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Abstract

A multiple exp-function method to exact multiple wave solutions of nonlinear partial dif-

ferential equations is proposed. The method is oriented towards ease of use and capability of

computer algebra systems, and provides a direct and systematical solution procedure which gen-

eralizes Hirota’s perturbation scheme. With help of Maple, an application of the approach to

the 3 + 1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave

and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions.

Two cases with specific values of the involved parameters are plotted for each of 2-wave and

3-wave solutions.

PACS codes: 02.30.Gp, 02.30.Ik, 02.30.Jr
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1 Introduction

Exact solutions to nonlinear partial differential equations help us understand the physical phe-

nomena they describe in nature. Many solution methods have been proposed, which contain the

tanh-function method [1, 2, 3], the sech-function method [4, 5, 6], the homogeneous balance method

[7, 8] the extended tanh-function method [9]-[11], the sine-cosine method [12, 13], the tanh-coth

method [14] and the exp-function method [15, 16]. The crucial idea of these methods is to search

for rational solutions to variable coefficient ordinary differential equations transformed from given

nonlinear partial differential equations. Following this observation, a unified approach to exact

solutions to nonlinear equations has been proposed, revealing relations between solvable ordinary

differential equations and nonlinear partial differential equations recently [17]. Solitary waves, pe-

riodic waves and kink waves modeling various nonlinear motions have been presented for many

nonlinear dispersive and dissipative equations, indeed.
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However, those existing methods are only concerned about travelling wave solutions to nonlinear

equations. It is known that there are multiple wave solutions to nonlinear equations, for instance,

multi-soliton solutions to many physically significant equations including the KdV equation and the

Toda lattice equation [18] and multiple periodic wave solutions to Hirota bilinear equations [19, 20].

Therefore, it naturally comes that there should be a similar direct approach for constructing multiple

wave solutions to nonlinear equations. We would, in this paper, like to give an answer by formulating

a solution algorithm for computing multiple wave solutions to nonlinear equations. The approach

will be illustrated step by step while applying to an example, providing a general feature of solving

nonlinear equations by adopting linear ones.

The application example we will present is the 3 + 1 dimensional so-called potential-Yu-Toda-

Sasa-Fukuyama equation (for short, the potential-YTSF equation):

− 4uxt + uxxxz + 4uxuxz + 2uxxuz + 3uyy = 0. (1.1)

This equation is a potential-type counterpart of a 3 + 1 dimensional nonlinear equation

[−4vt +Φ(v)vz]x + 3vyy = 0, Φ = ∂2 + 4v + 2vx∂
−1, (1.2)

introduced by Yu, Toda, Sasa and Fukuyama in [21], while making a 3+1 dimensional generalization

from the 2 + 1 dimensional Calogero-Bogoyavlenkii-Schiff equation (see, say, [22] and references

therein):

− 4vt +Φ(v)vz = 0, Φ = ∂2 + 4v + 2vx∂
−1, (1.3)

as did for the KP equation from the KdV equation. Taking v = ux transforms the equation (1.2)

into the potential-YTSF equation (1.1) [23]. We also remark that the equation (1.1) itself becomes

the potential KP equation if z = x, and reduces to the potential KdV equation while further taking

uy = 0. Therefore, various applications of the KP and KdV equations show great potential for

applications of (1.1) in the physical sciences.

Obviously, the potential-YTSF equation (1.1) has the solutions independent of two variables:

u = f(z, t), u = f(x) + g(t), u = cx+ f(z), u = cy + f(z), u = cy + f(t), (1.4)

and a particular variable separated solution:

u = (cy + d)x+ yf(z, t) + g(z, t), (1.5)

where c, d are arbitrary constants and f, g, h are arbitrary functions in the indicated variables; and

a known solution u = u(x, y, z, t) will lead to a new one:

v = u(x, y, z, t) + cy + f(t), (1.6)

where c is an arbitrary constant and f is an arbitrary function in t. Moreover, a Bäcklund trans-

formation of the type v = 2(ln φ)x + u was constructed by Yan in [24] and a class of other variable

separated solutions was constructed in [24]-[27]. It is worth noting that variable separated solutions

exist ubiquitously for 2 + 1 dimensional integrable equations (see, say, [28]). We will formulate

a multiple exp-function solution method and present a few broad classes of exact wave solutions,

including 1-soliton, 2-soliton and 3-soliton type solutions, to the potential-YTSF equation (1.1).
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In particular, our multiple exp-function method will yield two different classes of two-wave and

three-wave solutions to the potential-YTSF equation, and every class contains diverse soliton type

solutions, both analytic and singular.

