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In memory of Paul Erdös

Abstract. In combinatorial number theory, zero-sum problems, subset sums
and covers of the integers are three different topics initiated by P. Erdös and
investigated by many researchers; they play important roles in both number
theory and combinatorics. In this paper we announce some deep connections
among these seemingly unrelated fascinating areas, and aim at establishing a
unified theory! Our main theorem unifies many results in these three realms
and also has applications in many aspects such as finite fields and graph the-
ory. To illustrate this, here we state our extension of the Erdös-Ginzburg-Ziv
theorem: If A = {as(mod ns)}ks=1 covers some integers exactly 2p − 1 times
and others exactly 2p times, where p is a prime, then for any c1, · · · , ck ∈ Z/pZ
there exists an I ⊆ {1, · · · , k} such that

∑
s∈I 1/ns = p and

∑
s∈I cs = 0.

1. Background

In 1961 Erdös, Ginzburg and Ziv [EGZ] established the following celebrated
theorem and thus laid the foundation of the zero-sum theory.

The EGZ Theorem. For any c1, · · · , c2n−1 ∈ Z, there is an I ⊆ [1, 2n − 1] =
{1, · · · , 2n− 1} with |I| = n such that

∑
s∈I cs ≡ 0 (mod n). In other words, given

2n−1 (not necessarily distinct) elements of the ring Zn = Z/nZ of residues modulo
n, we can select n of them with the sum vanishing.

The EGZ theorem can be easily reduced to the case where n is a prime (and
hence Zn is a field), and then deduced from the well-known Cauchy-Davenport
theorem or the Chevalley-Warning theorem (see, e.g., Nathanson [N, pp. 48–51]).

Here is another fundamental result due to Olson [O].

Received by the editors March 20, 2003.
2000 Mathematics Subject Classification. Primary 11B75; Secondary 05A05, 05C07, 11B25,

11C08, 11D68, 11P70, 11T99, 20D60.
Key words and phrases. Zero-sum, subset sums, covers of Z.
The website http://pweb.nju.edu.cn/zwsun/csz.htm is devoted to the topics covered by this

paper.
Supported by the Teaching and Research Award Fund for Outstanding Young Teachers in

Higher Education Institutions of MOE, and the National Natural Science Foundation of P. R.
China.

c©2003 American Mathematical Society

51



52 ZHI-WEI SUN

Theorem 1.1 (Olson). Let p be a prime and Zlp be the direct sum of l copies of
the ring Zp. Given c, c1, · · · , cl(p−1)+1 ∈ Zlp we have

(1.1)
∑

I⊆[1,l(p−1)+1]∑
s∈I cs=c

(−1)|I| ≡ 0 (mod p);

in particular there exists a nonempty I ⊆ [1, l(p− 1) + 1] with
∑

s∈I cs = 0.

Observe that the additive group of the finite field with pl elements is isomor-
phic to Zlp. For convenience we let Z0

p be the additive subgroup {0̄ = pZ} of Zp
throughout this paper; thus Theorem 1.1 remains valid even if l = 0.

Let p be a prime and c, c1, · · · , c2p−1 ∈ Zp. In 1996 Gao [G] proved that∣∣∣∣{I ⊆ [1, 2p− 1]: |I| = p and
∑
s∈I

cs = c

}∣∣∣∣ ≡ [c = 0] (mod p),

where for a predicate P we let [P ] be 1 or 0 according to whether P holds or not.
Note that Gao’s result clearly follows from Olson’s congruence (1.1) in the case
l = 2.

In 1994 Alford, Granville and Pomerance [AGP] employed a result of zero-sum
type to prove that there are infinitely many Carmichael numbers. For results and
conjectures on zero-sum problems, the reader is referred to the survey [C].

What is the smallest integer k = s(Z2
n) such that every sequence of k elements in

Z2
n contains a zero-sum subsequence of length n? In 1983 Kemnitz [K] conjectured

that s(Z2
n) = 4n− 3. In 1993 Alon and Dubiner [AD] showed that s(Z2

n) 6 6n− 5.
In 2000 Rónyai [R] was able to prove that s(Z2

p) 6 4p− 2 for every prime p.
For a finite set S = {a1, · · · , ak} contained in the ring Z or a field, sums of the

form
∑
s∈I as with I ⊆ [1, k] are called subset sums of S. It is interesting to provide

a nontrivial lower bound for the cardinality of the set

{a1x1 + · · ·+ akxk: x1, · · · , xk ∈ {0, 1}} =
{∑
s∈I

as: I ⊆ [1, k]
}
.

