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The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of the 
level set equation, which is coupled with the theory of detonation shock dynamics (DSD) describing the propagation of the 
detonation shock front. The numerical results of a rate-stick problem, a converging channel problem and an arc channel prob-
lem for specified boundaries show that GFDM is effective on solving the level set equation in the irregular geometrical domain. 
The arrival time and the normal velocity distribution of the detonation shock front of these problems can then be obtained 
conveniently with this method. The numerical results also confirm that when there is a curvature effect, the theory of DSD 
must be considered for the propagation of detonation shock surface, while classic Huygens construction is not suitable any 
more. 

generalized finite difference method, detonation shock dynamics, level set equation, propagation of detonation shock 
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1  Introduction 

The level set method combined with the theory of detona-
tion shock dynamics (DSD) is now widely used to study the 
non-ideal propagation of detonation shock front. The theory 
of DSD was mainly proposed and developed by Bdzil and 
Stewart and their colleagues based on an asymptotic theory 
[1–3]. The main conclusion of DSD is when the curvature 
radius of the curved shock is large compared with the width 
of the reaction zone of the corresponding explosive, the 
normal velocity of the detonation shock front equals the 
plane CJ velocity plus a correction caused by the local cur-
vature of the front, i.e. 

 CJ( ) ( ),   nD D  (1) 

where Dn is the normal velocity of the detonation shock 

front, DCJ is the steady CJ velocity of one-dimensional det-
onation, and α(κ) is a function of the detonation front cur-
vature determined by the properties of the explosive. From 
the derivation of Dn- relation [3,4], one can know that the 
relation depends on the chemical dynamics proceeding in 
the reaction zone, and the relation is an intrinsic property of 
the corresponding explosive. Provided that the initial shape 
of the shock front, the Dn- relation and the boundary con-
ditions are given, an initial-boundary value problem of the 
propagation of the detonation shock front can be defined, 
with no need to solve the reactive compressive flow in a 
real reaction zone.  

The level set method for the DSD theory was first pro-
posed by Aslam et al. [5] in Cartesian coordinates. This 
method embeds the propagating detonation front in a space 
of one higher dimension, and then evolves the front auto-
matically according to a level set equation, while other 
methods based on surface parameterization require boring 
logic to solve the problems of front merging and bifurcation. 
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Wen [6], Chen et al. [7], and Zhong [8] studied the 
non-ideal propagation of the detonation shock front adopt-
ing the level set method and the DSD theory, respectively. 
Chen et al. [7] used the body-fitted coordinates to simplify 
the handling of boundary conditions. Zhong [8] then inves-
tigated the finite difference scheme of the level set equation 
in the three-  dimensional non-orthogonal body-fitted co-
ordinates. One should note that it is very complicated to 
deal with the boundary conditions by using rectangular 
grids in Cartesian coordinates as Aslam et al. [5] and Wen 
[6] did in their work, where the computational grid points 
are not exactly on the boundary of the explosive. The finite 
difference method in body-fitted coordinates has some in-
herent limitations, such as a higher requirement for the grid 
quality and the so-called geometry induced error. 

A generalized finite difference method (GFDM) for ir-
regular grids proposed by Liszka & Orkisz [9,10] keeps the 
implementary simplicity of traditional finite difference 
method without increasing the computational cost when it is 
used to solve second order partial differential equations. 
Recently, Gavete et al. [11,12] made a comprehensive study 
of GFDM and compared the numerical precision of GFDM 
with that of element free Galerkin method, and the conver-
gence, the truncation errors over irregular grids and the sta-
bility criterion of the method for parabolic and hyperbolic 
equations were investigated there. Prieto et al. [13] de-
scribed how GFDM could be applied for solving the advec-
tion-diffusion equation, as well as its corresponding analysis. 
The related research reports above show that GFDM is good 
at numerically solving partial differential equations for ir-
regular grids in complicated areas. 

In this paper, we will study numerically the level set 
equation coupled with the DSD theory using GFDM for 
trapeziform grids in Cartesian coordinates in the compli-
cated computational region, which is the basis of our further 
research on the propagation problem of the curved detona-
tion shock front.  

2  Computational method 

2.1  Control equation 

The level set technique looks for a field function (x, t) in 
a space that the surface of interest travels in, and the zero 
constant iso-surface (x, t)=0 is often defined to be the 
appropriate one. For a level surface (x, t)=const, its total 
derivative is zero, i.e. [5] 

 
d

( ) 0,
d

   
   

t t
D  (2) 

where D() is the surface velocity related to its total curva-
ture . Since the detonation front propagates along its nor-
mal direction only, i.e. D()= Dn()ns, where ns is the out-
ward unit normal vector of the front, eq. (2) can be written 

in the following form: 
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where the normal is given by    sn  in terms of 

the level set function. Substituting eq. (1) into eq. (3), we 
can get the following control equation: 

  CJ 0.
    

