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Abstract
We present a theoretical study of the low-energy photoelectron spectra of hydrogen molecular
ion generated by a single attosecond pulse in the presence of an infrared (IR) laser field. In
order to investigate this type of attosecond streaking of molecules, we developed a very
efficient grid-based numerical method to solve the two-centre time-dependent Schrödinger
equation (TDSE) in the prolate spheroidal coordinates. Specifically, the radial coordinate is
discretized with the finite-element discrete variable representation (FE-DVR) for easy parallel
computation and the angular coordinate with the usual DVR. A wavefunction splitting scheme
is utilized to reduce the demanding requirement of the computational resource to solve the
corresponding TDSE when an IR field is present. After verification of the accuracy and
efficiency of our method, we then apply it to investigate the attosecond streaking spectra of H+

2
in the low-energy region. In contrast to the usual attosecond streaking in the high-energy
region, part of the low-energy electrons may be driven back to rescatter with the residual
two-centre core. Very interesting interference structures are present in the low-energy region.
When the internuclear distance is small, they are very similar to what we have recently
observed in the atomic case.

(Some figures may appear in colour only in the online journal)

1. Introduction

The production of single attosecond pulses (SAPs) [1–3] has
enabled a new kind of experiment, in which an electron
wavepacket is created in the continuum by a SAP and then
steered by a synchronized infrared (IR) field with a stabilized
carrier-envelope phase [4]. The decoupling of the creation and
acceleration of the electrons provides a convenient means
of controlling the electron motion in the continuum. For
photoelectrons with high initial momenta, the interaction with
the parent ion can be neglected. The photoelectron momenta
is simply shifted by the vector potential of the IR pulse at
the time of ionization by the SAP [5]. Attosecond streaking,
based on this principle, has enabled measurements of electron
dynamics with a time resolution approaching the atomic
unit [6].

However, due to the broadband of the SAP, there may
exist a significant amount of low-energy electrons, which
may be driven back by the IR field to rescatter with the
core [7]. These rescattered electrons can interfere with
those directly ionized electrons with higher initial momenta.
Recently, we pointed out that the resultant interference patterns
may serve as a holography image by the electrons, which
contains the important structural and dynamical information
of the parent core [8]. This may open the way to image
the atomic and molecular dynamics using the low-energy
electrons in the above context. In contrast to the imaging
using high-order harmonic generation [9] or high-order above-
threshold ionization [10] in the cutoff region, the imaging
in the low-energy region is much more challenging for
both experimentalists and theoreticians because of the simple
reasons that the low-energy electrons are difficult to collect
experimentally and the complete theoretical treatment needs
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to deal with the external laser interaction and the core
potential collisions on an equal footing. On the other hand,
intense laser pulses in the mid-IR region or even longer
wavelengths have brought many surprises to the strong field
community. Specifically, a series of unexpected peaks in the
low-energy spectra of electrons were observed [11, 12] and
electron hologram by a single long-wavelength laser pulse
was demonstrated for the first time [13]. In the viewpoint
of these new findings, the electron spectra in the low-energy
region represents another arena of the strong field physics. For
the molecular case, there may be many more new interesting
phenomena because of multiple Coulomb centres. At the same
time, the theoretical treatment becomes even more challenging
than the atomic case as multiple forward and backward
scattering among the multiple Coulomb centres may occur
for the low-energy electrons.

The main purpose of this work is to introduce a stable
and efficient numerical method for the simplest diatomic
molecule H+

2 , which can facilitate quantitatively accurate
investigations of the differential distributions of the low-
energy electrons ionized by strong laser pulses. For the
ab initio calculations without the soft-core approximation,
the difficulties in the time-dependent calculations of diatomic
molecules are twofold. The first lies in the singularities of the
two Coulomb centres. The second is related to the accurate
computation of the molecular scattering states, especially
at large electron momenta. In the previous studies, most
of the work for the differential momentum distributions of
the ionized electrons concentrated on the relatively simpler
case where short XUV laser pulses are used; see a very
recent work by Guan et al [14] and references therein.
For the more challenging cases of molecular ionization by
intense IR pulses, only a very few attempts have been made
to attack the differential electron distributions. To our best
knowledge, only very recently, several works by Madsen
and co-workers [15–17] have made great effort to provide
a completely differential analysis of the electrons ionized by
an intense 800 nm laser. However, their method is based on
an expansion of the two-centre wavefunction in the spherical
coordinates, which brings challenges for the convergence
against the number of the angular momentum for high-energy
electrons. Moreover, the convergence is extremely difficult
when the internuclear distance becomes large. There were
some other calculations which made attempts in providing
the differential momentum distributions of ionized electrons
based on 2D model molecules or 3D soft-Coulomb potentials.
References [18, 19] represent very recent effort in such kinds
of calculations on model molecules.

