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A new model for the formation of contact

angle and contact angle hysteresis∗
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The formation mechanism of the contact angle and the sliding angle for a liquid drop on a solid surface plays an

important role in producing hydrophobic surfaces. A new half soakage model is established in this paper as a substitute

for Wenzel (complete soakage) and Cassie (no soakage) models. The model is suited to many solid surfaces, whether they

are hydrophilic or hydrophobic, or even superhydrophobic. Based on the half soakage model, we analyse two surfaces

resembling lotus, i.e. taper-like surface and corona-like surface. Furthermore, this new model is used to establish a

quantitative relationship between the sliding angle and the parameters of surface morphology.
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1. Introduction

Due to the growing importance of hydrophobic or

oleophobic surface in industry and daily life, research

on the three-phase contact line on solid surface has

become more and more important.[1] The relationship

between contact angle and surface tension was first in-

vestigated by Young,[2] Wenzel[3] and Cassie et al.,[4]

who established their own models. In the Wenzel’s

model it was assumed that liquid wetted the whole

rough surface (i.e. completely soaks into the surface),

while in the Cassie et al.’s model it was assumed that

the droplet just floated on the rough surface due to

the support of the trapped air inside it. The Wenzel’s

model is often used to describe the contact angle on

solid surfaces which are hydrophilic or less hydropho-

bic, while the Cassie et al.’s model is often used to de-

scribe the contact angle on the solid surfaces which is

more hydrophobic or super-hydrophobic.[5−10] Much

research has focused on distinguishing the two models

given a certain condition.[11−20] However, the practi-

cal case does not suit either model.[21,22] In the present

paper, we establish a new half soakage model to sub-

stitute both the Wenzel’s model and the Cassie et al.’s

model. Since this new model suits nearly every kind of

surface whether they are hydrophilic, hydrophobic or

even superhydrophobic, the distinction between the

Cassie et al.’s model and the Wenzel’s model seems

unnecessary.

Sliding angle and contact angle hysteresis are im-

portant indicators in hydrophobicity studies. Surfaces

with a sufficiently large contact angle and sufficiently

small sliding angle (or contact angle hysteresis small

enough) also have a better self-cleaning effect.[23−25]

Furmidge[26] pointed out that the smaller contact an-

gle hysteresis results in a smaller sliding angle. Many

different views exist on the formation mechanism of

contact angle hysteresis: Adam and Jessop[27] pointed

out that the friction at the three-phase interface con-

tributes to the contact angle hysteresis. Kamusewitz

et al. adopted Mises condition to calculate the contact

angle hysteresis but found that contact angle did not

increase with the increase of surface roughness, which

was in disagreement with the experimental results.[28]

Cao and Jiang[29] tried to adopt the Amoton condition

to explain the formation of the contact angle hystere-

sis. However, they did not give an analytic relation-

ship between contact angle hysteresis and parameters

of surface morphology. Using the half soakage model,

we analyse two lotus-like surfaces in this paper, and

obtain an analytic expression.

2. Half soakage model

Young’s equation describes the relation between

contact angle and surface tension for a liquid droplet

on a smooth and uniform solid surface, and it is ex-
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pressed as

γsv = γsl + γlv cos θ
∗, (1)

where γsv, γsl and γlv denote the surface tensions of

solid/air, solid/liquid, and liquid/air interfaces, re-

spectively; θ∗ is the Young’s contact angle. However,

on the rough surface or composite surface, the contact

angle is much larger and cannot be explained by the

change of chemical components.[1] In order to explain

this phenomenon, Wenzel and Cassie et al. established

their own models. The former believed that the in-

creasing contact angle should be attributed to the in-

crease of contact area, caused by the complete soak-

age on the rough solid surface (see Fig. 1(a)), while

the latter argued that the formation of composite sur-

face (air–solid) would result in a larger contact angle

(see Fig. 1(b)). Both Cassie et al. and Wenzel consid-

ered only an extreme condition in their models. More

commonly, the liquid usually partially soaks into the

surface as shown in Fig. 2(a).