The paper is organized as follows. In Section 2, a direct formulation for generating multiple wave

solutions to nonlinear equations is established, by searching for rational solutions in new variables

defining individual waves. In Section 3, an application is made to construct multiple wave solutions

to the 3+1 dimensional potential-YTSF equation. We conclude the paper in the final section, along

with a discussion on polynomial solutions.

2 A multiple exp-function method

Let us formulate our solution procedure by focusing on a scalar 1+1 dimensional partial differential

equation

P (x, t, ux, ut, · · · ) = 0, (2.1)

which is assumed to be of differential polynomial type like the KdV equation. The solution method

will also work for systems of nonlinear equations and high-dimensional ones.

Step 1 - Defining Solvable Differential Equations:

We introduce a sequence of new variables ηi = ηi(x, t), 1 ≤ i ≤ n, by solvable partial differential

equations, for instance, the following linear ones:

ηi,x = kiηi, ηi,t = −ωiηi, 1 ≤ i ≤ n, (2.2)

where ki, 1 ≤ i ≤ n, are the angular wave numbers and ωi, 1 ≤ i ≤ n, are the wave frequencies.

This is often a starting point for constructing exact solutions to nonlinear equations, since no way

can help solve nonlinear equations directly. Solving such linear equations leads to the exponential

function solutions:

ηi = cie
ξi , ξi = kix− ωit, 1 ≤ i ≤ n, (2.3)

where ci, 1 ≤ i ≤ n, are any constants, positive or negative. The arbitrariness of the constants

ci, 1 ≤ i ≤ n, brings more choices for solutions than we used to [29]. Each of the functions ηi,

1 ≤ i ≤ n, describes a single wave and a multiple wave solution will be a combination of all those

single waves. We emphasize that the linear differential relations in (2.2) are extremely helpful while

transforming differential equations to algebraic equations and carrying out related computations by

computer algebra systems. The explicit solutions (2.3) offer reasons why the approach is called the

multiple exp-function method. The idea of using linear differential conditions could also be applied

for other occasions, in which there might be diverse solutions [30]. Both the differential relations

and the solution formulas are important in understanding and applying the approach.

The basic idea of using solvable differential equations was also successfully used to solve the

2 + 1 dimensional KdV-Burgers equation through a second-order ordinary differential equation

aη′′ + bη′ + cη2 + dη = 0 (a, b, c, d = const.) in [31], and the Kolmogorov-Petrovskii-Piskunov

equation through a first-order ordinary differential equation η′ = 1± η2 in [9]. It has been broadly

adopted in the tanh-function type methods [10, 11, 14], the Jacobi elliptic function method [32, 33],
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the mapping method [34, 35], the F -expansion type methods [36, 37, 38] and the G′/G-expansion

method [39].

Step 2 - Transforming Nonlinear PDEs:

Let us proceed to consider rational solutions in the new variables ηi, 1 ≤ i ≤ n:

u(x, t) =
p(η1, η2, · · · , ηn)

q(η1, η2, · · · , ηn)
, p =

n
∑

r,s=1

M
∑

i,j=0

prs,ijη
i
rη

j
s, q =

n
∑

r,s=1

N
∑

i,j=0

qrs,ijη
i
rη

j
s, (2.4)

where pkl,ij and qkl,ij are all constants to be determined from the original equation (2.1). All Laurent

polynomial and polynomial functions are only special examples of rational functions, and so, we

can similarly have a multiple tanh-coth method for getting multiple wave solutions to nonlinear

equations.

By using the differential relations in (2.2), it is straightforward to express all partial derivatives

of u with x and t in terms of ηi, 1 ≤ i ≤ n. For example, we can have

ut =

q

n
∑

i=1

pηiηi,t − p

n
∑

i=1

qηiηi,t

q2
=

−q

n
∑

i=1

ωipηiηi + p

n
∑

i=1

ωiqηiηi

q2
, (2.5)

and

ux =

q
n
∑

i=1

pηiηi,x − p
n
∑

i=1

qηiηi,x

q2
=

q
n
∑

i=1

kipηiηi − p
n
∑

i=1

kiqηiηi

q2
, (2.6)

where pηi and qηi are partial derivatives of p and q with respect to ηi. This way, we can see that

all partial derivatives, not only ut and ux, will still be rational functions in the new variables ηi,

1 ≤ i ≤ n. Substituting those new expressions of partial derivatives into the original equation (2.1)

generates a rational function equation in the new variables ηi, 1 ≤ i ≤ n:

Q(x, t, η1, η2, · · · , ηn) = 0. (2.7)

This is called the transformed equation of the original equation (2.1). The step here makes it

possible to compute solutions to differential equations directly by computer algebra systems.

