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A double walled carbon nanotube thermal actuator consisting of a short outer tube

sliding along a long inner tube under a temperature gradient is used as a model system

to investigate the mechanics of thermophoretic and thermally induced edge forces in

nanoscale contact based on the theory of lattice dynamics. It is shown that the total

thermophoretic force has two components: a gradient force due to the change in van

der Waals energy in the direction of temperature gradient and an unbalanced edge force

due to the temperature difference between the two tube ends. Closed-form analytical

expressions are derived for the gradient and unbalanced edge forces, with results in

excellent agreement with molecular dynamics simulations. This study represents a first

analytical study of thermophoretic and thermally induced edge forces between two

solid bodies, and may have far reaching implications on thermomechanical nanodevices

and nanoscale contact.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Nanoscale devices that convert various forms of energy into mechanical motion are of great interest due to many
potential applications ranging from artificial muscles to data storage (Craighead, 2000; Ekinci, 2005; Ekinci and Roukes,
2005; Roukes, 2001; Rueckes et al., 2000). Since their discovery by Iijima (1991), carbon nanotubes (CNTs) have been
widely studied as potential building blocks for nanoscale devices because of their extraordinary electrical, mechanical,
chemical, and thermal properties such as their low density, high stiffness, high strength, chemical inertness, metallic and
semiconducting electronic properties, etc. (Dresselhaus et al., 1995; Popov, 2004). The one dimensional tubular shape and
multi-shell structure of CNTs make them particularly suitable for devices involving rotation and translation (Barreiro et al.,
2008; Cumings and Zettl, 2000; Fennimore et al., 2003). Indeed, the past decade has witnessed the emergence of a large
number of nanotube-based devices, including nanomotors (Fennimore et al., 2003; Tu and Hu, 2005), nanoswitches (Chang
et al., 2006; Deshpande et al., 2006), mass conveyors (Regan et al., 2004), gigahertz oscillators (Zheng and Jiang, 2002),
memory devices (Rueckes et al., 2000), electron windmills (Bailey et al., 2008), nanoguns (Chang, 2008), and nano heat
engines (Chang and Guo, 2010).
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While electric energy has been by far the most frequently used energy source in nanodevices, it has been recently
shown that thermal energy can drive CNT based nanoactuators (Barreiro et al., 2008; Chang and Guo, 2010; Hou et al.,
2009; Longhurst and Quirke, 2007; Schoen et al., 2006; Shenai et al., 2011; Zhao et al., 2010). A particularly interesting
experiment demonstrated that thermal gradient is capable of moving nanoscale objects attached to the outer layer of a
CNT in the direction of decreasing temperature (Barreiro et al., 2008). In this experiment, the authors constructed a motor
consisting of a short outer carbon nanotube, to which a metal plate is attached, and a long inner carbon nanotube which is
connected to two gold electrodes. An electric current passing through the inner tube causes the outer tube to move
together with the metal plate. To identify the driving mechanism of the actuator, the authors showed that the metal plate
continues to move in the same direction even after the direction of the electron current is reversed. This indicates that the
electric current itself is not the driving mechanism for the observed motion. The authors noticed that there is a thermal
gradient along the inner tube caused by inhomogeneous heating of the inner tube by the electric current. The midpoint of
the inner tube is the hottest point where the temperature can reach as high as 1300 K, while the temperature near the
electrodes stays at the room temperature. The authors then conjectured that the thermal gradient may have caused the
outer tube to rotate and move along the inner tube. To substantiate this conjecture, they performed molecular dynamics
(MD) simulations of a double walled CNT (DWCNT) in which a thermal gradient was imposed by maintaining the two ends
of the inner tube at different temperatures. The simulations confirmed that the motion of the outer tube can be translation,
rotation, or a mixture of both, as observed in the experiments.

There have been a number of numerical studies on thermophoretic transports of nanoparticles and water droplets
through carbon nanotubes under thermal gradients. The first observation of thermophoretic force between two solid
materials was presented by Schoen et al. (2006) who demonstrated controllable motions of solid gold nanoparticles inside
a carbon nanotube driven by a thermal gradient along the tube. They showed that the motion of these nanoparticles is
assisted by breathing vibrations of the CNT that tend to release the gold–carbon contact points (Schoen et al., 2007).
Zambrano et al. (2009b) and Shiomi and Maruyama (2009) demonstrated transport of a water cluster inside a single-
walled CNT (SWCNT) under a temperature gradient along the tube. Other related reports include the transports of
fullerenes or short nanotubes inside (Coluci et al., 2009; Rurali and Hernandez, 2010; Somada et al., 2009; Zambrano et al.,
2009a) or outside (Hou et al., 2009; Shenai et al., 2011; Tu and Hu, 2005; Tu and Ou-Yang, 2004) a SWCNT driven by
thermal gradients.