    


D
t

 (4) 

This is the level set equation describing the propagation of 
the detonation shock front. The total curvature of the front 
in the two-dimensional space is as follows: 
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Especially, if a linear Dn- relation is applied, i.e. 
Dn()=DCJaκ, then eq. (4) reads 

 CJ 0,
   

    


D a
t

 (6) 

where a is a constant coefficient. When expression (5) is 
substituted into eq. (6), the following partial differential 
equation can be obtained 
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Eq. (7) is the very level set equation coupled with a linear 
relation of the DSD theory in the two-dimensional space, 
which is to be numerically solved in this paper. 

For eq. (7), a first order forward Euler differencing is 
used for the time derivative: 

 
1

, , ,
   
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n n
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t t
 (8) 

where i and j denote the x and y nodes, and n, the time level, 
respectively. The discrete scheme for the time derivative 
used here is first order accurate and higher order schemes 
such as the Runge-Kutta method will be employed if it is 
necessary in our further studies. The first and second order 
spatial derivatives appearing in eq. (7) are calculated using 
the GFD scheme introduced in sect. 1, of which some nu-
merical details will be given in sect. 2.3. 

2.2  Boundary conditions 

The boundary condition depends on the flow type observed 
by a viewer riding on the intersection of the shock front and 
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the edge, and the flow type is characterized by the local 
sonic parameter [5]: 

 2 2 2 2cot ( ),  n nS C U D  (9) 

where S is the local sonic parameter, C, the sound speed in 
the explosive, Un, the particle velocity of the explosive in 
the shock-normal direction, Dn, the normal velocity of the 
detonation shock front, and ω is the angle between the local 
shock normal ns and the normal vector of the edge nb. Fig-
ure 1 shows a schematic diagram of the definition of angle 
ω, and the normals ns and nb. It is clear that 

 cos .  s bn n  (10) 

Eq. (10) is just the so-called angle boundary condition. 
When S<0, the flow is locally supersonic at the intersec-

tion of the shock front and the edge and there is no need to 
apply a boundary condition. In this case, a continuation 
boundary condition is used in the numerical implementation. 
When S=0, the flow is locally sonic and the angle becomes 
=s, which is a constant sonic angle determined by the 
equation of state of the explosive. In this case, if the con-
finement is considerably weak, the flow at the shock/edge 
intersection point will remain sonic and the angle will stay 
as s. But if the confinement is very heavy, the local flow 
will experience a rapid transition to subsonic flow (S>0) and 
the angle becomes =c>s, where c is the angle where 
the pressure in the explosive and the pressure in the inert 
reach an equilibrium value. The angle c is regarded as a 
material constant depending on the properties of the explo-
sive/inert pair only, and it can be obtained by an experiment 
or a shock polar analysis. The applied angle boundary con-
dition is also related to the initial shape of the shock front, 
and further details can be found in ref. [5]. 

In our study, the edge normal vector nb is easily known 
by some interpolation scheme such as Hermite interpolation 
in case that the coordinates of those boundary nodes are 
given. The shock normal vector is directly calculated by the 
level set function, ,   sn  but the level set func-

tion values of those nodes outside the explosive boundary are 
unknown and should be determined by the angle boundary 
condition, i.e. eq. (10), which can be rewritten as follows: 

 

Figure 1  Definition of angle ω, and the normals ns and nb. 
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where nbx and nby are the respective components of nb in 
two-dimensional space. Take Figure 2 for example, where 
nodes P0, P1 and P3 are at the edge, and P2 is located in the 
confinement, and P4 is in the explosive. When the level set 
function evolves according to eq. (7), (P2) is unknown. 
We apply the following Green formula in the domain sur-
rounded by dashed lines in Figure 2: 
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i.e. 
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A central scheme is used and then the discrete forms of 
∂ψ/∂x and ∂ψ/∂y can be obtained as functions of ( ),iP  

1, , 4,i    among which (P2) is unknown. Substituting 
the discrete forms of ∂ψ/∂x and ∂ψ/∂y into expression (11), 
one gets a nonlinear algebraic equation with an unknown 
quantity (P2), which can be solved using some iterative 
method or other numerical methods. Once the level set 
function values of all the nodes outside the explosive edge 
such as (P2) are determined, the field function ψ(x, t) can 
evolve according to eq. (7) in the whole computational do-
main. 