It is well known that the natural coordinates for the
two-centre Coulomb problem are the prolate spheroidal
coordinates. In this work, we develop a numerical method to
accurately calculate the differential momentum distributions of
the ionized electrons in intense laser fields in such coordinates.
When solving the corresponding time-dependent Schödinger
equation (TDSE), for the spatial coordinates discretization, we
use a two-dimensional DVR, following the prescription of Tao
et al [20]. The time evolution of the wavefunction is achieved
by the well-known Arnoldi propagator in the Krylov subspace,

which has been routinely used in our previous work [21–24].
For the stability and efficiency of solving the TDSE, we adopt a
wavefunction splitting technique, in which the outer part of the
wavefunction is projected onto the molecular scattering states
and then analytically propagated in the momentum space. The
accurate computation of the scattering states are based on our
previous work, in which the angular part is solved using a
DVR basis method [25] and the radial part is stably integrated
using the Killingbeck–Miller approach [26]. As an example,
we apply our current methods to deal with the attosecond
streaking of H+

2 in the low-energy region.
The rest of the paper is organized as follows. In section 2,

we briefly formulate the problem and describe our numerical
methods. In section 3, we present some results which verify the
accuracy and efficiency of the developed code. In particular, we
carry out comparison studies in both the length and the velocity
gauge and illustrate the advantages of our splitting technique.
The robustness of the splitting scheme is further tested against
the change of the spatial box size and the splitting parameters.
In section 4, we draw a short conclusion.

2. Theoretical methods

In this section, we briefly describe our numerical method for
solving the TDSE of the simplest diatomic molecule in a
linearly polarized laser field, whose polarization is aligned
with the molecular axis. In the prolate spheroidal coordinates,
we discretize the spatial coordinates of the TDSE with the
combination of the finite-element DVR (FE-DVR) for the
radial coordinate and the usual DVR for the angular coordinate.
The temporal evolution of the wavefunction is carried out with
the Arnoldi propagator. The differential energy or momentum
distribution of the ionized electrons is then extracted by
projecting the final wavefunction onto the scattering states
of the field-free system. When an IR pulse is present, it is
well known that the computation is quite demanding and the
convergence in the angular coordinates is very slow; we thus
employed a wavefunction splitting technique to improve the
capability and efficiency. Details of our scheme are presented
in the following subsections.

2.1. The TDSE discretization scheme

The TDSE of a one-electron diatomic system has the following
form:

i
∂

∂t
ψ(r, t) = H(r, t)ψ(r, t), (1)

with the Hamiltonian operator H being

H (r, t) = −1

2
∇2 − Z1

r1
− Z2

r2
+ V int(r, t), (2)

where r1 and r2 are the distances of the electron from the
two nuclei, respectively, and Z1 and Z2 are the charges on
each nucleus. For two-centre problems, it is convenient to
adopt the prolate spheroidal coordinates [27], in which the
dimensionless coordinates ξ and η are defined as

ξ = r1 + r2

2a
(1 � ξ < ∞), (3)
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η = r1 − r2

2a
(−1 � η � 1), (4)

where a is half of the internuclear distance R. So the
Hamiltonian operator in these coordinates can be rewritten
as

H(ξ , η, φ, t) =
{

− 1

2a2
(
ξ 2 − η2

) [
∂

∂ξ

(
ξ 2 − 1

) ∂

∂ξ

+ ∂

∂η
(1 − η2)

∂

∂η
+ 1(

ξ 2 − 1
) ∂2

∂φ2
+ 1(

1 − η2
) ∂2

∂φ2

]

− (Z1 + Z2)ξ + (Z2 − Z1)η

a(ξ 2 − η2)

}
+ V int(ξ , η, φ, t), (5)

where φ is the azimuthal angle around the molecular axis.
As usual, one can separate the φ dependence from the

equation by writing

ψ(ξ, η, φ, t) =
∑

m

ψm(ξ , η, t)
eimφ

√
2π

,

m = 0,±1,±2, . . . , (6)

and ψm (ξ , η, t) satisfies

i
∂

∂t
ψm(ξ , η, t) = Hm(ξ , η, t)ψm(ξ , η, t), (7)

where

Hm(ξ , η, φ, t) = − 1

2a2(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ

+ ∂

∂η
(1 − η2)

∂

∂η
− m2

ξ 2 − 1
− m2

1 − η2
+ 2a(Z1 + Z2)ξ

+ 2a(Z2 − Z1)η

]
+ V int

m (ξ , η, φ, t). (8)