The existing experimental studies and MD simulations during the last few years have firmly established the general
phenomenon of nanoscale thermophoretic motion. In spite of the potential importance and generality of this phenomenon
for nanoscale devices, there has been surprisingly little progress in analytical models capable of quantitative descriptions
of the thermophoretic driving force between two solid objects. In the present paper, we develop an analytical model for
the thermophoretic force that drives a short outer tube along an inner tube under a temperature gradient. Meanwhile, we
will use the model to reveal the physical origin of a newly discovered edge force induced by atomic thermal vibration. The
model will be validated through comparison with results from MD simulations.
2. Analytical model

2.1. Model description

Consider a DWCNT system consisting of a short outer tube and a long inner tube under a temperature gradient, as
illustrated in Fig. 1. Previous experiments and MD simulations have shown that the outer tube will slide along the inner
Fig. 1. Schematic of a carbon nanotube thermophoretic nanoactuator composed of a long inner nanotube with length L and a short outer tube with

length l. A temperature gradient is imposed on the inner tube by equilibrating atoms near its two ends at different temperatures. The thermophoretic

force that drives the motion of the outer tube can be attributed to the fact that atoms with larger vibration amplitudes (due to higher temperature or

lower confinement) are farther away from equilibrium, hence having higher van der Waals energy, compared to those with lower vibration amplitudes

(due to lower temperature or higher confinement).
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tube in the direction of the thermal gradient (Barreiro et al., 2008; Guo et al., 2011; Longhurst and Quirke, 2007; Schoen
et al., 2006; Shenai et al., 2011; Zhao et al., 2010). The driving force for such thermophoretic motion can be attributed to
the fact that atoms at higher temperature vibrate with larger amplitudes and are on average farther away from their
equilibrium positions. Therefore, the outer tube will have higher van der Waals interaction energy with the inner tube
when it is located closer to the hotter end (Fig. 1).

The present study is aimed to provide a first analytical model of thermophoretic and thermally induced forces between
two solid bodies. The theory of lattice dynamics will be utilized to show that there exist two distinct contributions to the
thermophoretic force in such a system. The first contribution comes from the variation of van der Waals (vdW) interaction
energy along the temperature gradient, which acts on all atoms of the outer tube and will be referred to as the gradient
force. The second force is associated with a newly discovered edge force near the two ends of the outer tube, which acts
only on the edge atoms of the outer tube and will be referred to as the unbalanced edge force. Our analysis will show that
the edge force is induced by an abrupt change in the degree of atomic confinement at the contact edge: Even under the
same temperature, unconfined atoms on the inner tube that lie outside the outer tube have larger vibration amplitudes
due to lower confinement and are on the average farther way from their equilibrium positions compared to those confined
inside the outer tube. In this sense, while the edge force exists independent of the thermal gradient (Guo et al., 2011), it
can be said to have a similar physical origin as the gradient force, although the latter exists only in the presence of a
temperature gradient.

In the following, we provide a detailed derivation of these forces based on the theory of lattice dynamics.

2.2. Temperature induced vdW potential energy

A complete understanding of the thermophoretic force needs an analysis of the temperature dependent vdW potential
energy between coaxial nanotubes. In the absence of thermal vibrations, the vdW potential energy has a reference value
when all atoms in the system are located at their equilibrium positions. In reality, thermal vibrations cause the atoms to
vibrate about their equilibrium positions, raising the vdW potential energy of the system above the reference value (see
Fig. 1), which will be referred to as the temperature induced vdW potential.