Step 3 - Solving Algebraic Systems:

Now we let the numerator of the resulting rational function Q(x, t, η1, η2, · · · , ηn) to be zero.

This yields a system of algebraic equations on all variables ki, ωi, pkl,ij, qkl,ij; and solve this system

to determine two polynomials p and q and the wave exponents ξi, 1 ≤ i ≤ n. All computation can

be done systematically by computer algebra systems such as Maple. We point out that the resulting

algebraic systems may be complicated and so a computer program really helps. Now, the multiple

wave solution u is computed and given by

u(x, t) =
p(c1e

k1x−ω1t, · · · , cne
knx−ωnt)

q(c1ek1x−ω1t, · · · , cneknx−ωnt)
. (2.8)

Since we begin with the exponential function solutions to the initial linear equations, we call the

above method a multiple exp-function method. If we choose some other linear equations, we can,
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for instance, have a multiple sine-cosine method to get multiple periodic wave solutions to nonlinear

equations. Clearly, our multiple exp-function method in the case of n = 1 becomes the so-called

exp-function method proposed by He and Wu in [15].

The solution procedure described above provides a direct and systematical solution procedure

for generating multiple wave solutions and it allows us to carry out the involved computation

conveniently by powerful computer algebra systems such as Maple, Mathematica, MuPAD and

Matlab. It also presents a generalization of Hirota’s perturbation scheme to construct multi-soliton

solutions [18]. We will analyze three cases of polynomials p and q for the 3+1 dimensional potential-

YTSF equation (1.1), to construct its multiple wave solutions.

3 One-wave, two-wave and three-wave solutions to the potential-

YTSF equation

Let us apply our multiple exp-function method to the 3 + 1 dimensional potential-YTSF equation

(1.1). We will discuss three cases of two polynomial functions p and q to generate one-wave, two-

wave and three-wave solutions as follows.

Case 1 - One-wave solutions:

We require the linear conditions:

η1,x = k1η1, η1,y = l1η1, η1,z = m1η1, η1,t = −ω1η1, (3.1)

where k1, l1,m1, ω1 are constants. Then try a pair of two polynomials of degree one:

p(η1) = a0 + a1η1, q(η1) = b0 + b1η1, (3.2)

where a0, a1, b0, b1 are constants to be determined. By the multiple exp-function method and using

the differential relations in (3.1), we can have the following solution to the resulting algebraic system

with Maple:

a1 =
b1(2k1b0 + a0)

b0
, ω1 = −

1

4
k1

2m1 −
3l1

2

4k1
, (3.3)

and all other constants are arbitrary. Since we can have an exponential function solution to (3.1):

η1 = ek1x+l1y+m1z−ω1t, (3.4)

the corresponding 1-wave solutions read

u = u(x, y, z, t) =
p

q
=

a0 + a1e
k1x+l1y+m1z−ω1t

b0 + b1ek1x+l1y+m1z−ω1t
, (3.5)

where a1 and ω1 are defined by (3.3) and all the other involved constants are arbitrary. This is in

agreement with the selection for the 1-soliton solution in [40] and contains all exact solutions in

[41]. Note that the wave frequency depends on all angular wave numbers in the 1-wave solutions

above, but we will see that it is not the case in the 2-wave and 3-wave solutions below.

Case 2 - Two-wave solutions:
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Similarly, we require the linear conditions:

ηi,x = kiηi, ηi,y = liηi, ηi,z = miηi, ηi,t = −ωiηi, 1 ≤ i ≤ 2, (3.6)

where ki, li,mi, ωi, 1 ≤ i ≤ 2, are constants, and thus, the solutions η1 and η2 can be defined by

ηi = cie
kix+liy+miz−ωit, 1 ≤ i ≤ 2. (3.7)

where c1 and c2 are arbitrary constants.