Equation (7) in prolate spheroidal coordinates can be
solved using different grid-based methods [20, 28–31]. We
follow the method proposed by Tao et al [20] for the advantages
discussed in detail by these authors. In this scheme, the
radial coordinate ξ is discretized by a FE-DVR for easy
parallel computation and the angular coordinate η is dealt with
the usual Gaussian–Legendre DVR. Specifically, the time-
dependent wavefunction is expanded as

ψm (ξ , η, t) =
Nξ∑
i=1

Nη∑
j=1

Ci j (t)χi (ξ ) Kj(η), (9)

where χi (ξ ) and Kj(η) are the DVR basis functions [20]. In
this work, we only solve the TDSE for a linearly polarized
laser pulse along the molecular axis, in which the azimuthal
symmetry is preserved. Therefore, starting from the ground
1σg state, one always has m = 0. After discretization, the
resultant Hamiltonian matrix elements are given by

Hi j,kl (ξ , η, t) = 1

2a2
√

ξ 2
i − η2

j

√
ξ 2

k − η2
l

×
{
δ jl

∫
(ξ 2 − 1)

dχi(ξ )

dξ

dχk(ξ )

dξ
dξ

+ δik

∫
(1 − η2)

dKj(η)

dη

dKl(η)

dη
dη

+ δikδ jl[−2a(Z1 + Z2)ξi−2a(Z2 − Z1)η j]

}
+V int

i j,kl (ξ , η, t), (10)

where the overlap terms are transformed out by reconstructing
the Hamiltonian matrix elements using equation (14) in [20].
In this case, the matrix elements of the interaction Hamiltonian
are given by

V int,L
i j,kl (ξ , η, t) = δikδ jlE(t)aξiη j, (11)

in the length gauge, and

V int,V
i j,kl (ξ , η, t) = −iA(t)

a
√

ξ 2
i − η2

j

√
ξ 2

k − η2
l

×
(

δ jlη j

∫
χi(ξ

2 − 1)
∂χk

∂ξ
dξ

+ δikξi

∫
Kj(1 − η2)

∂Kl

∂η
dη

)
, (12)

in the velocity gauge, where E (t) and A (t) is the electric field
and the vector potential of the external laser pulse, respectively.

For the time evolution of the wavefunction, we use
the Arnoldi propagator, which has been widely used in the
numerical solution of TDSE [21–24]. We first propagate an
arbitrary trial wavefunction with the field-free Hamiltonian in
an imaginary time to obtain the initial state of the molecule
and then perform the real-time propagation till the end of the
laser pulse t f .

2.2. Extraction of energy and momentum distribution

At the end of the real-time propagation of the TDSE, the
differential energy and momentum distribution of the ionized
electrons have to be extracted. The direct and accurate way to
achieve this is to project the final wavefunction onto the exact
scattering states of the field-free two-centre system. However,
due to the difficulty in computation of the two-centre scattering
states, several alternative methods have been developed, such
as the Fourier transformation of the autocorrelation function
[32], asymptotic projection onto plane waves or one-centre
Coulomb scattering states [33], or the application of the
exterior complex scaling (ECS) [20].

In this work, we directly project the final wavefunction
onto the two-centre scattering states with an incoming wave
boundary conditions. In practice, the angular part of the
continuum wavefunction is calculated using a DVR method
[25]. For the radial part, we use the extended Killingbeck–
Miller approach [26] which can propagate the radial equation
of continuum wavefunction stably and accurately.

The normalized scattering state with momentum k =
(k, θe, φe) can be expressed as

ψ
(−)
k (ξ , η, φ) = 2π

k

∞∑
l=0

+l∑
m=−l

il e−iδlm S∗
lm (cos θe, k)

× Xlm (ξ , k) Slm (η, k)
eim(φ−φe )

2π
, (13)

where Slm and Xlm is the angular and radial part of
the continuum wavefunction respectively, and δlm is the
corresponding phase shift.

The momentum distribution of the ionized electrons can
then be extracted by the following projection:

P(k, θe, φe) = ∣∣〈ψ(−)
k (ξ , η, φ)|ψ(ξ, η, φ, t f )

〉∣∣2
. (14)
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For the case of a linearly polarized laser along the molecular
axis, due to the azimuthal symmetry, one can define the
following φe-integrated energy distribution:

P (E, θe) = 2πkP(k, θe, φe = 0). (15)

2.3. Wavefunction splitting technique

In order to eliminate the reflection at the boundary and to
save the computation resources, at different instances during
the real-time propagation, we split the wavefunction into two
parts. The inner part is propagated under the full molecular
and interaction Hamiltonian. At the time of splitting ti,
the wavefunction in the outer region is first projected onto
the scattering states and is then analytically propagated
in the momentum space to a common time t f . In practice, the
splitting process is performed every half-cycle when the vector
potential of the external laser field is zero. All pieces of the
momentum space wavefunction, which have been propagated
to the common time t f , are coherently added up with a proper
Volkov phase factor to give the final momentum distributions
of the ionized electrons.