We found from MD simulations that the temperature induced vdW potential energy of the DWCNT under study only
has a minor dependence on the tube diameter. To simplify the calculations, we shall focus our analysis on a bilayer system
consisting of two parallel graphene layers at a separation distance of 0.34 nm. We further assume that atoms in one layer
(layer II) are all fixed while those in the other layer (layer I) are thermally vibrating around their equilibrium positions in
the original plane (here we neglect wrinkling/folding effects keeping in mind that the radial deformation of a nanotube is
very small due to its strong in-plane stiffness). The vdW potential energy between the two layers is calculated by
integrating interactions between all atoms in layers I and II,

UvdW ¼
X

i

fi
v, ð1Þ

where fv
i denotes the vdW interactive energy between atom i of layer I and all atoms of layer II. The value of fv

i should
primarily depend on the vertical distance of atom i to layer II and vary periodically in the plane of layer II. Following the
method used by Zheng and Jiang (2002), we determine fv

i
ðsiÞ as the average value of fv

i over half of a hexagonal unit cell,
where si denotes the vertical distance of atom i to layer II. For small deviations mi¼si�s0 of si from the equilibrium vertical
distance s0, fv

i
ðsiÞ can be expressed as

f
i

vðsiÞ ¼f
i

vðs0Þþ
1
2kvdWm2

i , ð2Þ

where kvdW is a constant to be determined and fv

i
ðs0Þ is a reference constant whose value is of no consequence to

the present analysis. We set the value of fv

i
ðs0Þ to zero so that the vdW potential energy between the two layers is

expressed as

UvdW ¼
X

i

1

2
kvdWm2

i , ð3Þ

The higher the temperature is, the more dispersed the distribution of mi, and the higher the UvdW, as schematically
illustrated in Fig. 1. The total vdW potential energy can be obtained by adding up contributions from all normal vibration
modes. There are a total of six branches of normal modes in graphene (Perebeinos and Tersoff, 2009), four of which are in-
plane vibrations and the remaining two out-of-plane vibrations. Since the in-plane vibration modes induce negligible
changes in the vertical distances si, they can be neglected in calculating the vdW potential energy. We therefore focus on
contributions from the out-of-plane normal modes.

The out-of-plane normal modes in layer I can be expressed as (Sherry and Coulson, 1956)

mA
ðl,mÞ ¼ ZAsinð2potþrA

ðl,mÞUqÞ, mB
ðl,mÞ ¼ ZBsinð2potþrB

ðl,mÞUqÞ ð4Þ

where mA
ðl,mÞ and mB

ðl,mÞ are the vertical displacements, rA
ðl,mÞ and rB

ðl,mÞ the coordinates of atoms A and B of the representative
cell (l, m) (l, m¼�Nþ1, y, 0, y, N) as illustrated in Fig. 2; q¼{ql,qm} is the wavenumber vector, o and ZA and ZB are the
frequency and amplitudes of the out-of-plane vibration. There are 4N2 cells and 8N2 atoms in layer I.



Fig. 2. The representative cell of graphene with in-plane base vectors rl and rm.
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The time averaged vdW potential energy associated with a single normal mode with frequency o is

Uo
vdW ¼ lim

t0-1

Z t0

0

XN

l,m ¼ �Nþ1

1

2
kvdWðmA

ðl,mÞÞ
2
þ

1

2
kvdWðmB

ðl,mÞÞ
2

� �
dt=t0 ¼

1

4
kvdW

XN

l,m ¼ �Nþ1

½ðZA
Þ
2
þðZB

Þ
2
�: ð5Þ

The total vdW potential energy can be obtained by adding up contributions from all out-of-plane normal
vibration modes. Each branch of out-of-plane vibration contains 4N2 normal modes, so that the total vdW potential
energy is

UvdW ¼
X8N2

k ¼ 1

Uok

vdW: ð6Þ

The amplitudes of normal modes ZA and ZB can be expressed as functions of their frequencies. Although substantial
fluctuations exist in the energy associated with a single normal mode (Chen and Xu, 2011), the principle of
thermodynamics demands that every single normal mode should have an average kinetic energy of kBT=2 at equilibrium,
where kB is Boltzmann’s constant and T is temperature. It has been shown that this equipartition of energy holds
approximately in systems (Tangney et al., 2006; Zhang et al., 2009) comparable to ours. The relationship between
temperature and vibration amplitude is thus

kBT ¼
1

2

XN

l,m ¼ �Nþ1

m0o2
k ½ðZ

A
k Þ

2
þðZB

kÞ
2
� ,ðk¼ 1,2,. . .,8N2

Þ, ð7Þ

where m0 is the atomic mass of carbon. Combining Eqs. (5) and (7) indicates that the vdW potential energy induced by a
single vibration mode with frequency ok is

