging
very slowly” even on small databases such as (Pim) if C is
set with an inappropriately large number. Although it seems
that a soft margin SVM.rbf can approximate a hard margin
SVM.rbf very well because many of the training accuracies
are 100.0(±0.0)%, actually it just means that w · φ(xi ) + b ≥
1 − ξi > 0) and w · φ(y j ) + b ≤ −1 + ζ j < 0 hold in the
training set with no guarantee for the hard margin inequalities:
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TABLE IV

NUMBERS OF CONLITRONS FOR SMA AND SUPPORT VECTORS FOR SVM.rbf

(Crp) (Ion) (Son) (Mus) (Bre) (Mag) (Par) (Pim) (Spe) (Mo1) (Mo2) (Mo3)

SMA 27 56 49 135 26 2933 23 131 37 16 57 22

SVM.rbf 251 95 102 188 53 3753 40 239 73 63 111 42

TABLE V

TESTING CORRECT RATES (%) ON n-DIMENSIONAL UNIT-SPHERE PROBLEMS

n 2 4 6 8 11 14 17 20 25 30 35 40 50 60 70 80

SCA 99.1 96.3 96.3 95.4 93.8 94.5 88.9 89.3 84.2 78.5 74.0 71.7 64.0 60.6 56.7 53.1

SMA 98.5 95.2 91.4 89.1 83.7 80.2 77.4 74.3 69.4 62.7 59.9 57.6 54.6 53.6 52.2 50.2

SVM.rbf 99.4 99.1 98.3 97.5 97.8 98.5 98.3 98.5 98.6 99.1 99.1 98.1 98.9 98.4 99.2 99.0

SVM.lin 66.3 61.5 61.1 59.3 59.9 60.2 61.4 60.0 61.4 59.1 60.9 61.5 60.4 60.6 59.8 59.2

TABLE VI

ACCURACIES (%) AND TIME (S) FOR LCSM-SVM WITH RBF KERNEL AND C = 108

(Crp) (Ion) (Son) (Mus) (Bre) (Mag) (Par) (Pim) (Spe) (Mo1) (Mo2) (Mo3)

Testing 99.9±0.1 92.9 ± 1.6 83.6 ± 3.6 90.4 ± 2.3 94.8±1.0 – 83.2±3.5 76.1±1.8 74.9 92.8 82.9 91.2

Training 99.9±0.1 100.0±0.0 100.0±0.0 100.0±0.0 96.5±1.2 – 91.6±4.3 79.8±3.1 100.0 100.0 100.0 100.0

Time 778.91 1.38 1.38 9.61 219.25 Too long 232.38 26411 0.57 64.44 2654.9 10.23

TABLE VII

TESTING (TRAINING) ACCURACIES (%) ON MULTICLASS DATABASES

CDMA SCA SMA SVM.rbf SVM.lin

iris 96.0 (96.0) 98.7 (98.7) 97.3 (100) 98.7 (97.3) 36.2 (34.9)

glass 89.5 (80.7) 52.4 (66.1) 69.5 (100) 56.2 (52.3) 96.0 (94.7)

wine 88.6 (86.7) 77.3 (83.3) 76.1 (100) 71.6 (72.2) 64.8 (66.7)

w ·φ(xi )+b ≥ 1 and w ·φ(y j )+b ≤ −1. Moreover, it can be
seen that the accuracies of SVM.rbf become lower on (Ion),
(Mus), and (Mo3) in Table II, but they become higher on
the other databases except Mag. This means that a better soft
margin, well adjusted by γ , may be found for SVM.rbf in the
approximation of LCSM-SVM to HM-SVM if the parameter
C is inappropriately enlarged at the risk of facing the problem
of converging very slowly.