A more general problem is to study restricted sumsets in the form

(1.2) {x1 + · · ·+ xk: x1 ∈ X1, · · · , xk ∈ Xk, P (x1, · · · , xk) 6= 0},
where X1, · · · , Xk are subsets of a field and P (x1, · · · , xk) is a polynomial with
coefficients in the field. In 1964 Erdös and Heilbronn [EH] conjectured that if p is
a prime and ∅ 6= X ⊆ Zp, then

|{x+ y: x, y ∈ X and x 6= y}| > min{p, 2|X | − 3}.
This conjecture was first confirmed by Dias da Silva and Hamidoune [DH] in 1994,
who obtained a generalization which implies that if S ⊆ Zp and |S| >

√
4p− 7,

then any element of Zp is a subset sum of S. In this direction the most powerful
tool is the following remarkable principle (see Alon [A99], [A03]), rooted in Alon
and Tarsi [AT] and applied in [AF], [ANR1], [ANR2], [DKSS], [HS], [LS] and [PS].

Combinatorial Nullstellenstaz. Let X1, · · · , Xk be finite subsets of a field F
with |Xs| > ls for s ∈ [1, k], where l1, · · · , lk ∈ N = {0, 1, 2, · · · }. If f(x1, · · · , xk) ∈
F [x1, · · · , xk], [xl11 · · ·x

lk
k ]f(x1, · · · , xk) (the coefficient of the monomial

∏k
s=1 x

ls
s in

f) is nonzero and
∑k

s=1 ls is the total degree of f , then there are x1 ∈ X1, · · · , xk ∈
Xk such that f(x1, · · · , xk) 6= 0.



UNIFICATION OF ZERO-SUM PROBLEMS, SUBSET SUMS AND COVERS OF Z 53

One of the many applications of the Combinatorial Nullstellenstaz is the follow-
ing result of [AT] on finite fields.

Theorem 1.2 (Alon and Tarsi). Let F be a finite field with |F | not a prime, and
let M be a nonsingular k × k matrix over F . Then there exists a vector ~x ∈ F k
such that neither ~x nor M~x has zero component.

Now we turn to covers of Z.
For a ∈ Z and n ∈ Z+ = {1, 2, 3, · · · } we call

a(n) = a+ nZ = {a+ nx: x ∈ Z}
a residue class with modulus n. For a finite system

(1.3) A = {as(ns)}ks=1

of residue classes, its covering function wA(x) = |{1 6 s 6 k: x ∈ as(ns)}| is
periodic modulo the least common multiple NA of the moduli n1, · · · , nk. Sun
[S99] called m(A) = minx∈Z wA(x) the covering multiplicity of (1.3). One can
easily verify the following well-known inequality:

(1.4)
k∑
s=1

1
ns

=
1
NA

NA−1∑
x=0

wA(x) > m(A).

If
⋃k
s=1 as(ns) = Z (i.e., m(A) > 1), then we call (1.3) a cover (or covering

system) of Z. The concept of cover was first introduced by Erdös in the 1930’s
(cf. [E]); it has many surprising applications (cf. [Cr], [S00] and [S01]). Erdös was
very proud of this invention; he said: “Perhaps my favorite problem of all concerns
covering systems.”

For m ∈ Z+, if m(A) > m, then A is said to be an m-cover of Z; general m-
covers were first studied by the author in [S95]. If (1.3) forms an m-cover of Z but
At = {as(ns)}s6=t does not, then we say that (1.3) is an m-cover of Z with at(nt)
essential.

If wA(x) = m for all x ∈ Z, then we call (1.3) an exact m-cover of Z. (Note that
in this case we have

∑k
s=1 1/ns = m by (1.4).) Such covers were first introduced by

Porubský [P] in 1976. Clearly m copies of 0(1) form a trivial exact m-cover of Z.
Using a graph-theoretic argument Zhang [Z91] proved that for each m = 2, 3, · · ·
there are exact m-covers of Z which are not unions of an n-cover and an (m− n)-
cover with 0 < n < m.