The splitting technique [34–36] is implemented by a
splitting function M which equals unity near the nuclei and
goes asymptotically to zero very smoothly at large distances.
The wavefunction is split into the following two parts:

ψ = ψinner + ψouter = Mψ + (1 − M)ψ, (16)

where the mask function M is taken to be

M = 1

1 + e−(ξ−ξs )/ξd
. (17)

Here, ξs is related to the central position of the splitting function
and ξd is the steepness. The Volkov phase factor associated with
the piece of the outer part split at time ti is given by

UV(t f , ti) = e−i
∫ t f

ti
dt ′[k+A(t ′)]2/2, (18)

which ignores the Coulomb potential in the asymptotic
region. After all the propagation and splitting procedures
are completed, one can reconstruct the total momentum
distribution of the ionized electrons by

P(k, θe, φe)

=
∣∣∣∣∣
∑

i

UV(t f , ti)
〈
ψ

(−)
k (ξ , η, φ) |ψouter(ξ , η, φ, ti)

〉∣∣∣∣∣
2

. (19)

Please note that, after the end of the real-time propagation
in the laser fields, the inner part of the wavefunction should
also be projected onto the molecular scattering states and be
coherently added up to the above formula.

With the above splitting technique, one can deal with the
challenging case where an intense and long IR laser pulse is
applied, preventing one from using a huge box and thus saving
a lot of computation time. As can be seen in the following
section, the splitting technique can also allow one to use much
fewer points in the angular coordinate.

Table 1. Energies of the first few bound states of H+
2 at the

internuclear distance R = 2 au from the present calculations
(denoted by the superscript a), compared with those from [29]
(denoted by the superscript b).

State Energy (au)

1σg −1.1026 3421 4494 951a

−1.1026 3421 4494 946b

1σu −0.6675 3439 2202 376a

−0.6675 3439 2202 383b

2σg −0.3608 6487 5339 500a

−0.3608 6487 5339 504b

2σu −0.2554 1316 5086 485a

−0.2554 1316 5086 485b

3. Results and discussion

In this section, we first verify the reliability and accuracy
of our numerical scheme and computer codes. These test
calculations include the comparisons of the energies of the first
few bound states, the total and the differential cross sections
of the single-photon ionization, with previous results available
in the literature calculated by other different methods. After
these verifications, we turn our attention to the convergence of
the ionization dynamics by an attosecond pulse in the presence
of an additional IR field, in both the length and the velocity
gauge description of the interaction Hamiltonian. We find that
the velocity gauge converges much faster than the length gauge
against the increase of the grid points in the angular coordinate.
However, we employ a wavefunction splitting scheme in the
length gauge and find that the computation can be even faster
than the velocity gauge. Finally, we apply our method to
investigate the attosecond streaking in the low-energy region.
Detailed analysis of these interesting interferences and their
dependence on the internuclear distance R is underway and
will be published elsewhere.

3.1. Bound states energies and single-photon ionization cross
sections

For the illustration that our chosen grid scheme can accurately
describe the field-free states of the molecule, we calculate
the first few bound states by the imaginary time propagation
method. The ground state is simply reached by propagating an
arbitrary trial wavefunction for a sufficiently long time. The
excited states are calculated by projecting out all the lower
states during a recursive propagation of a trial wavefunction in
the imaginary time. In our case, since the axial symmetry along
the molecular axis is utilized, only σ states (m = 0) can be
characterized in the calculations. In table 1, we compare the
energies of the first few bound states from this study with
those in [29] calculated by the generalized pseudospectral
method. One can see excellent agreement between both
results. The corresponding bound-state wavefunctions can be
simultaneously obtained accurately but are not shown here.

Let us now turn to the total single-photon ionization
cross section at R = 2 au, which can be calculated using the
formula [37]

σ = ω

I0

Ptotal

Teff
, (20)
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Figure 1. Total cross section of single-photon ionization of H+
2 for

laser polarization parallel to the molecular axis. Points: results of
Bates and Öpik [38]; red solid line: the present LOPT results; and
blue dashed line: the present TDSE results.

where ω is the central frequency of the laser pulse and Ptotal

is the total ionization probability of the molecule by the laser
pulse. The effective interaction time Teff is given by

Teff =
∫

I(t)

I0
dt, (21)

with I(t) being the laser intensity profile and I0 the peak
intensity. For a better evaluation of the cross section, we
use a trapezoidal shape laser pulse with one-cycle ramp
on and off and 20 cycle flattop, at the intensity of 5 ×
1012 W cm−2. A series of calculations are performed for
the ejected electron energy up to 8 au. As shown in
figure 1, the present TDSE results (we note that both the
length and the velocity gauge give identical results) are in
excellent agreement with the well-known accurate calculations
by Bates and Öpik [38], which were reproduced by Plummer
and McCann [39] using Floquet theory.