Though CDMA, SCA, and SMA are presented for binary
classification in this paper, they are not limited to two-class
problems only. Actually, they can solve a p-class problem by
combining several binary classifiers if satisfying some separa-
ble conditions, and we may consider a number of different
methods that have been applied to multiclass SVMs [58].
For simplicity, we would like to just discuss the “maximal
margin sequence (MMS)” method, which is described as
follows:

1) represent the training set of a p-class problem as
X1, X2, . . . , X p with k = 1;

2) let X = Xi (k ≤ i ≤ p) and Y = ⋃
k≤ j =i≤p

X j , and

compute the distance di between X and Y based on the
corresponding linear/convex/common separability;

3) compute q = arg max
k≤i≤p

{di }, swap Xk and Xq ;

4) let k = k + 1, and go to 2 until k = p;

5) divide the p-class problem into a MMS of p − 1 two-
class problems, namely, running CDMA/SCA/SMA to
separate Xi and

⋃
i+1≤ j≤p

X j for i = 1, 2, . . . , p − 1.

Using the above MMS method, we run CDMA, SCA, and
SMA on three multiclass databases from the UCI Repository,
summarizing the experimental results in Table VII, where
“iris” is a three-class 4-D database, “glass” is a six-class
9-D database, and “wine” is a three-class 13-D database. The
training and testing sets are obtained by randomly splitting
each of them into two halves. Note that in Table VII we do
not check the step (7) for CDMA and the step (8) for SCA, so
they may produce one or more unstable linear functions in the
resultant classifiers, for which training accuracies are possibly
less than 100.0% because of violating the strict separability
for CDMA or SCA. For comparison, we also report the
performance of SVM.rbf and SVM.lin on the three databases
in Table VII.

V. CONCLUSION

We have presented some new theorems concerning the
concepts of “convex hulls,” “SVMs,” “convexly separable,”
“conlitrons,” “multiconlitrons,” etc., with all of them strictly
proven. These theorems greatly advance the state of the art for
the geometric theory of SVM, and they help us to establish
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a solid geometric theory and a new general framework to
design PLCs. Based on them, we proposed a new iterative
algorithm—the CDMA, which computes a hard margin non-
kernel SVM via the nearest point pair between two convex
polytopes. Using the “convexly separable” concept as an
extension of the “linearly separable” concept, we also built a
general PLC designated as a multiconlitron, which is a union
of multiple conlitrons composed of a set of linear functions
surrounding a convex region. Moreover, we have theoretically
shown that a multiconlitron can separate two arbitrarily com-
plicated nonintersecting classes in Rn , with its special cases—
support conlitrons (which can be considered a multiconlitron
containing only one conlitron) and support multiconlitrons
constructed respectively by SCA and SMA, to solve con-
vexly and commonly separable classification problems without
kernels. Additionally, in comparative experiments we have
demonstrated that SMA can outperform linear SVM on many
of the selected databases and provide similar results to RBF
SVM on some of them, while SCA performs better than linear
SVM on three out of four applicable databases. Finally, we
have indicated that CDMA, SCA, and SMA can be used to
solve a multiclass problem by dividing it into a MMS of binary
problems if some separable conditions are satisfied.

The most important contribution we have made in this
paper is to show that multiconlitron is a general PLC with
its special cases—support conlitrons and support multicon-
litrons regarded as a non-kernel extension of a HM-SVM.
In theory, support conlitrons and support multiconlitrons can
solve nonlinear problems without using kernels, providing
hyperplanes interpretation with piecewise linear separators.
In practice, they are easily constructed and calculated, often
performing a little better than a soft margin linear SVM but
worse than RBF SVM in most cases. Their main drawback
is the sensitiveness to noise, which is affected much by the
increase of dimensionality. Although their methodology needs
improving to draw more potential, they may open a new
research direction as a non-kernel extension of SVM, where
many problems remain to be solved, e.g., how to extend their
applications to commonly “nonseparable” databases, how to
construct equivalent quadratic programming models for them,
how to introduce reasonable soft margins for them, how to
select an appropriate number of linear functions for them,
how to alleviate or avoid the overfitting and noise-sensitive
problem for them, how to make a multiconlitron contain as few
conlitrons as possible, etc. We will focus future work on these
problems forming a new line of research that deserves much
attention—piecewise linear learning, the main goal of which is
to improve the performance of PLCs in a general framework.