There are many problems and results on covers; the reader is recommended to
consult the introduction part of [S96] and the recent survey [P-S].

Here we mention some properties of covers related to Egyptian fractions. The
first nontrivial result of this nature is the following one discovered by Zhang [Z89]
with the help of the Riemann zeta function: If (1.3) forms a cover of Z, then

(1.5)
∑
s∈I

1
ns
∈ Z for some nonempty I ⊆ [1, k].

The author [S95], [S96], [S99] obtained the following further extensions of Zhang’s
result.

Theorem 1.3 (Sun). Let (1.3) be an m-cover of Z and let m1, · · · ,mk ∈ Z+.
(i) There are at least m positive integers in the form

∑
s∈I ms/ns with I ⊆ [1, k].

Also, |{|I|: I ⊆ [1, k] and
∑
s∈I ms/ns ∈ Z+}| > m.
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(ii) For any J ⊆ [1, k] there are at least m subsets I 6= J of [1, k] such that
{
∑
s∈I ms/ns} = {

∑
s∈J ms/ns}, where {α} denotes the fractional part of a real

number α.

Zero-sum problems and subset sums seem to have nothing to do with covers of
Z. Before this work no one has realized their close connections. Can you imagine
that the EGZ theorem and the Alon-Tarsi theorem are related to covers of Z? The
purpose of this paper is to announce a surprising unified theory and embed the
study of zero-sum problems and subset sums in the investigation of covers.

In the next section we will present the Main Theorem together with its various
consequences. In Section 3 we will state two key lemmas, the first of which connects
the zero-sum problems with the study of subset sums, and the second plays an
important role in the proof of the Main Theorem. Detailed proofs of the results in
this announcement appeared in the preprint [S03], which contains a more general
version of the Main Theorem.

2. Our main results

For a prime p we let Z′p denote the ring of p-integers (i.e., the rationals with
denominators not divisible by p). (Recall that Zp denotes Z/pZ.) If a, b, c ∈ Z
and p - b, then the congruence a/b ≡ c (mod p) over Z′p is equivalent to the usual
congruence a ≡ bc (mod p) over Z.

Let Ω be the ring of all algebraic integers. For ω1, ω2, γ ∈ Ω, by ω1 ≡ ω2 (mod γ)
we mean ω1 − ω2 ∈ γΩ. For a, b,m ∈ Z it is well known that a − b ∈ mΩ if and
only if a − b ∈ mZ. For m ∈ Z and a root ζ of unity, if ζ ≡ 0 (mod m), then
1 = ζζ−1 ≡ 0 (mod m) (since ζ, ζ−1 ∈ Ω) and hence m must be 1 or −1.

Theorem 1.1 of zero-sum nature and Theorem 1.3 on covers of Z are both special
cases of part (i) of the following general result.

The Main Theorem. Let (1.3) be a (finite) system of residue classes.
(i) Let ms ∈ Z and ct, cst ∈ Q for all s ∈ [1, k] and t ∈ [0, l]. Let p be a prime

and let 0 6 θ < 1. Assume that whenever I ⊆ [1, k] and {
∑
s∈I ms/ns} = θ we

have
∑
s∈I cst − ct ∈ Z′p for all t ∈ [0, l]. Set

I =
{
I ⊆ [1, k]:

{∑
s∈I

ms

ns

}
= θ,

∑
s∈I

cst − ct ∈ pZ′p for all t ∈ [1, l]
}
.

Then, either we have the inequality

(2.1)
∣∣∣∣{∑

s∈I
cs0 − c0 mod p: I ∈ I

}∣∣∣∣ > m(A)− l(p− 1),

or |{I ∈ I:
∑

s∈I cs0 − c0 ∈ pZ′p}| 6= 1 and furthermore

(2.2)
∑
I∈I∑

s∈I cs0−c0∈pZ
′
p

(−1)|I|e2πi
∑
s∈I asms/ns ≡ 0 (mod p).

