
Nonangiographic assessment of coronary artery disease: a
practical approach to optical coherence tomography and
fractional flow reserve
Andrew N. Rassia, John A. O’Deaa, Haibo Jiaa, Arnold H. Setob

and Ik-Kyung Janga

In an era of increased scrutiny of the appropriateness
and safety of revascularization, interventional cardiologists
must evolve by adding key tools to their armamentarium.
This review highlights the utility of optical coherence
tomography and fractional flow reserve in the
catheterization lab and provides a practical guide for using
these technologies during coronary intervention in various
lesion subsets. We propose that fractional flow reserve
informs the decision to intervene and optical coherence
tomography guides the optimization of the outcome. Coron
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Introduction
The modern era has seen improved diagnostic technol-

ogy, adjunctive medical therapy, and safer revasculariza-

tion procedures. Although intravascular ultrasonography

(IVUS) has overcome many shortcomings of angiography,

it is being surpassed by optical coherence tomography

(OCT), which offers detail that was previously only

possible with histopathologic evaluation. Fractional flow

reserve (FFR) allows physiologic evaluation of poten-

tially flow-limiting lesions. In an era of increased scrutiny

of the appropriateness and safety of revascularization,

interventional cardiologists must evolve by adding key

tools to their armamentarium. This review highlights the

importance of OCT and FFR in specific lesion subsets

(Table 1) and provides a practical guide for the use of

these techniques during percutaneous coronary inter-

vention (PCI). We propose that FFR informs the deci-

sion to intervene and OCT guides the optimization of the

outcome.

Fractional flow reserve
FFR, an index of physiological significance, is the ratio of

the maximal myocardial blood flow in the presence of a

stenosis to the maximal flow in a normal artery [1]. It is

measured during coronary angiography by measuring the

ratio of coronary pressure distal to a stenosis to aortic

pressure in the guiding catheter using a pressure wire

during adenosine-induced steady-state maximal hyper-

emia. FFR readings of 0.80 or lower identify potential

ischemia-inducing lesions with sensitivity and specificity

greater than 90% [2]. The ratio between FFR and

ischemia is better validated than any previous test [1,3].

FFR-guided PCI carries a class 1 recommendation in

European guidelines [4] and a class 2a recommendation

in the US guidelines [5]. Similarly, current appropriate

use criteria for coronary revascularization designate an

FFR of 0.80 or lower in single-vessel or double-vessel

coronary disease excluding proximal left anterior des-

cending (LAD) as ‘appropriate’ [6] (Table 2).

Single stenosis
The greatest impact of FFR has been on intermediate,

stable coronary lesions. Clinical event rates less than 10%

for medically treated intermediate coronary stenoses have

been documented for lesions without an ischemic FFR

[3,7,8]. In cases of single-vessel disease with hemody-

namically significant lesions, FFR not only supports the

decision to perform PCI, but can assess the adequacy of

stent deployment. Following PCI, an FFR greater than

0.94 has 91% concordance with IVUS in verification of

optimal stent apposition and deployment [9].

FFR is performed following systemic anticoagulation and

calibration of the pressure wire. If hemodynamics allow,

100–200 µg of intracoronary nitroglycerine is administered

(alternatively, papaverine, adenosine 5′-triphosphate, or
nicorandil). The wire is advanced to the tip of the guiding

catheter, where equalization of aortic and pressure wire

measurements is confirmed; it is then advanced into the

coronary artery until the pressure sensor is located as far

distal in the target vessel as possible. Adenosine is infused

at 140 µg/kg/min for more than 2min through central or

peripheral venous access (intracoronary bolus dosing also

available) before steady-state hyperemia is achieved,

allowing for FFR calculation (Fig. 1).
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Serial stenoses
Diffuse coronary atherosclerosis with consecutive lesions

along the same artery is common. The FFR equation

remains accurate for evaluating the significance of both

stenoses, provided no large intervening arterial branches

are present. Predicting the hemodynamic significance of

each individual stenosis was addressed by De Bruyne

et al. [2], and it is calculated using equations seldom used

in daily practice. For two or more stenoses, it is common

to identify the stenosis associated with the largest pres-

sure drop on wire pullback (Fig. 2). After stenting of the

most significant lesion identified, repeating the FFR

with maximal hyperemia reveals residual pressure gra-

dients attributed to the other lesion.

Multivessel disease
The Fractional Flow Reserve (FFR)-Guided Percutaneous

Coronary Intervention Plus Optical Medical Treatment vs.

Optical Medical Treatment Alone in Patients with Stable

Coronary Artery Disease (FAME 1) trial illustrates the

benefit of FFR-guided intervention over angiography-

guided for multivessel coronary artery disease [8,10].