APPENDIX A
PROOFS OF THEOREMS 1–6

Proof of Theorem 1: Because |w·(x − y)| ≤ ||w||||x − y||
and

D( f |X, Y ) = inf

{|w · (x − y)|
‖w‖ , x ∈ C H (X), y ∈ C H (Y )

}
,

0 ≤ D( f |X, Y ) ≤ inf {‖x − y‖, x ∈ C H (X), y ∈ C H (Y )}
= d (C H (X), C H (Y )) . �

Proof of Theorem 2:

1) Because C H (X) is a bounded closed set, there appar-
ently exists a minimal point x∗ ∈ C H (X) to x0 such
that d(x0, x∗) = dmin = min {d(x0, x), x ∈ C H (X)}.
Supposing x∗ is not unique, we may have two points
x1, x2 ∈ C H (X), x1 = x2 simultaneously satisfying
d(x0, x1) = d(x0, x2) = dmin. Thus

dmin =
∥∥∥∥x0 − x1 + x2

2

∥∥∥∥ =
∥∥∥∥
(x0 − x1) + (x0 − x2)

2

∥∥∥∥
≤ 1

2
‖x0 − x1‖ + 1

2
‖x0 − x2‖ = dmin.

Which means ‖(x0 − x1) + (x0 − x2)‖ = ‖x0 − x1‖ +
‖x0 − x2‖ and x0 − x1 = λ (x0 − x2).
Because ‖x0 − x1‖ = ‖x0 − x2‖ = dmin, λ = ±1. If
λ = 1, x1 = x2, contradicting x1 = x2; if λ = −1, x0 =
(x1 + x2)/2, contradicting x0 /∈ C H (X). Therefore, the
minimal point x∗ is unique.

2) If ∀x ∈ C H (X),(x − x∗) · (x∗ − x0) ≥ 0, we have

(x0 − x) · (x0 − x)

= [
(x0 − x∗) + (x∗ − x)

] · [(x0 − x∗) + (x∗ − x)
]

= (x0 − x∗) · (x0 − x∗) + 2(x − x∗) · (x∗ − x0)

+(x∗ − x) · (x∗ − x) ≥ (x0 − x∗) · (x0 − x∗).

Thus it holds that d(x0, x∗) = min{d(x0, x), x∈
C H (X)}.

3) Suppose ∃ x1 ∈ C H (X),(x1 − x∗) · (x∗ − x0) < 0. We
construct a new vector z = x∗ + α(x1 − x∗) = αx1 +
(1 − α)x∗, where

0 < α = min

{
1,

(x1 − x∗) · (x0 − x∗)
(x1 − x∗) · (x1 − x∗)

}
≤ 1.

Obviously, z ∈ C H (X). Furthermore, we have

(x0 − z) · (x0 − z) = (
x0 − x∗) · (

x0 − x∗)

−2α
(
x0 − x∗) · (x1 − x∗) + α2 (

x1 − x∗) · (x1 − x∗),
(x0 − z) · (x0 − z) <

(
x0 − x∗) · (

x0 − x∗).
This contradicts d(x0, x∗) = dmin. Hence, ∀x ∈ C H (X),
(x − x∗) · (x∗ − x0) ≥ 0. �

Proof of Theorem 3:

1) If C H (X) ∩ C H (Y )=∅, ∃x∗ ∈ C H (X), ∃y∗ ∈ C H (Y )
such that

d(x∗, y∗) = min{d(x, y), x ∈ C H (X), y ∈C H (Y )} > 0.