(ii) Suppose that m(A) < m(A′), where A′ = {a1(n1), · · · , ak(nk), a(n)}, a ∈ Z,
n ∈ Z+ and wA(a) = m(A). Let m1, · · · ,mk ∈ Z be relatively prime to n1, · · · , nk,
respectively. Let J ⊆ {1 6 s 6 k: a ∈ as(ns)} and P (x1, · · · , xk) ∈ F [x1, · · · , xk],
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where F is a field with characteristic not dividing NA. Assume that 0 6 degP 6 |J |
and [∏

j∈J
xj

]
P (x1, · · · , xk)(x1 + · · ·+ xk)|J|−degP 6= 0.

Let X1 = {b1, c1}, · · · , Xk = {bk, ck} be subsets of F such that bs = cs only if
a ∈ as(ns) and s 6∈ J . Then for some 0 6 α < 1 we have

(2.3) |Sr| > |J | − degP + 1 > 0 for all r = 0, 1, · · · , n− 1,

where

(2.4) Sr =
{ k∑
s=1

xs: xs ∈ Xs, P (x1, · · · , xk) 6= 0,
{ k∑

s=1
xs 6=bs

ms

ns

}
=
α+ r

n

}
.

When l = θ = 0, cs0 ∈ {1,ms/ns} and p is a sufficiently large prime, part (i)
of the Main Theorem yields Theorem 1.3(i). Theorem 1.3(ii) follows from the first
part of the Main Theorem in the case l = 0 and cs0 = 2s because two subsets I, J
of [1, k] are equal if and only if

∑
s∈I 2s =

∑
s∈J 2s.

In the case n1 = · · · = nk = n = 1, part (ii) of the Main Theorem yields the
following basic lemma of the so-called polynomial method due to Alon, Nathanson
and Ruzsa [ANR1], [ANR2]: Let X1, · · · , Xk be subsets of a field F with |Xs| =
hs ∈ {1, 2} for s ∈ [1, k]. If P (x1, · · · , xk) ∈ F [x1, · · · , xk] \ {0}, degP 6∑k
s=1(hs − 1) and

[xh1−1
1 · · ·xhk−1

k ]P (x1, · · · , xk)(x1 + · · ·+ xk)
∑k
s=1(hs−1)−degP 6= 0,

then ∣∣∣∣{ k∑
s=1

xs: xs ∈ Xs and P (x1, · · · , xk) 6= 0
}∣∣∣∣ > k∑

s=1

(hs − 1)− degP + 1.

Actually this remains valid even if hs may be greater than two.
In the rest of this section we will list various other results deduced from the Main

Theorem.

Theorem 2.1. Let (1.3) be an l(p − 1) + 1-cover of Z, where l ∈ N and p is a
prime. Let m1, · · · ,mk ∈ Z and c1, · · · , ck ∈ Zlp. Then for any 0 6 θ < 1 and
c ∈ Zlp we have

(2.5)
∑

I⊆[1,k]∑
s∈I cs=c

{
∑
s∈I ms/ns}=θ

(−1)|I|e2πi
∑
s∈I asms/ns ≡ 0 (mod p);

in particular, there is a nonempty subset I of [1, k] such that
∑

s∈I cs = 0 and∑
s∈I ms/ns ∈ Z.

Since a system of k copies of 0(1) forms a k-cover of Z, Theorem 1.1 is a special
case of Theorem 2.1. In the case l = 0 Theorem 2.1 yields Zhang’s result (1.5) on
covers of Z.

In 1984 Alon, Friedland and Kalai [AFK1], [AFK2] proved that if p is a prime,
then any loopless graph with average degree bigger than 2p − 2 and maximum
degree at most 2p− 1 must contain a p-regular subgraph. Now we apply Theorem
2.1 to strengthen this result.



56 ZHI-WEI SUN

Corollary 2.1. Let G be a loopless graph of l vertices with the edge set {1, · · · , k}.
Suppose that all the vertices of G have degree not greater than 2p−1 and that (1.3)
forms an l(p−1) + 1-cover of Z, where p is a prime. Then for any m1, · · · ,mk ∈ Z
we have

H =
{
p-regular subgraph H of G:

∑
s∈E(H)

ms

ns
∈ Z

}
6= ∅,

where E(H) denotes the edge set of the subgraph H; furthermore

(2.6)
∑
H∈H

(−1)|E(H)|e2πi
∑
s∈E(H) asms/ns ≡ −1 (mod p).