Let us try a particular pair of two polynomials of degree two:






p(η1, η2) = 2[k1η1 + k2η2 + a12(k1 + k2)η1η2],

q(η1, η2) = 1 + η1 + η2 + a12η1η2,
(3.8)

where a12 is a constant to be determined. By the multiple exp-function method and using the

differential relations in (3.6), we can have two solutions to the resulting algebraic system with

Maple:

ωi = −
3

4
ki −

1

4
ki

2mi, 1 ≤ i ≤ 2, (3.9)

and

a12 =
(k1 − k2)

2

(k1 + k2)2
, (3.10)

when li = ki, 1 ≤ i ≤ 2; and

ωi = −
1

4
ki

3
−

3li
2

4ki
, 1 ≤ i ≤ 2. (3.11)

and

a12 =

(

k1k2
2
− k1

2k2 + k1l2 − l1k2
) (

k1k2
2
− k1

2k2 − k1l2 + l1k2
)

(

k1k2
2 + k1

2k2 + k1l2 − l1k2
) (

k1k2
2 + k1

2k2 − k1l2 + l1k2
) , (3.12)

when mi = ki, 1 ≤ i ≤ 2.

Then, the two corresponding 2-wave solutions are determined by

u = u(x, y, z, t) =
p(η1, η2, η3)

q(η1, η2, η3)
=

2[k1η1 + k2η2 + a12(k1 + k2)η1η2]

1 + η1 + η2 + a12η1η2
, (3.13)

where η1 and η2 are defined by (3.7), either with the frequencies ω1 and ω2 being given by (3.9)

and a12, by (3.10) when li = ki, 1 ≤ i ≤ 2; or with the frequencies ω1 and ω2 being given by

(3.11) and a12, by (3.12) when mi = ki, 1 ≤ i ≤ 2. All the unspecified involved constants in the

solutions are arbitrary. There is a different selection of frequencies in [42] but it does not lead to

exact non-constant solutions. Two specific solutions of the above 2-wave solutions are plotted in

the figures 3.1 and 3.2. In each figure, the first plot is three dimensional, and the other plots exploit

the x-, y- and z-curves or the contour plots with z = 0 at different times.

Case 3 - Three-wave solutions:

Again similarly, we require the linear conditions:

ηi,x = kiηi, ηi,y = liηi, ηi,z = miηi, ηi,t = −ωiηi, 1 ≤ i ≤ 3, (3.14)

where ki, li,mi, ωi, 1 ≤ i ≤ 3, are constants, and thus, the solutions η1, η2 and η3 can be defined by

ηi = cie
kix+liy+miz−ωit, 1 ≤ i ≤ 3. (3.15)
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Figure 3.1: 1st 2-wave solution with k1 = 1, k2 = −2,m1 = 1,m2 = 5, c1 = 1, c2 = 2.

where c1, c2 and c3 are arbitrary constants.

Let us now try the following particular pair of two polynomials of degree three:


















p(η1, η2, η3) = 2[k1η1 + k2η2 + k3η3 + a12(k1 + k2)η1η2 + a13(k1 + k3)η1η3

+a23(k2 + k3)η2η3 + a12a13a23(k1 + k2 + k3)η1η2η3],

q(η1, η2, η3) = 1 + η1 + η2 + η3 + a12η1η2 + a13η1η3 + a23η2η3 + a12a13a23η1η2η3,

(3.16)

where a12, a13 and a23 are constants to determined. By the multiple exp-function method and using

the differential relations in (3.14), we can have two solutions to the resulting algebraic system with

Maple:

ωi = −
3

4
ki −

1

4
ki

2mi, 1 ≤ i ≤ 3, (3.17)

and

aij =
(ki − kj)

2

(ki + kj)2
, 1 ≤ i, j ≤ 3, (3.18)

when li = ki, 1 ≤ i ≤ 3; and

ωi = −
1

4
ki

3
−

3li
2

4ki
, 1 ≤ i ≤ 3, (3.19)

and

aij =

(

kikj
2
− ki

2kj + kilj − likj
) (

kikj
2
− ki

2kj − kilj + likj
)

(

kikj
2 + ki

2kj + kilj − likj
) (

kikj
2 + ki

2kj − kilj + likj
) , 1 ≤ i, j ≤ 3, (3.20)

when mi = ki, 1 ≤ i ≤ 3.

Then, the two corresponding 3-wave solutions are given by

u = u(x, y, z, t) =
p(η1, η2, η3)

q(η1, η2, η3)
, (3.21)

where p and q are defined by (3.16) and η1, η2 and η3 are defined by (3.15), either with the frequencies

ω1, ω2 and ω3 being given by (3.17) and a12, a13 and a23, by (3.18) when li = ki, 1 ≤ i ≤ 3; or
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Figure 3.2: 2nd 2-wave solution with k1 = 1, k2 = 3, l1 = 2, l2 = 1, c1 = 1, c2 = 2.

with the frequencies ω1, ω2 and ω3 being given by (3.19) and a12, a13 and a23, by (3.20) when

mi = ki, 1 ≤ i ≤ 3. All the unspecified involved constants in the solutions are arbitrary. Two

specific solutions of those 3-wave solutions are plotted in the figures 3.3 and 3.4. In each figure,

the first plot is three dimensional, and the other plots exploit the x-curves with y = 1 and different

z-values at different times or the contour plots with z = 0 at different times.