Let f (x) = (x∗ − y∗)·(x − (x∗ + y∗)/2). We can obtain

f (x) = (
x∗ − y∗) · (x − x∗) + ‖x∗ − y∗‖2

2

= (
x∗ − y∗) · (x − y∗) − ‖x∗ − y∗‖2

2
.

According to Theorem 2, ∀x ∈ X, f (x) ≥
d2(x∗, y∗)

/
2 > 0; ∀y ∈ Y, f (y) ≤ −d2(x∗, y∗)

/
2 < 0.

Therefore, X and Y are linearly separable.
2) If X and Y are linearly separable, there exists a linear

discriminant function f (x) = w · x + b such that ∀x ∈
X, f (x) > 0; ∀y ∈ Y, f (y) < 0.
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Supposing C H (X) ∩ C H (Y ) = ∅, we will have a contra-
diction described below: ∃z ∈ C H (X) ∩ C H (Y ) such that

z =
∑

1≤i≤|X |
αi xi =

∑
1≤ j≤|Y |

β j y j ,
∑

1≤i≤|X |
αi = 1,

∑
1≤ j≤|Y |

β j = 1,αi ≥ 0, β j ≥ 0, xi ∈ X, y j ∈ Y ,

f (z) = w · z + b = w ·
∑

1≤i≤|X |
αi xi + b

=
∑

1≤i≤|X |
αi (w · xi + b) =

∑
1≤i≤|X |

αi f (xi ) > 0,

f (z) = w · z + b = w ·
∑

1≤ j≤|Y |
β j y j + b

=
∑

1≤ j≤|Y |
β j (w · y j + b) =

∑
1≤ j≤|Y |

β j f (y j ) < 0. �

Proof of Theorem 4: Because d(x1, y1)= d(x2, y2)= dmin,
we have

dmin ≤
∥∥∥∥

x1 + x2

2
− y1 + y2

2

∥∥∥∥ =
∥∥∥∥

x1 − y1

2
+ x2 − y2

2

∥∥∥∥
≤ 1

2
‖x1 − y1‖ + 1

2
‖x2 − y2‖ = dmin.

So, ‖(x1 − y1) + (x2 − y2)‖ = ‖x1 − y1‖+‖x2 − y2‖, x1−
y1 = λ(x2 − y2),= 1.

According to Theorem 3, C H (X) ∩ C H (Y ) = ∅, which
contradicts (x1 + x2)

/
2 = (y1 + y2)

/
2 obtained when λ =

−1. Thus, λ = 1, w = x1 − y1 = x2 − y2.
According to Theorem 2, (x2 −x1) ·(x1 −y1) ≥ 0 and (x1 −

x2) · (x2 −y2) ≥ 0. From this, we can derive (x2 −x1) ·w = 0.
Similarly, (y2−y1)·w = 0. Therefore,(x2+y2−x1−y1)·w = 0

b =
(‖y1‖2 − ‖x1‖2)

2
=

(‖y2‖2 − ‖x2‖2)

2

and f (x) = w ·x+b is a SVM of X and Y because the margin
D( f |X, Y ) reaches the maximum value d (C H (X), C H (Y )),
according to Theorem 1. �

Proof of Theorem 5: Suppose that ∀y2 ∈ Y, y2 = y1,
d(x0, y2) ≥ d(x0, y1). Because it always holds that

d (x0, y1 + α · (y2 − y1))

= √
((x0−y1)−α · (y2−y1)) · ((x0−y1)−α · (y2−y1))

=
√

(x0 − y1) · (x0 − y1) −
[
(y2 − y1) · (x0 − y1)

]2

(y2 − y1) · (y2 − y1)

≤ √
(x0 − y1) · (x0 − y1) = d (x0, y1)

we only need to prove that if ∀y2 ∈ Y, y2 = y1, α ≤ 0 or
α ≥ 1, then we are led to a contradiction.

Supposing ∀y2 ∈ Y, y2 = y1, α ≤ 0 or α ≥ 1, we can
have (y2 − y1) · (x0 − y1) ≤ 0 or (y2 − y1) · (x0 − y1) ≥
(y2 − y1) · (y2 − y1).