Uok

vdW ¼
kBkvdWT

2m0o2
k

: ð8Þ

Substituting Eq. (8) into Eq. (6) leads to the total vdW potential energy,

UvdW ¼
X8N2

k ¼ 1

kBkvdWT

2m0o2
k

, ð9Þ

where the summation runs over all 8N2 normal modes.
Eq. (9) can be recast in an integral form (see Appendix A)

UvdW ¼
8N2

2s

ZZ
s

kBkvdWT

m0ozoðql,qmÞ
2

dqldqmþ

ZZ
s

kBkvdWT

m0ozaðql,qmÞ
2

dqldqm

 !
: ð10Þ

over the first Brillouin zone s, where oza and ozo represent the two branches of out-of-plane vibration. Assuming the
number of atoms in layer II is comparable to that of layer I (�8N2), the vdW potential energy per atom between layer II
and layer I is

VvdW ¼
UvdW

8N2
¼ kvT , ð11Þ



Fig. 3. Three kinds of atoms in Layer I when it contacts layer II.
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which is clearly a linear function of temperature with

kv ¼
kBkvdW

2m0s

ZZ
s

1

ozoðql,qmÞ
2
þ

1

ozaðql,qmÞ
2

 !
dqldqm: ð12Þ

This expression suggests that the vdW potential energy is mainly determined by the low frequency vibration modes.

2.3. Frequencies of out-of-plane vibration

Now let us analyze the atomic frequencies of layer I when it contacts layer II, as shown in Fig. 3.
In view of different constraints from layer II, atoms in layer I can be classified into three categories: (1) those not

interacting with layer II (shown in green in Fig. 2), (2) those in full contact with layer II (shown in yellow) and (3) those
near the edge of layer II (shown in red). The first kind of atoms are similar to those in a monolayer graphene, for which the
frequencies of the two out-of-plane vibration modes, oza and ozo, are

ozo
out ¼

ffiffiffiffiffiffiffiffiffiffiffi
xþZ
m0

s
, oza

out ¼

ffiffiffiffiffiffiffiffiffiffi
x�Z
m0

s
, ð13Þ

where x and Z are functions of the wave-number vector q (Appendix B).
Vibration of the second kind of atoms corresponds to that of an infinite bilayer graphene for which interlayer

interactions lead to an upward shift in the out-of-plane frequency (Cancado et al., 2008; Ferrari et al., 2006). In this case,
the constraint of layer II on an atom of layer I can be treated as a linear spring with stiffness kvdW, and the frequencies of
the out-of-plane vibration modes become

ozo
in ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþZþkvdW

m0

s
, oza

in ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�ZþkvdW

m0

s
: ð14Þ

The vibration frequencies of atoms near the edge of layer II are approximated as

ozo
edge ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþZþkvdW=2

m0

s
, oza

edge ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�ZþkvdW=2

m0

s
: ð15Þ

Comparisons with molecular simulations will show that this approximation is accurate enough for predicting the edge
effects.

Eqs. (12) to (15) allow us to express the frequencies of the out of plane vibration modes in three distinct zones of layer I
as functions of the wavenumber. The results are shown in Fig. 4 for the single layer (green line), bilayer (yellow line) and
near edge zones (red line) (we follow the spectroscopic convention of expressing phonon energy in units of cm�1, where
cm�1 denotes hc=cm� 0:124 meV). The calculated frequency dispersion for a single layer graphene is in excellent
agreement with experimental data (Perebeinos and Tersoff, 2009). We can see that the frequency upshift due to the
confining layer is negligible in the high frequency region, but becomes substantial in the low frequency region, especially
in the region near point G.

2.4. Edge barrier and edge force

The vdW potential energy between an atom in layer II and all atoms in layer I is mainly determined by atoms of layer I
nearest to the given atom. Therefore, the vdW potential of an edge atom in layer II interacting with layer I, Vedge

vdW, can be
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calculated from Eqs. (10) and (15), while the vdW potential associated with an inner atom of layer II interacting with layer
I, V in

vdW, can be calculated from Eqs. (10) and (14).
Clearly, Vedge

vdW and V in
vdW are different when the system temperature is above zero, which means that there is an

thermally induced edge barrier that is given by

DVvdW ¼ Vedge
vdW�V in

vdW ¼ ðk
edge
v �kin

v ÞT , ð16Þ

where kedge
v and kin

v are calculated from Eq. (12) with frequencies given by Eqs. (15) and (14), respectively. According to the
principle of virtual work, the above edge barrier results in an edge force on layer II

Fedge ¼DVvdW
LII

AII
0

¼ ðkedge
v �kin

v Þ
LIIT

AII
0

, ð17Þ

where AII
0 and LII are the area per atom and the length of contact edge of layer II, respectively.