Theorem 2.2. Let (1.3) be a system of residue classes with m(A) > (l+ 1)(p− 1),
where l ∈ N and p is a prime. Let m1, · · · ,mk ∈ Z and c1, · · · , ck ∈ Zlp. Then for
any c ∈ Zlp and r ∈ Q we have

(2.7)
∑

I⊆[1,k]∑
s∈I cs=c∑

s∈I ms/ns∈r+pZ

(−1)|I|e2πi
∑
s∈I asms/ns ≡ 0 (mod p);

in particular, there is a nonempty subset I of [1, k] such that
∑

s∈I cs = 0 and∑
s∈I ms/ns ∈ pZ.

Corollary 2.2. Let (1.3) be a system of residue classes, and let p be a prime.
(i) If 2p− 1 ∈ {wA(x): x ∈ Z} ⊆ {2p− 1, 2p}, then for any c1, · · · , ck ∈ Zp there

exists an I ⊆ [1, k] such that
∑

s∈I 1/ns = p and
∑

s∈I cs = 0.
(ii) If (1.3) forms an exact 3p-cover of Z, then for any c1, · · · , ck ∈ Z2

p with
c1+· · ·+ck = 0, there exists an I ⊆ [1, k] such that

∑
s∈I 1/ns = p and

∑
s∈I cs = 0.

The EGZ theorem and Lemma 3.2 of Alon and Dubiner [AD] are parts (i) and
(ii) of our Corollary 2.2 in the case n1 = · · · = nk = 1. An interesting open question
is whether we can replace the prime p in Corollary 2.2 by any positive integer n.
The answer is affirmative if n is a prime power.

Theorem 2.3. Suppose that (1.3) is an m-cover of Z with ak(nk) essential. Let
m1, · · · ,mk−1 ∈ Z be relatively prime to n1, · · · , nk−1, respectively. Let F be a
field with characteristic p not dividing NA, and let X1 = {b1, c1}, · · · , Xk−1 =
{bk−1, ck−1} be any subsets of F with cardinality 2. Then for some 0 6 α < 1 we
have

(2.8)
∣∣∣∣{ k−1∑

s=1

xs: xs ∈ Xs,

{ ∑
16s<k
xs=cs

ms

ns

}
=
α+ r

nk

}∣∣∣∣ > min{p′,m}

for all r ∈ [0, nk − 1], where p′ = p if p is a prime, and p′ = +∞ if p = 0.

Theorem 2.3 implies the second result stated in the abstract of [S99]. Provided
that (1.3) forms an exact m-cover of Z, in 1997 the author [S97] proved that for
any a = 0, 1, · · · ,mnk − 1 we have∣∣∣∣{I ⊆ [1, k − 1]:

∑
s∈I

1
ns

=
a

nk

}∣∣∣∣ > (m− 1
ba/nkc

)
.

We can show that this remains true if (1.3) is only anm-cover of Z with
∑k−1

s=1 1/ns<
m.
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Corollary 2.3. Suppose that (1.3) is a p-cover of Z with ak(nk) essential, where p is
a prime not dividing NA. Let m1, · · · ,mk−1 ∈ Z be relatively prime to n1, · · · , nk−1,
respectively. Then, for any c, c1, · · · , ck−1 ∈ Zp with c1 · · · ck−1 6= 0 the set

(2.9)
{{∑

s∈I

ms

ns

}
: I ⊆ [1, k − 1] and

∑
s∈I

cs = c

}
contains an arithmetic progression of length nk with common difference 1/nk.

Theorem 2.4. Assume that (1.3) does not form an m + 1-cover of Z but A′ =
{a1(n1), · · · , ak(nk), a(n)} does, where a ∈ Z and n ∈ Z+. Let m1, · · · ,mk be
integers relatively prime to n1, · · · , nk, respectively. Let F be a field of prime char-
acteristic p, and let aij , bi ∈ F for all i ∈ [1,m] and j ∈ [1, k]. Set

(2.10) X =
{ k∑
j=1

xj : xj ∈ [0, p− 1] and
k∑
j=1

xjaij 6= bi for all i ∈ [1,m]
}
.

If p does not divide NA and the matrix (aij)16i6m,16j6k has rank m, then the set

(2.11)
{{∑

s∈I

ms

ns

}
: I ⊆ [1, k] and |I| ∈ X

}
contains an arithmetic progression of length n with common difference 1/n.