Fig. 1. (a) Wenzel’s model showing that the liquid drop

completely soaks into the solid surface; (b) Cassie et al.’s

model indicating that liquid floats on the microstructure,

and only liquid/solid contact and liquid/air contact are

considered, while the air/solid contact is neglected.

Consider a virtual change shown in Fig. 2. As-

sume that r is the ratio of the actual surface area to

ideal area (the area of the smooth and uniform sur-

face), f is the ratio of the area of the liquid/solid inter-

face to the whole solid surface area, δS′
sl is the change

of the area of the apparent solid/liquid interface, and

δSlv is the change of the area of the upper liquid/air

interface. Then the geometrical relationship between

δS′
sl and δSlv is

δS′
sl · cos θ = δSlv. (2)

The change of the area of real solid/liquid interface is

denoted with rfδS′
sl, r(1− f)δS′

sl is the change of the

area of solid/air interface in the groove. If β denotes

the ratio of the area of the liquid/air interface in the

groove to the apparent area of a smooth and uniform

surface, the change of the area of the liquid/air inter-

face in the groove should be expressed as βδS′
sl. In

the right zone, the change of the area of the solid/air

interface is −rδS′
sl. Thermodynamic equilibrium re-

quires the variation of Helmholtz free energy to equal

zero, i.e.,

δF = γslrfδS
′
sl + γsvr(1− f)δS′

sl + γlvβδS
′
sl

+ γlvδSlv − γsvrδS
′
sl

= 0. (3)

Helmholtz free energy is more important than Gibbs

energy because the temperature and the volume of

this system, rather than pressure, are constant.

Fig. 2. Half soakage model. Panel (a) is for a composite

solid–liquid–air interface, showing that this model consid-

ers not only the liquid/solid and liquid/air contacts, but

also the solid/air contact, and panel (b) shows the area

change caused by the virtual motion of the three-phase

contact line.

Substituting Eq. (2) into Eq. (3) leads to

cos θ = rf
γsv − γsl

γlv
− β. (4)

Substituting Eq. (1) into Eq. (4) yields

cos θ = rf cos θ∗ − β. (5)

If δSsl denotes the change of the actual area of the

solid/liquid interface, and δS refers to the total change

of the solid area, then f = δSsl/δS and r = δS/δS′
sl,

thus rf = δSsl/δS
′
sl. So ε = rf = δSsl/δS

′
sl, which
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expresses the ratio of the actual area of solid/liquid

interface to the apparent area of a smooth and uni-

form surface. Then, we obtain

cos θ = ε cos θ∗ − β. (6)

This equation uses ε and β to take the place of r and f ,

which are used in the Wenzel’s and the Cassie et al.’s

models to demonstrate the effect of surface structure

on contact angle, and is closer to the experimental re-

sults. When ε = r and β = 0, equation (6) returns to

Wenzel’s equation, i.e. cos θ = r cos θ∗. When ε = f

and β = 1− f , equation (6) returns to Cassie et al.’s

equation, i.e. cos θ = f cos θ∗ + f − 1.

Equation (6) allows us to quantitatively calculate

the contact angle on the solid surface with a certain

structure. Its accuracy could be proved by the method

of photoetching.[30]

Take the lotus-like surface for example. It is gen-

erally deemed that the lotus surface is comprised of

micropapillas (5∼9 µm) and nanoneedles (120 nm).[31]

Nanoneedles have two main effects: bending the

droplet under surface tension in order to create the

Laplace pressure difference so as to hold the droplet[32]

(shown in Fig. 3), and increasing the area of the

solid/liquid interface, i.e. ε (while β remains the

same).

Fig. 3. Nanoneedles that can hold the droplet, where the

curvature of the droplet has been magnified in order to

express that the nanostructure can hold the droplet.

Although the Laplace pressure difference which

contributes mainly to holding the droplet is caused by

the surface curvature, the following analysis will show

that the undersurface can still be regarded as flat in

contact angle calculation.

The volume of the droplet is

V = πa3(1− cos θ)2(2 + cos θ)/3, (7)

where a is the radius of the droplet. The apparent

area of the solid/liquid interface is

S = πa2 sin2 θ. (8)

So the pressure caused by the gravitation is

P = V ρg/S =
a

3
(1− cos θ)(2 + cos θ)ρg/(1 + cos θ).