It is found that Vedge
vdW is always larger than V in

vdW due to the fact that atoms in the transition zone have lower frequencies
than those of the full-contact zone. This indicates that (i) a potential well can be induced when a truncated layer is
attached to an extended layer, and (ii) the edge force exerted on the truncated layer points toward inside the layer, which
means that there is a compressive force exerted on the truncated layer by the extended layer. These results are consistent
with observations from MD simulations (Guo et al., 2011).

For a DWCNT with a short outer tube and a long inner tube, the edge forces on the two tube ends would just cancel each
other in the case of a uniform temperature. However, in the presence of a temperature gradient rT, the resultant edge
force leads to the following unbalanced edge force along the direction of decreasing temperature,

FUE ¼ ðk
edge
v �kin

v Þ
pld

A0
UrT : ð18Þ

where A0 is the area per atom, and d and l are the diameter and length of the outer tube, respectively.
2.5. Gradient force

Besides the unbalanced edge force, the other part of the thermophoretic force is associated with the change in vdW
energy along the temperature gradient. To determine the gradient force, we note that the vdW potential energy between
the inner tube and a small segment of the outer tube with length ds is

dVvdW ¼ kin
v T

pd

A0
ds, ð19Þ

where T is the local temperature, and kin
v is given by Eqs. (12) and (14). In the presence of a temperature gradientrT on the

inner tube, the potential energy between the short outer tube and long inner tube is,

V tubes
vdw ¼

Z xþ l=2

x�l=2
kin

v ðT1þsrTÞ
pd

A0
ds ð20Þ
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where x denotes the position of the center of the outer tube center and T1 is the temperature at the left end of the inner
tube. Differentiating V tubes

vdw with respect to x yields the gradient force Fgrad as

Fgrad ¼
d

dx
V tubes

vdw ¼
kin

v pld

A0
UrT: ð21Þ

2.6. Total thermophoretic force

Combining the unbalanced edge force and the gradient force gives the total thermophoretic force

FT ¼ FgradþFUE ¼
kedge

v pld

A0
rT: ð22Þ

Eq. (22) indicates that the thermophoretic force is linearly dependent on the temperature gradient, as well as on the
length and diameter of the outer tube. Using the dispersion relation shown in Fig. 4 and the vdW constant kvdW¼2.7 N/m
for graphene layers (calculated based on the Lennard-Jones potential used in our molecular dynamics simulations), we find
kedge

v ¼ 7:29 meV=atom=K and kin
v ¼ 5:33 meV=atom=K from Eq. (12). The edge barrier, edge force, gradient force, and the

thermophoretic force can then be predicted from the above equations.

3. Discussion

To validate our theoretical model, we have conducted a series of MD simulations, with intra-layer C–C interactions
characterized by Brenner’s second generation potential (Brenner et al., 2002) and long rang Van der Waals interactions by
the Lennard–Jones potential with well-depth e¼ 4:7483� 10�22 J and equilibrium distance s¼ 0:3407 nm. A time step of
1 fs is used in all simulations.

3.1. vdW potential energy

We performed MD simulations of a bi-layer graphene, each layer containing 1200 atoms. One layer is fixed and the
other is maintained at temperatures from 100 K to 500 K. We also simulated an armchair DWCNT with an interlayer
distance of 0.339 nm. The lengths of the inner and outer tubes of the DWCNT are both 8 nm, and the diameter of the
selected inner tube of the DWCNTs ranged from 0.7 nm to 2.8 nm. During the simulations, we first equilibrated the
systems at 300 K for 100 ps, and then fixed the outer tube while maintaining the inner tube at selected temperatures
ranging from 100 K to 500 K.