This multicenter trial demonstrated increased numbers of

stents deployed and a higher contrast use for angiography-

guided compared with FFR-guided groups. Major adverse

cardiac event (MACE) rates at 1 year favored FFR-guided

intervention (22.4% in the angiography group and 17.9% in

the FFR group), as did all-cause mortality rates (3.8 and

2.6%, respectively). At the 2-year follow-up, the fate of the

lesions deferred due to FFR greater than 0.80 were benign

(0.2% presented as myocardial infarction). The advantage

of FFR-guided PCI is explained by the selection of

ischemic stenoses (FFR≤0.80) in which the benefit of

alleviating coronary ischemia outweighs the potential risk

for drug-eluting stent (DES) thrombosis or restenosis.

These data support revascularization strategies for stable

ischemic coronary stenoses and medical management of

nonischemic stable lesions.

The benefit of PCI for stable coronary disease was ques-

tioned in the Clinical Outcomes Utilizing Revascularization

and Aggressive Drug Evaluation (COURAGE) trial, which

randomized patients to PCI plus optimal medical therapy

(OMT) versus OMT alone and demonstrated no difference

in MACEs at the 4.6-year follow-up [11]. De Bruyne and

colleagues addressed this in FAME 2 by randomizing

patients with functionally significant lesions for ischemia

(FFR≤0.80) to PCI plus OMT versus OMT alone.

Recruitment was halted early because of significant differ-

ences in the composite endpoint of death, myocardial

infarction and urgent revascularization, driven by lower rates

of urgent revascularization in the PCI group (1.6 vs. 11.1%)

at a mean follow-up of ∼7 months [12].

Left main disease
Evaluating FFR of the left main coronary artery (LMCA) is

similar to evaluating other territories except that the

guiding catheter should be withdrawn from the coronary

ostium to facilitate hyperemic blood flow and prevent

dampening of the waveform. Given the risk for hypoten-

sion, guide dampening, or inaccurate delivery of adenosine

Table 1 Usefulness of FFR and OCT in various lesion subsets

Type of lesion FFR OCT

Moderate stable
stenosis

Useful to decide whether physiologically significant Useful to assess lesion characteristics, vessel sizing, and poststent
assessment

Severe stable stenosis Useful to decide whether physiologically significant Useful to assess lesion characteristics, vessel sizing, and poststent
assessment

Aorto-ostial coronary
stenosis

Useful to decide whether physiologically significant (ensure
guiding catheter does not dampen waveform)

Limited utility in ostial lesions (difficulty opacifying vessel)

Left main stenosis Useful to decide whether physiologically significant (ensure
guiding catheter does not dampen waveform)

Limited utility in ostial lesions (difficulty opacifying vessel). May be useful to
assess lesion characteristics, vessel sizing, and poststent assessment

Bifurcation lesions Can be useful to decide whether bifurcation intervention is
required or whether a simpler provisional strategy may be used

Useful to assess lesion characteristics, vessel sizing, and poststent
assessment

Coronary dissections Not indicated Useful to assess length of dissection to ensure that the proximal dissection
flap is covered with stent

Acute coronary
syndromes

Not indicated Useful to assess lesion characteristics, vessel sizing, and poststent
assessment

Stent thrombosis Not indicated Useful to assess mechanism of stent thrombosis and subsequent repeat
intervention planning/assessment

FFR, fractional flow reserve; OCT, optical coherence tomography.

Table 2 Summary of ischemia-guided recommendations for using FFR in appropriate use criteria for coronary revascularizationa

Asymptomatic CCS I or II CCS III or IV

FFR≤0.80 FFR>0.80 FFR≤0.80 FFR>0.80 FFR≤0.80 FFR>0.80

One or two vessel borderline 50–60% CAD, excluding proximal LAD Inappropriate Inappropriate Uncertain Inappropriate Appropriate Inappropriate

CAD, coronary artery disease; CCS, Canadian Cardiovascular Society; FFR, fractional flow reserve; LAD, left anterior descending.
aThe majority of the recommendations in the appropriate use criteria for coronary revascularization include noninvasive assessment of ischemia. This table represents those
recommendations that include the use of fractional flow reserve to guide ischemia-driven revascularization.
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in the LMCA with intracoronary adenosine, central or

peripheral infusion should be used.

Visual estimation of the angiographic severity of the

LMCA is often under-reported or over-reported com-

pared with FFR. Hamilos and colleagues examined the

outcome of FFR-guided revascularization of the LMCA

by recording quantitative angiographic and FFR data on

all LMCA lesions. The long-term clinical outcome in

patients for whom coronary artery bypass graft (CABG)

surgery was deferred on the basis of FFR values greater

than 0.80 was favorable and similar to that in patients

undergoing CABG for physiologically significant ste-

nosis, with an FFR of 0.80 or less. The 5-year survival

estimates were 89.8% in the medically managed group

and 85.4% in the group undergoing CABG (P= 0.48).