2.3  GFD scheme of spatial derivatives 

The generalized finite difference method is actually one of 
the meshless methods [9,10]. Using GFDM in this paper is 
to solve nonlinear partial differential eq. (7) for irregular  

 

Figure 2  A schematic diagram of nodes inside, outside or at the edge of 
the explosive, where nodes P0, P1 and P3 are at the edge, and P2 is in the 
confinement, P4 in the explosive. 
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grids numerically. The GFD scheme for all spatial deriva-
tives of the level set function (x, t) appearing in eq. (7) is 
as follows. 

For the level set function at time tn in a given 
two-dimensional domain, expression (x, t)=(x, y, tn)= 
n(x, y) holds. We ignore the superscript n of n(x, y) and 
mark it as (x, y) for convenience in the following para-
graphs. If a central node P(x0, y0) and its neighboring nodes 
are defined, then according to the Taylor series expansion 
around node P we know that 
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where ( , ), i i ix y  0 0 0( , ),  x y  0 , i ih x x  ik  

0 ,iy y  2 2 ,  i ih k  and m ( 5m ) is the number of 

neighbor nodes. We can then obtain a set of linear equations 

by ignoring the higher order terms 3( ),O  

 { } { },  DA  (15) 

with  
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where { }D  is a vector composed of five unknown spatial 

derivatives at the central node P(x0, y0). The minimum 
number of neighboring nodes is m=5 to determine the 
{ }D  vector, and the number should be increased in order 

to improve the accuracy in approximating the derivatives 
leading to an overdetermined set of equations. In that case, 
the solution may be obtained by the least square procedure 
by considering the minimization of the norm: 
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and ( , )i i i iw w h k  are weighting functions. The necessary 

conditions satisfying eq. (17) are 
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Then a set of five linear equations with five unknown spa-
tial derivatives emerge as: 

 { } , DA b  (19) 

with 
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Because the matrix of coefficient A is symmetrical, it is 
easy to solve eq. (19) using the Cholesky method [11,12].  

In the following numerical examples, structured irregular 
quadrangles are adopted and a nine nodes stencil is used, i.e. 
a central node surrounded by eight neighboring nodes (m=8). 
The weighting functions wi(hi, ki) appearing in eqs. (19a) 
and (19b) are all taken as 1 in this paper. Figure 2 gives a 
schematic display of the stencil, and P0 represents the node 
located either in the computational domain or at the edge 
here. 

3  Numerical examples 

3.1  Rate stick problem 

As shown in Figure 3, the computational domain is (x, y)∈
[0, 200 mm]×[0, 40 mm] and the grid is 200×40, x=y=1 
mm. The obtained cells are regular rectangular quadrangles 
in this case. A plane wave is initially located at x=5 mm, 
and the level set function is initially a signed distance func-
tion from the wave front leading to  (x>5 mm)>0, (x=5 
mm)=0, (x<5 mm)<0. Symmetric boundary condition 
which is in accordance with perfect confinement is applied 
at y=0, and the angle boundary condition, c=54.7°, is ap-
plied at y=40 mm. At x=0 and x=200 mm, continuation 
boundary conditions are adopted. 

In the evolution of (x, y, t) based on eq. (7) in the 
whole field, for a specified node, the time at which the level 
set function value change sign is recorded as the arrival time 
of the shock front. Figure 3 shows the detonation shock 
fronts at times t=0.5, 4, 8, 12, 16, 20, 24 s, respectively, 
which are obtained by the DSD theory with Dn- relation 
given by Dn()=(8.050.8) mm/s. From Figure 3, one can 
see that the shock fronts at the edge y=40 mm are curved 
and slowed gradually due to the angle boundary condition. 
In addition, the shock fronts at corresponding times given 
by Huygens construction are plotted in Figure 3, and the 
Huygens solutions with constant propagating velocity 
Dn=8.0 mm/s are evidently not able to predict the curva-
ture effect at the boundary. From the normal velocity dis-
tribution of the detonation shock front, marked by Dn(x, y), 
one can find that the detonation velocity near the upper 
boundary is smaller than that close to the central line. 

3.2  Converging channel problem 

In this case, the computational domain is a converging 
channel as shown in Figure 4. The length in the x direction 
is 200 mm, and the lengths in the y direction are 100 and 60 
mm on the left and right sides, respectively, where there is a 
flat part on the left side with length 20 mm. The gird ap-
plied in the numerical simulation is 200×100, leading to 
regular rectangular cells in the flat part and irregular quad-
rangles in the converging part. An initial plane wave is lo- 

 

Figure 3  (Color online) Propagation process of the detonation shock 
front in a rate stick problem: the thick solid lines denote the shock fronts of 
level set solutions to the DSD theory at times t=0.5, 4, 8, 12, 16, 20, 24 s, 
respectively, the thick dashed lines denote the corresponding solutions of 
Huygens construction, and the thin solid lines denote the distribution of 
normal velocity of the detonation shock front, i.e. Dn(x,y). 