As shown in Fig. 5, our MD results confirmed that the interlayer vdW potential energy of bilayer graphene increases
linearly with temperature at a slope of kin

v ¼ 5:6 meV=atom=K , in excellent agreement with the theoretically predicted
value of 5.33meV=atom=K. When graphene sheets are rolled into nanotubes, the out-of-plane vibrations become radial
vibrations. Meanwhile, the finite number of atoms along the circumferential direction causes the normal (or radial) modes
to deviate from those for an infinite graphene sheet, especially when the diameter is very small. Our MD results show that
the curvature of the tube affects the coefficient of the vdW energy, but not its linear dependence on temperature. By fitting
the calculated values of the vdW potential energy for the DWCNTs to a linear function of temperature, we obtained a series
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of size-dependent coefficients kin
v , as shown in Fig. 6. It is found that kin

v decreases significantly with reduced tube size
when the inner tube diameter is smaller than 1.2 nm. However, when the inner tube diameter is larger than 1.2 nm, the
maximum difference between kin

v for a DWCNT and that for a bilayer graphene is not more than 12%. This means that our
assumption that the temperature induced vdW potential energy of the DWCNT only has a minor dependence on the tube
diameter is not unreasonable. For very small tubes, further studies are needed to improve the accuracy of the model.

3.2. Thermophoretic force

Next we performed MD simulations of a (15, 15)/(10, 10) DWCNT thermophoretic actuator consisting of a long
(L¼24 nm) inner tube and a short (L¼7.3 nm) outer tube. We first equilibrated the system at 300 K for 100 ps, with the
inner tube fixed at both ends. While the mean temperature was kept at 300 K, a temperature gradient is then imposed
along the inner tube in the range of 0–10 K/nm by heating atoms near both ends. The system is stabilized after 50 ps. The
transient force fluctuates with time as reported in the literature (Schoen et al., 2006; Xu et al., 2007). Thus, we imposed a
velocity of 10 m/s on the outer tube, which is sufficiently low to ensure relatively negligible contribution from friction, and
calculated the thermophoretic force on the outer tube by averaging the transient force over a long time period.

To validate our theoretical model of the thermophoretic force, we separately calculated the unbalanced edge force and
the gradient force. The forces exerted on two rings of atoms on each end of the outer tube are calculated and summed
together as the unbalanced edge force, while the forces exerted on all other atoms of the outer tube are summed up as the
gradient force. Fig. 7 shows the unbalanced edge force and the gradient force as functions of the imposed thermal gradient.
It is clear that the gradient force, the unbalanced edge force and the total thermophoretic force are all linearly proportional
to the temperature gradient. The forces calculated from the MD simulations are all in reasonable agreement with our
theoretical predictions.
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3.3. Further discussion

In practice, a thermophoretic actuator is likely made of a multi-walled carbon nanotube. Besides, the inner tube of a
CNT actuator may contain some nanoparticles or fluids insertions. Here we briefly discuss the effect of inserted CNTs or
other fillings on the thermophoretic force. Suppose the interaction between the tube atoms and the fillings can be
described by an effective spring of stiffness lkvdW. In this case, the frequencies of radial vibration modes of the outermost
inner tube outside the outer tube can be approximately expressed as

ozo
out ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþZþlkvdW

m0

s
, oza

out ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�ZþlkvdW

m0

s
: ð23Þ

The frequencies of the outermost inner tube inside the outer tube are

ozo
in ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþZþðlþ1ÞkvdW

m0

s
, oza

in ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�Zþðlþ1ÞkvdW

m0

s
: ð24Þ

The frequencies in the zone near the edge of the outer tube are

ozo
edge ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþZþðlþ1=2ÞkvdW

m0
, oza

edge ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�Zþðlþ1=2ÞkvdW

m0

s
:

vuut
ð25Þ

Fig. 8 shows that both potential coefficients kin
v and kedge

v would decrease with increasing effective stiffness coefficient l.
In particular, when the inner tube is a DWCNT (in this case the actuator is made of a triple walled CNT), i.e., l¼1, we obtain
kin

v ¼ 3:92 meV=K and kedge
v ¼ 4:45 meV=K. Since more inner tubes have negligible constraint to the outer tube, we know

that the thermophoretic force in an MWCNT actuator could be about 73% lower than that of a DWCNT actuator.
It is noted that the thermal gradient imposed in experiments and simulations is quite high, and the efficiency of such