Alarmingly, when visual estimation of angiographic

severity of LMCA disease was reported in this study,

23% of LMCAs with angiographic stenosis of 50%

or lower had a significant FFR of less than 0.80, whereas

6% of cases with angiographic stenosis greater than 50%

had an FFR of 0.80 or higher. Incorrect decision-making

in up to a third of the LMCA cases could thus arise if

angiographic criteria alone were applied [13].

Good correlation exists between IVUS and FFR in the

LMCA. A minimal luminal diameter of 2.8mm and a mini-

mal luminal area (MLA) of less than 6.0mm2 on IVUS pre-

dicts physiologically significant LMCA stenosis by FFR [14].

In one study, anMLA of 4.8mm2 was a predictor of ischemic

FFR, although the population in that study had smaller cor-

onary arteries at baseline [15]. A multicenter, prospective trial

confirmed that MLA greater than 6.0mm2 confers excellent

prognosis without revascularization, suggesting that FFR

greater than 0.80 or MLA greater than 6.0mm2 identifies

patients who do not require revascularization [16].

Coronary artery disease is a diffuse condition – that is, the

LMCA lesion seldom exists in isolation. The flow across

the LMCA depends on the outflow to the LAD or the left

circumflex (LCx). In-vitro and sheep models demonstrate

Fig. 1
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Single lesion evaluated by FFR. (a) Angiogram showing the pressure sensor (arrow) distal to the lesion (star). (b) A tracing showing the FFR value for
the lesion in question. FFR, fractional flow reserve.
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that in the setting of intermediate LMCA and downstream

disease involving the LAD or LCx, FFR in the non-

diseased limb of the bifurcation is not significantly affected

until the FFR of the composite of LMCA and downstream

disease in the diseased limb become severe (FFR< 0.65)

[17,18]. Although these models suggest that left main

(LM) FFR is reliable in the absence of severe and proximal

downstream stenoses, IVUS/OCT measurement may be

considered to confirm FFR findings.

In the drug-eluting stent era, LMCA intervention has

been proven to be safe and offers enduring relief from

symptoms of coronary ischemia, with a low rate of target

vessel revascularization, particularly in disease of the

ostium and the body of the LM [19]. Significant debate

still rages on the best strategy for treating distal LM

disease. FFR has a role in simplifying LM intervention in

cases in which a single stent strategy is adopted. If the

side branch of the bifurcation is free from disease or

compromise on stenting across it and high-pressure

postdilatation is uneventful, FFR can be repeated into

the side branch and if negative, then no further inter-

vention is warranted for the bifurcation [20].

Bifurcation intervention
Disease in the side-branch ostium before intervention is

a predictor of functionally significant stenosis by FFR

after stenting the main vessel; however, in one study,

only 17.8% of side branches had functional significance

requiring treatment, and only 13.5% of side branches had

FFR less than 0.80 following provisional stenting [20]. It

is reasonable to avoid side-branch PCI provided TIMI 3

flow is maintained. FFR measurement can be considered

when the side branch subtends large regions of the jeo-

pardized myocardium. Adjunctive invasive coronary

imaging can also be utilized in this setting to predict side-

branch compromise following bifurcation stenting and

the need for final kissing balloon dilatation. An IVUS run

of the side branch identifying significant ostial disease

(MLA< 2.4 mm2) can predict those cases that are likely

to develop a significant obstruction (FFR < 0.8) following

stent deployment and require postdilatation [21,22].

Nonculprit lesions in acute coronary syndrome
FFR evaluation is not indicated for culprit lesions in ST-

segment elevation myocardial infarction (STEMI) but

can be performed to evaluate nonculprit lesions on

completion of the intervention of the culprit lesion.

Ntalianis et al. [23] also dispelled the concern that

microvascular dysfunction during acute coronary syn-

drome (ACS) in the nonculprit vessel impacts the accu-

racy of FFR. Therefore, nonculprit stenoses with an FFR

less than 0.80 can be subjected to staged PCI.

Fig. 2
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Other lesion subsets
In addition to the severity and length of coronary ste-

noses, FFR is dependent on the extent of viable myo-

cardium perfused. For the same percent stenosis, LAD

lesions are more likely than a right coronary artery or LCx

lesion to have an ischemic FFR [15]. As a result, even a

modest stenosis in a donor artery providing collaterals to a

chronically occluded arterial territory may have an

ischemic FFR (≤ 0.8) and may normalize on recanaliza-

tion of the chronic total occlusion [24].