Actually, the single-photon total ionization cross section
can also been evaluated by the lowest order perturbation theory
(LOPT), provided that accurate initial and scattering states are
available. Denoting the laser polarization vector as ε̂, it is easy
to show that the differential cross section of single-photon
ionization is given by

σ (l)(k, θe, φe,�)

= 4π2αωk
∣∣〈ψ(−)

k (ξ , η, φ) |ε̂ · r| ψ0(ξ , η, φ)
〉∣∣2

, (22)

in the length gauge, and

σ (v)(k, θe, φe,�)

= 4π2αk

ω

∣∣〈ψ(−)
k (ξ , η, φ)

∣∣ε̂ · ∇∣∣ψ0(ξ , η, φ)
〉∣∣2

, (23)

in the velocity gauge, respectively, where � is the laser
polarization direction with respect to the molecular axis. In
all the calculations using the LOPT, we find that the above
length and velocity gauge formula give identical differential
and total ionization cross sections. Therefore, we only present

the results from the velocity gauge for clarity. In figure 1, we
also show the total single-photon ionization cross section from
the LOPT, which is calculated by

σ =
∫ 2π

0
dφe

∫ π

0
sin θe dθeσ (k, θe, φe,� = 0). (24)

To further confirm the accuracy of the computed scattering
states, we calculate the differential single-photon ionization
cross section using the LOPT at different photon energies and
different laser polarization �. Note that, as recently clarified
by Guan et al [14], the differential cross section was defined to
be ‘unweighted’ (given in equations (22) or (23)) or ‘weighted’
in the literature.

We first look at the differential cross section for the
electron energy of 10 eV and R = 2 au at different laser
polarization angles with respect to the molecular axis. In
figure 2, one can see that excellent agreements are achieved
between our ‘weighted’ differential cross sections with those
of Rescigno et al [40]. The ‘unweighted’ ones from Picca et al
[41] are also shown. Actually, our ‘unweighted’ differential
cross sections (for clarity, they are not shown) are in reasonable
agreement with those of Picca et al [41].

Then, we turn to compare our ‘unweighted’ differential
cross section (cf, equations (22) or (23)) with those of Picca et
al from another publication [42] at different electron energies
for the laser polarization angle � = 10◦. Surprisingly, the
absolute values from both results cannot agree with each
other but the shapes are almost the same for each photon
energy considered. In figure 3, we present our ‘unweighted’
differential cross section together with the scaled data from
[42]. Note that the absolute values of their data are scaled
with a different factor in each frame. The sources of
these discrepancies are unknown, but may be related to the
computation and normalization of the scattering states. It is
well known that computation of the scattering states at large
energy is challenging. But we have carefully checked the
convergence of the calculations and no differences or gauge
dependence is identified.

3.2. Convergence against Nη in the length gauge

It is well known that, when solving the atomic TDSE in in-
tense laser fields, the convergence against the number of the
angular momentum is very slow in the length gauge. However,
the good side of using the length gauge is that the interaction
Hamiltonian is diagonal, and thus, the operation is fast. If one
chooses the velocity gauge, the convergence against the num-
ber of the angular momentum is much faster but the interaction
Hamiltonian is dense, and thus, it is time consuming to operate.

In this section, we will first make a comparison of
calculations in the velocity and length gauge. Similar to the
atomic case, we find that the velocity gauge converges much
faster due to the increase of the number of the points in the η

direction than the length gauge. Nevertheless, our algorithm
in the length gauge is stable and is able to converge eventually
to the result in the velocity gauge as one increases Nη.

We can see this clearly if we look at the electron density
after the end of the laser pulse in the prolate spheroidal
coordinates. As an example, the molecule is ionized by a

5
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Figure 2. Differential cross section (DCS) σ (k, θe, φe = 0, �) of single-photon ionization of H+
2 for the electron energy of 10 eV and

R = 2 au at different laser polarization angle with respect to the molecular axis: (a) � = 0◦, (b) � = 30◦, (c) � = 60◦ and (d) � = 90◦. Red
solid line: the present calculations; blue dashed line: results of Rescigno et al [40]; black dash–dotted line: results of Picca et al [41]. Note
that all sets of data in (a) are multiplied by a factor of 3 for better vision.
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Figure 3. The ‘unweighted’ differential cross section of single-photon ionization for H+
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energy of (a) 10, (b) 50, (c) 150 and (d) 250 eV. Green dashed line: the present calculations; red solid line: scaled Picca’s data. Note that the
scale factor for each electron energy is different, as indicated in each panel.
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(a) (b) (c) (d) (e) (f)

Figure 4. The density of electrons on the logarithm scale in prolate spheroidal coordinates after the substraction of the initial-state
component. (a) The colour flood plot of the density calculated in velocity gauge; (b)–(f) the contour plot of the density calculated in the
length gauge with Nη = 48, 60, 72, 84, and 120, respectively (blue line in each frame), compared with that calculated in the velocity gauge
(red line in each frame). Note that the differences are only visible in the electronic version. See the text for the laser parameters of the
attosecond and IR pulses.