(9)

If this pressure is totally offset by the Laplace pressure

difference, then we have

P = ∆P = 2γ/R, (10)

where R is the radius of the liquid/air interface (see

Fig. 3) and γ is the tension of the interface. Under

the experimental condition, the size of the droplet is

about several micrometers, and the surface tension of

water at room temperature is about 20 mN/m. For

θ = 120◦, R = 2.67 m, which is much larger than the

distance between papillaes. Thus, the interface can

still be treated as a flat surface.

First, we analyse the surface with taper structure.

As is illustrated in Fig. 4, R and H denote the radius

and the height of the taper. The tapers are equally

spaced with a distance a. Letter r is the radius of the

circle which contacts three-phase contact line and its

distance to the top of the taper is h. From geometry,

we obtain h = rH/R. If the effect of nanostructure

on ε is not taken into account, we can easily obtain

the following equations:

ε = πr
√
r2 + h2/a2 = πr2

√
1 +

H2

R2
/a2, (11)

β = (a2 − πr2)/a2. (12)

Substituting Eqs. (11) and (12) into Eq. (6) leads to

cos θ = πr2
√
1 +

H2

R2
/a2 cos θ∗ + πr2/a2 − 1. (13)

Fig. 4. Sketches of the lotus-like surface with taper struc-

ture (only microstructure is shown). In panel (a) the ta-

pers are assumed to be equally separated with a distance

a, and in panel (b) shown is the detailed geometry struc-

ture of a single taper, where h is the soakage length.

As shown in Fig. 5, cos θ decreases with r/a de-

creasing and H/R increasing. Thus, we should ap-

propriately reduce r/a and increase H/R in order to

create high hydrophobic surfaces.
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Fig. 5. Effect of geometrical parameters on contact angle,

with assuming θ∗ = 120◦, considering only hydrophobic

area, i.e. −1 ≤ cos θ ≤ 1, and cos θ decreasing with the

reduction of r/a and the increase of H/R.

Considering the effect of nanoneedles on ε, τ can

be introduced to characterize the increase

cos θ = τπr2
√

1 +
H2

R2
/a2 cos θ∗ + πr2/a2 − 1. (14)

When cos θ∗ < 0, cos θ decreases significantly because

τ > 1.

Another lotus-like surface is analysed in Fig. 6,

where R denotes the radius of the corona, r is the ra-

dius of the circle which contacts the three-phase con-

tact line, h represents the depth of soakage.

Fig. 6. Geometric structure of corona.

Similarly, we obtain

ε = 2πRh/a2, (15)

β = (a2 − πr2)/a2. (16)

The relationship among r, h, and R can be geometri-

cally expressed as r2 + (R− h)2 = R2, so

β =
{
a2 − π

[
R2 − (R− h)2

]}
/a2. (17)

Substituting Eqs. (15) and (17) into Eq. (6), we

can obtain

cos θ = 2πRh/a2 cos θ∗ +
π
[
R2 − (R− h)2

]
a2

− 1

= −πh2/a2 + 2πRh/a2(cos θ∗ + 1)− 1. (18)

As shown in Fig. 7, when h = R(cos θ∗ + 1), cos θ has

a maximum function πR2(cos θ∗ +1)/a2 − 1. In order

to obtain high hydrophobicity, R should decrease and

a should increase to reduce πR2(cos θ∗ + 1)/a2 − 1.

However, too small R and too large distance a would

result in large curvature of the liquid/air interface.

Fig. 7. Effect of geometrical parameters on contact angle

with assuming θ∗ = 120◦, considering only hydrophobic

area, i.e. − ≤ cos θ ≤ 1, and the curve of cos θ−h/a being

parabolic for a given value of R/a.

Similarly, the nanostructure would increase ε so

as to reduce cos θ.

3. Sliding angle and contact angle

hysteresis

In fact, the contact angle is not a constant but

varying in a continuous range. The maximum value

of contact angle is referred to as advancing angle θA
and the minimum value is named receding angle θB,

and ∆cos θ = cos θB − cos θA is called the contact an-

gle hysteresis.