We emphasize that through the proposed multiple exp-function algorithm, two kinds of 2-wave

solutions and 3-wave solutions are easily obtained for the potential-YTSF equation (1.1). If for

2-wave and 3-wave solutions, we take the general wave frequencies like (3.3), where m1, k1, l1 have

no relation, we will meet contradictions in the resulting algebraic systems. On the other hand, if the

involved constants in (3.5) satisfy b0b1 < 0 and some of the constants ci, 1 ≤ i ≤ n, in (3.13) and

(3.21) are negative, the corresponding exact solutions become singular. Moreover, for the second

case (i.e., mi = ki), even if the constants ci are positive in (3.13) and (3.21), the constants aij can

be negative, and thus, the solutions (3.13) and (3.21) can be singular. Taking special constants in

our 1-wave, 2-wave and 3-wave solutions and considering equal angular wave numbers li = mi = ki

yields all special soliton solutions to the potential-YTSF equation (1.1), presented by Wazwaz in

[43].

4 Concluding remarks

A direct and systematical solution procedure for constructing multiple wave solutions to nonlinear

partial differential equations is proposed. The presented method is oriented towards ease of use

and capability of computer algebra systems, allowing us to carry out the involved computation
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Figure 3.3: 1st 3-wave solution with k1 = 0.8, k2 = 1.6, k3 = −0.6, l1 = −2, l2 = 3, l3 = −1.5, c1 =

0.9, c2 = 0.8, c3 = 1.2.

conveniently through powerful computer algebra systems. It is the use of computer algebra systems

that in each case of 2-wave and 3-wave solutions, we are able to present two classes of concrete

exact explicit solutions to the 3+1 dimensional PYTSF equation, only in form of u = f(t, x+ y, z)

or u = f(t, x + z, y) (but not in a general form including u = f(t, x, y + z)). The key point of

our approach is to search for rational solutions in a set of new variables defining individual waves.

An application of our method yields specific 1-wave, 2-wave and 3-wave solutions to the 3 + 1

dimensional PYTSF equation. The method can also be easily applied to other nonlinear evolution

and wave equations in mathematical physics.

It is direct to check that the 3 + 1 dimensional potential-YTSF equation (1.1) has the following

class of polynomial solutions:

u1 = u1(x, y, z, t) = a1 + a2x+ a3y + a4z + a5t+ a6xy + a7yz + a8yt+ a9zt+ a10yzt, (4.1)

where ai, 1 ≤ i ≤ 10, are arbitrary constants. These are all polynomial solutions among a class

of polynomial functions with deg(u1, x) = deg(u1, y) = deg(u1, z) = deg(u1, t) = 1. On the other

hand, there are other two solutions:

u2 = u2(x, y, z, t) = a1 + a2x+ a3y + a4z + a5t+ f(z, t), (4.2)

and

u3 = u3(x, y, z, t) = a1 + a2x+ a3z + a4t+ g(x) + h(t), (4.3)

where ai, 1 ≤ i ≤ 5, are arbitrary constants and f, g, h are arbitrary functions in the indicated

variables. Taking f, g, h as polynomials engenders other polynomial solutions to the potential-
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Figure 3.4: 2nd 3-wave solution with k1 = 0.8, k2 = 1.6, k3 = −0.6, l1 = −2, l2 = 3, l3 = −1.5, c1 =

0.9, c2 = 0.8, c3 = 1.2.

YTSF equation (1.1), which can be of high degree. But the third one reduces to solutions to the

2 + 1 dimensional potential Calogero-Bogoyavlenkii-Schiff equation, independent of the variable y.

It is our guess that higher-wave solutions to the 3 + 1 dimensional potential-YTSF equation

(1.1) could be presented in a parallel manner. But the required computation is pretty complicated,

even in the case of 4-wave solutions. We hope that they could be presented and verified by some

analytic way. Any general form of 2-waves and 3-waves, which does not involve any relation among

the angular wave numbers ki, li,mi, will be more interesting and important.
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