3 cycle sin2-shape attosecond pulse with the photon energy of
1.6 au at the peak intensity of 5×1012 W cm−2, in the presence
of an additional 4 cycle trapezoidal IR pulse of wavelength
750 nm at the peak intensity of 2 × 1013 W cm−2 [8]. The
attosecond pulse is put at the peak of IR pulse vector potential
so that a maximum streaking momentum shift is obtained.
In the calculations, the maximum of ξ is taken to be 800 to
absolutely make sure that there is no reflection. The time step
of the Arnoldi propagator is taken to be quite small, about
0.004 au.

In order to examine the details of the excitation and
ionized part of the electron density, we have projected and
subtracted the initial-state component. We first carry out a
series of calculations in the velocity gauge for different Nη

and find that when Nη = 48 it is completely converged. In
figure 4(a), we show the colour flood plot for the electron
density for Nη = 48 in the velocity gauge.

One can see from figure 4(a) that the wavepackets extend
beyond 500 and the wavepackets are stretched in the forward
direction (η = −1) and compressed in the backward direction
(η = 1). One also notices many interesting interferences in
the region ξ < 100. The interference structures will be clearly
seen when one analyses the electron energy and momentum
distributions, as will be shown below.

We have also carried out the same calculation using the
length gauge, as shown by the contour plots with the blue lines
in figures 4(b)–(f). The red line contour plot in each of these
five frames is the contour plot of figure 4(a), which represents
the converged result from the velocity gauge calculation. As
can be seen in figure 4(b), when Nη = 48 for the length
gauge, only the electron density below ξ = 150 overlaps the
converged result from the velocity. But as the number of points
in η is increased, the length gauge result agrees better and better
with that of the velocity gauge. For example, when Nη = 84
in figure 4(e), the electron density below ξ = 280 becomes

identical for the results from both gauges. The agreement
will become even better as one increases Nη. As shown in
figure 4(f), when Nη = 120, the two sets of results are almost
not differentiable, except a very small discrepancy around the
point (ξ ≈ 380, η ≈ 0). Actually, as one glances through
(b)–(f), one notices an interesting phenomenon: for the length
gauge, the convergence against Nη is always slower around
η = 0 than the two ends η = ±1. This is probably related
to the fact that the Gaussian–Legendre quadrature points are
denser at both ends.

3.3. The wavefunction splitting technique: application to the
attosecond streaking of molecules

The above observations tell us that, in the length gauge, one
needs much denser grids in η to achieve a fully converged
result than the velocity gauge. One notices the great property
that the results are always fully converged below a certain
value of ξ even for a relatively small number of points in the
η direction. This property allows us to develop a very efficient
method based on the wavefunction splitting technique. It
is well known that the ionizing electron wavepackets will
gradually evolve into the asymptotic regions where the
Coulomb interactions become less important. Therefore, these
outer region wavefunction can be split and projected into the
momentum space and be analytically propagated till the end of
the pulse or beyond. This wavefunction splitting technique has
been adopted in many circumstances such as atomic ionization
[34, 35] and molecular ionization [36].

We apply a wavefunction splitting technique to the
molecular ionization problem in the combined fields of an
attosecond and IR pulse. Different from most of the previous
works, after the wavefunction splitting, we project the outer
region wavefunction onto the molecular scattering states,
instead of the plane waves or atomic scattering states. After the
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(a) (b)

Figure 5. (a) The colour flood plot of the electron momentum distributions calculated by the velocity gauge using a larger box. (b) The
contour plot of the electron momentum distributions that are extracted from (a) (red solid line) and that are calculated by the splitting
technique in the length gauge using a much smaller box (blue dashed line).
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Figure 6. Comparisons of the electron energy distributions P(E, θe) along the laser polarization lines: (a) θe = 0◦ and (b) θe = 180◦,
calculated by the velocity gauge (black solid line), by the length gauge splitting technique at ξs = 200 with ξmax = 400 (red dashed line),
and by the length gauge splitting technique at ξs = 100 with ξmax = 300 (blue dash–dotted line). (c), (d) The logarithm scale plot of (a) and
(b), respectively.

projection, this portion of the wave packet is then propagated
analytically in the momentum space with a proper Volkov
phase factor (cf, equation (19)).