 
Figure 4  (Color online) Propagation process of the detonation shock 
front in a converging channel problem: the thick solid lines denote the 
shock fronts of level set solutions to the DSD theory at times t=1, 5, 9, 13, 
17, 21 s, respectively, the thick dashed lines denote the corresponding 
solutions of Huygens construction, and the thin solid lines denote the dis-
tribution of normal velocity of the detonation shock front, i.e. Dn(x,y). 

cated at x=5 mm and the level set function is initially a 
signed distance function from the wave front. Symmetric 
condition and the angle boundary condition with c=90° are 
used at the bottom and top boundaries, respectively, and 
continuation conditions are applied at x=0 and x=200 mm. 

Figure 4 shows the locations of the detonation shock 
front at times t=1, 5, 9, 13, 17, 21 s, respectively, obtained 
by the simulation of the level set equation together with the 
DSD theory with Dn=(8.066.8) mm/s, which is cited 
from references [4,5] and is derived from the reactive com-
pressive Euler equations with a simplified rate law of 
r=2.5147(1)1/2 s1, where  is the reaction progress var-
iable. One can find that the shock fronts are curved and ac-
celerated at the top edge of the converging part because of 
the negative curvature there. However, the solutions to 
Huygens construction with constant propagating velocity 
Dn=8.0 mm/s are slower and slower than the numerical 
results of the DSD theory. One can also find that the normal 
velocity in the vicinity of the top boundary is bigger than 
that close to the central line from the normal velocity dis-
tribution of the detonation shock front. 

3.3  Arc channel problem 

The computational domain of the arc channel problem is 
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Figure 5  (Color online) Propagation process of the detonation shock 
front in an arc channel problem: the thick solid lines denote the shock 
fronts of level set solutions to the DSD theory at times t=0.2, 5, 10, 15, 20, 
25, 30, 35, 40, 45 s, respectively, and the thick dashed lines denote the 
corresponding solutions of Huygens construction. 

shown in Figure 5, where the inner radius and the outer ra-
dius are 100 and 200 mm, respectively. The grid in the sim-
ulation is 100×360 in the radial and in the circular directions, 
respectively. The initial detonation front is an arc centered 
at (200 mm, 0) with radius R0=50 mm and again a signed 
distance function from the initial front is prepared for the 
initial level set function in the whole domain. Both the in-
side and outside boundaries of the arc channel use the angle  
boundary condition, i.e. the sonic angle s=45° corre-
sponding to free confinement or very light confinement. 
The applied Dn- relation is given by Dn=(8.066.8) 
mm/s. 

The detonation shock fronts at times t=0.2, 5, 10, 15, 20, 
25, 30, 35, 40, 45 s, respectively, given by the simulation 
of the DSD theory are shown in Figure 5. The distribution 
of the normal velocity of the shock fronts is not plotted here 
in order to show the front locations clearly. One can observe 
that the shock fronts obtained by the DSD theory lag behind 
those predicted by Huygens construction quickly with the 
specified computational conditions. The discrepancies of 
the results at later times between the DSD theory and Huy-
gens construction are so large that one must consider the 
curvature effect in this case, and thus the arrival time of the 
detonation shock front used in traditional algorithms for 
detonation simulations of the explosives should be im-
proved by applying the DSD theory. 

4  Conclusions 

In this paper, GFDM is successfully applied to solve the 
level set equation that is combined with the DSD theory 
numerically for irregular quadrangular grids, and then the 
propagation time of the detonation shock front and the dis-
tribution of the normal velocity of the shock front in com-
plex explosive devices can be obtained conveniently. 

The simulations of detonation shock front propagating in 
the examples of a rate stick, a converging channel and an 
arc channel show that the traditional Huygens construction 
is not suitable for calculating the propagation of shock front 
any more when the front is curved, while a more accurate 
theory must be developed such as the theory of DSD, espe-
cially at the edge of the explosives.  

However, the optimization of the numerical algorithm 
used in this paper and more detailed investigations of the 
propagation of detonation shock front in those engineering 
problems need to be carried out in the following work. 
Moreover, partial differential eq. (4) or eq. (7) solved in this 
paper is quite nonlinear, and there have been few studies 
about the mathematical properties of GFDM for a nonlinear 
partial differential equation to our knowledge. Therefore, a 
rigorous analysis of the convergence and the truncation er-
ror of the numerical method adopted here is also an essen-
tial study to be done in the future. 
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