If (y2 − y1) · (x0 − y1) ≥ (y2 − y1) · (y2 − y1), we can get

(x0 − y2) · (x0 − y2)

= (x0 − y1) · (x0 − y1) − 2(x0 − y1) · (y2 − y1)

+(y2 − y1) · (y2 − y1)

= (x0 − y1) · (x0 − y1) − 2
[
(x0 − y1) · (y2 − y1)

−(y2 − y1) · (y2 − y1)
] − (y2 − y1) · (y2 − y1)

< (x0 − y1) · (x0 − y1)

contradicting d(x0, y2) ≥ d(x0, y1).
Hence, we can only have ∀y2 ∈ Y, y2 = y1, (y2 −y1) ·(x0 −

y1) ≤ 0 from which we can directly get

(zi − y1) · (x0 − y1) ≤ 0,∀zi ∈ Y, 1 ≤ i ≤ |Y | .
Moreover, for any z ∈ C H (Y ), we can express z =∑
1≤i≤|Y | αi zi ,

∑
1≤i≤|Y | αi = 1,∀αi ≥ 0, which leads to the

following inequality:
(x0 − z) · (x0 − z)

=
⎡
⎣x0 −

∑
1≤i≤|Y |

αi zi

⎤
⎦ ·

⎡
⎣x0 −

∑
1≤i≤|Y |

αi zi

⎤
⎦

=
⎡
⎣(x0 − y1) −

∑
1≤i≤|Y |

αi (zi − y1)

⎤
⎦

·
⎡
⎣(x0 − y1) −

∑
1≤i≤|Y |

αi (zi − y1)

⎤
⎦

= (x0 − y1) · (x0 − y1) − 2
∑

1≤i≤|Y |
αi (zi − y1) · (x0 − y1)

+
⎡
⎣ ∑

1≤i≤|Y |
αi (zi − y1)

⎤
⎦ ·

⎡
⎣ ∑

1≤i≤|Y |
αi (zi − y1)

⎤
⎦

≥ (x0 − y1) · (x0 − y1).

Obviously, the above inequality means that y1 ∈ C H (Y )
is the minimal point of x0. Thus, if x0 /∈ C H (Y ), we have
y∗ = y1 according to Theorem 2, contradicting y1 = y∗; if
x0 ∈ C H (Y ), we have y∗ = y1 = x0, also contradicting
y1 = y∗. Therefore, ∃y2 ∈ Y, y2 = y1 such that 0 < α =
((y2 − y1) · (x0 − y1)) /(y2 − y1) · (y2 − y1) < 1. �

Proof of Theorem 6: In the case that x∗ ∈ C H (Y ) or y∗ ∈
C H (X), d(x∗, y∗) = 0, meaning the theorem obviously holds.
If x∗ /∈ C H (Y ) and y∗ /∈ C H (X), using Theorem 2, we can
get

∀x ∈ C H (X), (x − x∗) · (x∗ − y∗) ≥ 0;
∀y ∈ C H (Y ), (y − y∗) · (y∗ − x∗) ≥ 0.

Hence

‖x − y‖2 = (x − y) · (x − y)

= [
(x∗ − y∗) + (x − x∗ + y∗ − y)

]

· [(x∗ − y∗) + (x − x∗ + y∗ − y)
]

= (x∗ − y∗) · (x∗ − y∗) + (x − x∗ + y∗ − y)

· (x − x∗ + y∗ − y)

+2(x − x∗) · (x∗ − y∗) + 2(x∗ − y∗) · (y∗ − y)

≥ (x∗ − y∗) · (x∗ − y∗) = ∥∥x∗ − y∗∥∥2
.
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Therefore, d(x∗, y∗) = min {d(x, y), x ∈ C H (X), y ∈
C H (Y )}. �
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