We mention that Theorem 1.2 follows from Theorem 2.4.

Theorem 2.5. Let (1.3) be an m-cover of Z with ak(nk) essential and nk = NA.
Let m1, · · · ,mk−1 ∈ Z be relatively prime to n1, · · · , nk−1, respectively. Then for
any r ∈ [0, NA − 1] we have the inequality

(2.12)
∣∣∣∣{I ⊆ [1, k − 1]:

{∑
s∈I

ms

ns

}
=

r

NA

}∣∣∣∣ > 2m−1.

Theorem 2.5 in the special case m = m1 = · · · = mk−1 = 1 was first observed by
Z. H. Sun on the basis of the author’s work [S95]. Ifm1, · · · ,mn−1 ∈ Z are relatively
prime to n, then by applying Theorem 2.5 to the disjoint cover {r(n)}n−1

r=0 we find
that {

∑
s∈I ms : I ⊆ [1, n− 1]} contains a complete system of residues modulo n.

3. Two technical lemmas

Lemma 3.1. Let R be a ring with identity, and let f(x1, · · · , xk) be a polynomial
over R. If J ⊆ [1, k] and |J | > deg f , then we have the identity

(3.1)
∑
I⊆J

(−1)|J|−|I|f([1 ∈ I], · · · , [k ∈ I]) =
[∏
j∈J

xj

]
f(x1, · · · , xk).

Our Lemma 3.1 is powerful; it implies Lemma 2.2 of [R] (used by Rónyai in his
study of the Kemnitz conjecture), as well as Combinatorial Nullstellenstaz in the
case l1, · · · , lk ∈ {0, 1}.

By applying Lemma 3.1, we obtain the following two theorems.

Theorem 3.1. Let p be a prime. If cst, ct ∈ Z for all s ∈ [1, l(p− 1)] and t ∈ [1, l],
then

(3.2)
∑

I1∪···∪Il=[1,l(p−1)]
|I1|=···=|Il|=p−1

l∏
t=1

∏
s∈It

cst ≡
∑

I⊆[1,l(p−1)]
p|
∑
s∈I cst−ct for t∈[1,l]

(−1)|I| (mod p).
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In particular, if c, c1, · · · , c2p−2 ∈ Z, then

(3.3)
∑

I⊆[1,p−1]
p|
∑
s∈I cs−c

(−1)|I| ≡ c1 · · · cp−1 (mod p)

and ∣∣∣∣{I ⊆ [1, 2p− 2]: |I| = p− 1, p
∣∣∑
s∈I

cs − c
}∣∣∣∣ ≡ ∑

I⊆[1,2p−2]
|I|=p−1

∏
s∈I

cs (mod p).

We mention that Theorem 3.1 implies Theorem 1.1.

Theorem 3.2. Let a1, · · · , a4p−3, b1, · · · , b4p−3 ∈ Z, where p is a prime. If

(3.4)
∑

I,J⊆[1,4p−3]
|I|=|J|=p−1
I∩J=∅

(∏
i∈I

ai

)(∏
j∈J

bj

)
6≡ 2 (mod p),

then there exists an I ⊆ [1, 4p − 3] with |I| = p such that
∑
s∈I as ≡

∑
s∈I bs ≡

0 (mod p).

This provides an advance on the Kemnitz conjecture.
Our proof of the Main Theorem depends heavily on the following lemma.

Lemma 3.2. Let (1.3) be a system of residue classes, and let m1, · · · ,mk be any
integers. Let F be a field containing an element ζ of (multiplicative) order NA, and
let f(x1, · · · , xk) ∈ F [x1, · · · , xk] and deg f 6 m(A). Set Iz = {1 6 s 6 k: z ∈
as(ns)} for z ∈ Z. If [

∏
s∈Iz xs]f(x1, · · · , xk) = 0 for all z ∈ Z, then∑

I⊆[1,k]
{
∑
s∈I ms/ns}=θ

(−1)|I|f([1 ∈ I], · · · , [k ∈ I])ζNA
∑
s∈I asms/ns = 0

for all 0 6 θ < 1. The converse holds when m1, · · · ,mk are relatively prime to
n1, · · · , nk, respectively.

Observe that Lemma 3.2 in the case n1 = · · · = nk = 1 follows from Lemma 3.1.
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