We want to emphasize that the utilization of the present
wavefunction splitting technique has the following advantages.
First, the velocity gauge, although converged faster in Nη,
needs much more time and resources than the length gauge
due to the fact that the interaction Hamiltonian is a full matrix
in the DVR discretization scheme and has to be treated in the
same way as the kinetic energy matrix. However, in length
gauge, the interaction Hamiltonian can be simply multiplied to
the wavefunction just like the Coulomb potential term, which

is diagonal as a main performance improvement of the DVR
method. If we use the splitting method, one can prevent the
slow convergence of the length gauge against Nη and improve
the computation speed by five times or more, depending on
the laser parameters. Second, with this method, we can fix the
box at a reasonable size for laser pulses of any length as long
as one ensures that the wavepackets in the inner region will
not reach the box boundary between two adjacent splitting
times. Third, since we project the split wavefunction onto the
the scattering states instead of the plane waves, one does not
need to propagate the split portions beyond the end of the laser
pulse, because at the end of the pulse, the whole wavefunction
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in the inner region will be projected directly to the scattering
states and be added up coherently to the split portions at early
times. Compared to the usual projection onto plane waves, our
method saves great time since there is no need to propagate the
low energy electrons into the asymptotic region. In this way,
the low energy part of the electrons can be precisely preserved
without any loss.

Now we apply our method to the attosecond streaking
spectra of the molecules in the low-energy region. In
figure 5, we present the electron momentum distributions
ionized by the same XUV and IR pulses as those in
figure 4. In figure 5(a), we show the results from the velocity
gauge by projecting the whole wavefunction at the end of
the laser pulse onto the molecular scattering states. (The final
electron density subtracted the initial state component is shown
in figure 4(a).) In figure 5(b), we show the same electron
momentum distributions using the contour plot as a red solid
line. Also, in figure 5(b), as the blue dashed line, the resultant
electron momentum distributions calculated by the splitting
technique in the length gauge are shown (cf, equation (19)).
One observes that the two sets of results agree completely
with each other. For the length gauge calculations, we take
ξmax = 400, Nη = 96 and ξs = 200. The wavefunction is split
twice per IR cycle at the zero of the IR vector potential.

For the sake of quantitative comparison, we turn to
examine the electron energy distributions along the laser
polarization direction, i.e. P(E, θe) for θe = 0◦ in figure 6(a)
and θe = 180◦ in figure 6(b). For details, also shown are
their logarithm scale plot in figures 6(c) and (d), respectively.
In each of these frames, three different lines are shown. The
black solid line represents the results from the velocity gauge
(cf, figure 5(a)). To test the robustness of the splitting technique
in the length gauge, we actually decrease Nη from 96 in
figure 5(b) to 48 in figure 6. The red dashed line shows
the results when ξmax = 400 and ξs = 200, while the blue
dash–dotted line represents the results at a even smaller box
at ξmax = 300 and ξs = 100. We note that, in each of these
frames, the three results agree with each other very well, which
confirms the accuracy and efficiency of our splitting method
in the length gauge.

Note that the interference structures in the momentum and
energy distributions of ionized electrons shown in figures 5
and 6 are very similar to what we have observed in atoms
[7, 8]. Basically, these interferences are caused by the
rescattering of the low-energy electrons with the core
potential. Not surprisingly, at small internuclear distances,
the interferences along the laser polarization are similar to
those in the atomic case. However, one expects that, due
to the multiple Coulomb centres in molecules, one may
observe drastically different patterns from atoms. This kind of
attosecond streaking of molecules in the low-energy regions
is currently under an elaborate analysis and will be published
elsewhere.

4. Conclusions

In summary, we have developed an efficient and accurate
splitting technique combined FE-DVR for solving the TDSE

problem in intense laser fields. By using this method, the
momentum spectra is accumulated by a recursive splitting
technique, in which the wavefunction in the outer region is
projected onto the scattering states of the two-centre system
and then analytically propagated to the end of the laser pulse
in the momentum space. By applying our method to the
attosecond streaking of molecules in the low-energy region,
we confirm the robustness and accuracy of our scheme. In
principle, our method is applicable to the laser pulses of any
length and can greatly save the CPU time and the memory
resources.
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[5] Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F

and Corkum P B 2002 Phys. Rev. Lett. 88 173903
[6] Schultze M et al 2010 Science 328 1658
[7] Peng L Y, Pronin E A and Starace A F 2008 New J. Phys.

10 025030
[8] Xu M H, Peng L Y, Zhang Z, Gong Q, Tong X M, Pronin E A

and Starace A F 2011 Phys. Rev. Lett. 107 183001
[9] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M,

Silvestri S D and Stagira S 2011 Nature Phys. 7 822
[10] Lin C D, Le A T, Morishita T and Lucchese R 2010 J. Phys.