The existence of the contact angle hysteresis can

be explained in the following.[33] When liquid is added

into a drop on a horizontal surface, the three-phase

contact line is pinned by the coherent force and the

contact angle increases until it reaches θA. Further

addition of liquid leads to the motion of the contact

line. When liquid is vapourized or absorbed from a

droplet, the contact line is again pinned and the con-

tact angle decreases down to θB. Further vapouriza-

tion or absorption leads to the motion of the contact

line. If this reasoning is applied to a droplet on the

inclined surface, it can be concluded that the droplets

can stand in equilibrium as long as the contact an-

gles with respect to the front line and the rear line
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do not become greater than θA and smaller than θB,

respectively.

Furmidge[26] pointed out the relationship between

the sliding angle and the contact angle hysteresis, ex-

pressed as

mg sinα/ω = γlv∆cos θ, (19)

where m is the mass of the droplet, α is the sliding

angle, ω is the perimeter of three-phase contact line,

and γlv is the tension of liquid/air interface. Thus the

effective way to reduce the sliding angle is to reduce

the contact angle hysteresis.

In order to gain its quantitative expression to cal-

culate the contact angle hysteresis, the parameter ‘µ’

is introduced to describe the coherent force between

the solid/air interfaces per unit area, where the con-

tact line must overcome its movement. So equation

(3) will change into

δF = γslεδS
′
sl + γsvr(1− f)δS′

sl + γlvβδS
′
sl

+ γlvδS
′
sl · cos θA + µεδS′

sl − γsvrδS
′
sl

= 0, (20)

δF = −γslεδS
′
sl − γsvr(1− f)δS′

sl − γlvβδS
′
sl

− γlvδS
′
sl · cos θB + µεδS′

sl + γsvrδS
′
sl

= 0. (21)

From Eq. (20) the advancing angle is obtained as

cos θA = ε cos θ∗ − β − µε/γlv. (22)

From Eq. (21) the receding angle is obtained as

cos θB = ε cos θ∗ − β + µε/γlv. (23)

Thus the angle hysteresis is given as

∆ cos θ = cos θB − cos θA = 2µε/γlv. (24)

From Eq. (24) it can be observed that lower ε and

larger γlv would result in lower contact angle hystere-

sis. This may explain why the sliding angle of oil

on an inclined solid surface is larger than that of wa-

ter. In addition, when the solid surface is hydrophilic

or less hydrophobic, the liquid completely soaks into

the solid surface, thus ε = r, meeting the require-

ment of the Wenzel’s model; with the increase of r,

the contact angle θ and the contact angle hysteresis

∆ cos θ both increase. However, when the solid surface

is more hydrophobic or superhydrophobic, the droplet

almost floats on the solid surface, thus ε = f , satisfy-

ing the requirement of the Cassie et al.’s model. With

a decrease of f , the contact angle increases while the

contact hysteresis decreases. Therefore, the surface

satisfying the requirement of Cassie et al.’s model is

more advantageous to achieve better self-cleaning ef-

fect, because of the contrary orientation of the contact

angle to that of the sliding angle.

Now, we consider the contact angle hysteresis of

the surface with taper structure as shown in Fig. 4.

Substituting Eq. (11) into Eq. (24) yields

∆ cos θ = 2µε/γlv = 2µπr2
√
1 +

H2

R2
/(a2γlv). (25)

Smaller values of r/a and H/R result in smaller

∆ cos θ. However, smallerH/R would result in smaller

θ. Thus appropriate values of H, R, r, and a should

be chosen so as to satisfy different needs for hydropho-

bicity.

4. Conclusion

In the present paper, we established a half soak-

age model which is advantageous compared with the

Wenzel’s model and the Cassie et al.’s model, then we

quantitatively analysed two lotus-like surfaces and de-

termined the relationship between contact angle and

parameters of surface morphology. Furthermore, we

made use of this new model to calculate the contact

angle hysteresis and gave a reasonable explanation to

the formation of the contact angle hysteresis.
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