actuators seems rather low for practical applications (Barreiro et al., 2008; Hou et al., 2009; Shenai et al., 2011). Finding
efficient approaches to increasing the thermophoretic force is of significant importance. Barreiro et al. (2008) proposed
that selectively exciting specific phonon modes such as the breathing mode may be a solution to reduce the thermal
gradient while maintaining the thermophoretic force. Our theoretical model shows why such a solution might work: Since
low frequency vibrations contribute most significantly to variations in the vdW potential and play dominant roles in the
thermophoretic force, exciting lower frequency modes (i.e., the E2g mode on the order of 10 cm�1), such as the breathing
mode which has a relatively small frequency on the order of 100 cm�1, would indeed enhance the efficiency of
thermophoretic actuator systems more effectively.

4. Concluding remarks

We have presented a first analytical study of thermophoretic and thermally induced edge forces between two solid
bodies. An analytical model based on the theory of lattice dynamics is developed to determine the thermophoretic force in
a double walled carbon nanotube system consisting of a short outer tube sliding along a long inner tube under a
temperature gradient. The model shows that the thermophoretic force is linearly proportional to the temperature gradient
and the contact area (i.e., a product of the diameter and length of the short tube). The model reveals that there exist two
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important components of the thermophoretic force: one is a gradient force due to variations in van der Waals potential in
the presence of a temperature gradient; the other component is an unbalanced edge force induced by temperature
dependent edge barriers during nanoscale contact. Our analytical model gives results in good agreement with molecular
dynamics simulations.

A most important outcome of the present study is the discovery of a new type of thermally induced edge force during
nanoscale contact. This edge force is induced by an abrupt change in the degree of atomic confinement at any contact edge
and exists independent of thermal gradient. The physical origin of the edge force can be attributed to the fact that
unconfined atoms outside the contact have larger vibration amplitudes and are on the average farther way from their
equilibrium positions compared to those within the contact region. The edge force and the associated edge barrier may
have profound implications on nanoscale contact mechanics and nanodevices, and much effort will be required in the
future to fully explore the importance of edge forces in nanomechanics.
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Appendix A.

In the first Brillouin zone, each allowable wavenumber vector (normal mode) occupies a region of constant area
(Blakemore, 1985)

r¼ s
M

ðA1Þ

where s is the area of the first Brillouin zone and M is the total number of normal modes.
Eq. (10) can thus be rewritten as

UvdW ¼
XM
k ¼ 1

kBkvdWT

2m0ok
2
¼

Z
s

kBkvdWT

2m0o2
rds: ðA2Þ

Since there are two branches of out-of-plane vibration modes, ozoand oza, Eq. (A2) can be further expressed as

UvdW ¼
r
2

Z
s

kBkvdWT

2m0ðozaÞ
2
þ

kBkvdWT

2m0ðozoÞ
2

 !
ds: ðA3Þ

Using the relation (Blakemore, 1985)

ds¼ dqldqm ðA4Þ

leads to

UvdW ¼
M

2s

Z
s

kBkvdWT

m0ðozaÞ
2

dqldqmþ

Z
s

kBkvdWT

m0ðozoÞ
2

dqldqm

 !
: ðA5Þ
Appendix B

The lattice of a single layer graphene is illustrated in Fig. 3. We consider only out-of-plane vibration of the layer. We use
rA
ðl,mÞ and rB

ðl,mÞ to denote the positions of two atoms A and B in a cell (l, m). The potential energy of the entire lattice can be
expressed in Taylor series as

U ¼U0þ
@U

@ma
ðl,mÞ

maðl,mÞ þ
1

2

@2U

@ma
ðl,mÞ@m

b
ðk,nÞ

maðl,mÞm
b
ðk,nÞ þ � � � , ða,b¼ A,BÞ, ðB1Þ

where U0 is the potential energy when all atoms are at their equilibrium positions, and mal,m is the out-of-plane
displacement of atom a. Here repeating indices imply summation as in the Einstein convention.