B: At. Mol. Opt. Phys. 43 122001
[11] Blaga C I et al 2009 Nature Phys. 5 335
[12] Quan W et al 2009 Phys. Rev. Lett. 103 093001
[13] Huismans Y et al 2011 Science 331 61
[14] Guan X, Secor E B, Bartschat K and Schneider B I 2011 Phys.

Rev. A 84 033420
[15] Fernández J and Madsen L B 2009 Phys. Rev. A 79 063406
[16] Fernández J and Madsen L B 2009 J. Phys. B: At. Mol. Opt.

Phys. 42 085602
[17] Fernández J and Madsen L B 2009 J. Phys. B: At. Mol. Opt.

Phys. 42 021001
[18] Henkel J, Lein M and Engel V 2011 Phys. Rev. A 83 051401
[19] Yuan K J and Bandrauk A D 2011 Phys. Rev. A 84 013426
[20] Tao L, McCurdy C W and Rescigno T N 2009 Phys. Rev. A

79 012719
[21] Peng L Y, McCann J F, Dundas D, Taylor K T

and Williams I D 2004 J. Chem. Phys. 120 10046
[22] Peng L Y and Starace A F 2006 J. Chem. Phys. 125 154311
[23] Zhang Z, Peng L Y, Gong Q and Morishita T 2010

Opt. Express 18 8976
[24] Zhang Z, Peng L Y, Xu M H, Starace A F, Morishita T

and Gong Q 2011 Phys. Rev. A 84 043409
[25] Yan D, Peng L Y and Gong Q 2009 Phys. Rev. E 79 036710
[26] Hadinger G, Aubert-Frécon M and Hadinger G 1996 J. Phys.

B: At. Mol. Opt. Phys. 29 2951
[27] Abramowitz M and Stegun I (ed) 1965 Handbook of

Mathematical Functions (New York: Dover)
[28] Telnov D A and Chu S I 2005 Phys. Rev. A 71 013408

9

http://dx.doi.org/10.1126/science.1132838
http://dx.doi.org/10.1126/science.1157846
http://dx.doi.org/10.1103/PhysRevLett.103.183901
http://dx.doi.org/10.1126/science.1073866
http://dx.doi.org/10.1103/PhysRevLett.88.173903
http://dx.doi.org/10.1126/science.1189401
http://dx.doi.org/10.1088/1367-2630/10/2/025030
http://dx.doi.org/10.1103/PhysRevLett.107.183001
http://dx.doi.org/10.1038/nphys2029
http://dx.doi.org/10.1088/0953-4075/43/12/122001
http://dx.doi.org/10.1038/nphys1228
http://dx.doi.org/10.1103/PhysRevLett.103.093001
http://dx.doi.org/10.1126/science.1198450
http://dx.doi.org/10.1103/PhysRevA.84.033420
http://dx.doi.org/10.1103/PhysRevA.79.063406
http://dx.doi.org/10.1088/0953-4075/42/8/085602
http://dx.doi.org/10.1088/0953-4075/42/2/021001
http://dx.doi.org/10.1103/PhysRevA.83.051401
http://dx.doi.org/10.1103/PhysRevA.84.013426
http://dx.doi.org/10.1103/PhysRevA.79.012719
http://dx.doi.org/10.1063/1.1735662
http://dx.doi.org/10.1063/1.2358351
http://dx.doi.org/10.1364/OE.18.008976
http://dx.doi.org/10.1103/PhysRevA.84.043409
http://dx.doi.org/10.1103/PhysRevE.79.036710
http://dx.doi.org/10.1088/0953-4075/29/14/008
http://dx.doi.org/10.1103/PhysRevA.71.013408


J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 074019 X-F Hou et al

[29] Telnov D A and Chu S I 2007 Phys. Rev.
A 76 043412

[30] Telnov D A and Chu S I 2009 Phys. Rev.
A 80 043412

[31] Jin Y J, Tong X M and Toshima N 2010 Phys. Rev. A
81 013408

[32] Nikolopoulos L A A, Kjeldsen T K and Madsen L B 2007
Phys. Rev. A 75 063426

[33] Madsen L B, Nikolopoulos L A A, Kjeldsen T K and
Fernández J 2007 Phys. Rev. A 76 063407

[34] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A
74 031405

[35] Tong X M, Sasaki K, Hino K and Toshima N 2009 J. Phys.:
Conf. Ser. 185 012048

[36] Chelkowski S, Foisy C and Bandrauk A D 1998 Phys. Rev. A
57 1176

[37] Colgan J, Pindzola M S and Robicheaux F 2003 Phys. Rev. A
68 063413
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