For convenience, the reference energy term U0 in Eq. (B1) is set to zero. The second term in the right hand side of
Eq. (B1), @U=@ma

ðl,mÞm
a
ðl,mÞ, should vanish because the Taylor series is expanded about equilibrium positions. Keeping only the
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quadratic terms in the Taylor expansion, the potential energy can be written as

U ¼
1

2

@2V

@ma
ðl,mÞ@m

b
ðk,nÞ

maðl,mÞm
b
ðk,nÞ: ðB2Þ

The equation of motion for atom a in the cell (l, m) is

m0

d2ma
ðl,mÞ

dt2
þQa

ðl,mÞ ¼ 0, ðB3Þ

where Qa
ðl,mÞ is the force exerted on atom a and can be related to the atomic displacements of the system via force

constants. In practice, only contributions from the displacements of the nearest neighbor atoms are taken into account in
calculating Qa

ðl,mÞ. Here we consider 24 nearest neighbor atoms and thus have

QA
ðl,mÞ ¼ c1

1m
A
ðl,mÞ þc2

1ðm
B
ðl,mÞ þm

B
ðl�1,mÞ þm

B
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1ðm
A
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A
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þmA
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A
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1ðm
B
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B
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B
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B
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B
ðlþ1,m�1Þ þm

B
ðl�1,mþ1ÞÞþc5

1ðm
A
ðl�2,mþ1Þ

þmA
ðlþ1,m�2Þ þm

A
ðlþ1,mþ1Þ þm

A
ðl�1,mþ2Þ þm

A
ðlþ2,m�1Þ þm

A
ðl�1,m�1ÞÞ ðB4Þ

QB
ðl,mÞ ¼ c1

1m
B
ðl,mÞ þc2

1ðm
A
ðl,mÞ þm

A
ðl�1,mÞ þm

A
ðl,m�1ÞÞþc3

1ðm
B
ðl,m�1Þ þm

B
ðl�1,mÞ þm

B
ðl�1,mþ1Þ

þmB
ðlþ1,m�1Þ þm

B
ðlþ1,mÞ þm

B
ðl,mþ1ÞÞþc4

1ðm
A
ðl�2,mÞ þm

A
ðl,m�2Þ þm

A
ðlþ1,m�2Þ þm

A
ðlþ2,mÞ

þmA
ðl,mþ2Þ þm

A
ðl�2,mþ1Þ�m

A
ðl�1,m�1Þ�m

A
ðlþ1,m�1Þ þm

A
ðl�1,mþ1ÞÞþc5

1ðm
B
ðl�2,mþ1Þ

þmB
ðlþ1,m�2Þ þm

B
ðlþ1,mþ1Þ þm

B
ðl�1,mþ2Þ þm

B
ðlþ2,m�1Þ þm

B
ðl�1,m�1ÞÞ ðB5Þ

The solution to Eq. (B3) is

maðl,mÞ ¼ Zasinð2potþraðl,mÞUqÞ, ðB6Þ

where the wave-number vector q¼ fql,qmg is restricted to the first Brillouin zone using Born’s periodic boundary
conditions. Substituting Eq. (B6) into Eq. (B3) leads to the following secular equations

ð�m0o2þxÞZA
þzZB

¼ 0, ð�m0o2þxÞZB
þzZA

¼ 0, ðB7Þ
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,

z is the conjugate of z, and cj
i are force constants.

The existence of nontrivial solutions to Eq. (B7) requires

�m0o2þx z
z �m0o2þx

					
					¼ 0, ðB8Þ

which consequently gives the expressions for the frequencies of the two branches of the out-of-plane vibration as

ozo ¼

ffiffiffiffiffiffiffiffiffiffiffi
xþZ
m0

s
, oza ¼

ffiffiffiffiffiffiffiffiffiffi
x�Z
m0

s
, ðB9Þ

with Z¼
ffiffiffiffiffi
zz

q
.

Because ozoand oza are functions of the wave-number vector q, we can determine the values of the force constants
by fitting Eq. (B9) to the existing results. Using recent experimental data taken from Wirtz and Rubio (2004), we
obtained the values of force constants as c1

1 ¼�226:93ðN=mÞ, c2
1 ¼ 93:18ðN=mÞ,c3

1 ¼�7:20ðN=mÞ, c4
1 ¼ 2:85ðN=mÞ and
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c5
1 ¼�1:55ðN=mÞ. These values are in good agreement with other existing data in the literature. For example, using ab initio

calculations, Dubay and Kresse (2004) found c1
1 ¼�248:04ðN=mÞ, c2

1 ¼ 101:10ðN=mÞ, c3
1 ¼�8:10ðN=mÞ, c4

1 ¼ 6:65ðN=mÞ and
c5

1 ¼�1:11ðN=mÞ.
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