Areas with insufficient data
FFR-guided CABG is associated with decreased num-

bers of graft anastamoses and rates of on-pump surgery

compared with angiography-guided CABG, with no dif-

ference in MACE rates [25]. In a study evaluating the use

of FFR-guided PCI in 223 patients with intermediate

arterial and venous bypass graft stenoses, FFR-guided

PCI was found to be associated with a significantly

reduced primary endpoint of MACEs compared with

angiographic-guided PCI [26]. Moreover, the FFR-

guided strategy was associated with a lower total proce-

dure cost. The findings of these two retrospective studies

are encouraging; however, they will need to be confirmed

prospectively.

There are few data supporting the use of FFR for eval-

uating culprit lesions in ACS. FFR is a diagnostic tool for

physiologic assessment and does not provide information

on plaque morphology, composition, vulnerability, local

thrombogenicity, or shear stress.

Optical coherence tomography
OCT is an imaging modality that creates high-resolution

cross-sectional images based on measurement of reflec-

tion time and intensity of backscattered light [27].

Intravascular OCT uses light in the near infrared range

and has an axial resolution of 10–15 µm and a lateral

resolution of 20 µm, allowing detailed analysis of arterial

wall and plaque characteristics. Light originating from the

OCT system is split so that a portion travels to the patient

through the catheter and the other portion travels a

reference distance. A pattern of high and low intensities

is detected and analyzed by the OCT system to deter-

mine the amount of backscattering, allowing the creation

of an image.

Two main types of OCT systems exist: time domain and

Fourier domain (frequency domain). Frequency domain

is the most widely adopted, with advantages in imaging

speeds and ease of use. OCT systems have evolved from

requiring occlusion of the proximal vessel to rapid pull-

back during nonocclusive flushing of the vessel in mod-

ern systems. We will refer only to the frequency domain

in this review.

Current OCT systems in the USA are produced by St.

Jude Medical (Minneapolis, Minnesota, USA). The

imaging catheter is a rapid exchange monorail system

compatible with 0.014" coronary guide wires and 6F

systems. To prepare the system, the imaging catheter is

connected to the automated pullback device using the

sterile technique. The catheter’s inner lumen is flushed

Fig. 3
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with undiluted radiopaque contrast. Once the system is

calibrated, the catheter is loaded onto the coronary guide

wire and advance into the vessel. The imaging portion

(prism) is located behind the middle of three radiopaque

markers. The middle and most proximal marker identify

the 50-mm segment of the artery imaged at 20 mm/s for

2.5 s. After positioning, the catheter may need to be

flushed with contrast again and the guiding catheter

should be properly seated in the vessel to optimize

clearance of blood and image quality. The system is

enabled, followed by coronary injection with contrast

using a power injector (14 ml at 4 ml/s with 300 psi).

Blood is cleared from the lumen, triggering the automatic

pullback mechanism. Hand injections may be adminis-

tered; however, the images may suffer if the vessel is not

completely opacified. Dextran may be substituted for

contrast if needed [28]. Terumo has launched a new

system in Japan and Europe that is not yet available in

the USA. It should be noted that OCT does not carry any

recommendation in American PCI guidelines [5] or

appropriate use criteria [6] and is only mentioned as a

research tool in the European guidelines [4].

Evaluation of atherosclerosis
OCT has 10 times the resolution of IVUS, providing an

unprecedented level of detail [29]. In addition to calcu-

lating vessel size, lesion severity, and lesion length, OCT

allows for lesion characterization at a level close to that on

histologic examination [30]. Evaluation of a normal vessel

reveals a three-layer structure, shown in Fig. 3. The

thickness of a normal intima is ∼ 4 µm, which is beyond

the resolution of OCT. However, it increases with age,

and most adult coronary arteries show intimal thickening.

The media is depicted as a dark band delimited by the

internal and external lamina, with a thickness ranging

from 125 to 350 µm, visualized clearly by OCT. The

adventitia is a bright layer outside the media.

OCT identifies the histologic features of a vulnerable

plaque: a thin fibrous cap overlying a large lipid pool,

with/without macrophage accumulation. It is the only

imaging modality with adequate resolution to measure

the thickness of a fibrous cap (< 65 µm) associated with

the thin-cap fibroatheroma (Fig. 4), an in-vivo equivalent

of a vulnerable plaque [31]. In addition to plaque char-

acterization (lipid, fibrous, and fibrocalcific plaques) [30,

32], other microstructures such as macrophages (20–30

µm), microvessels, and cholesterol crystals have been

described [33,34].

Lipid-rich plaques (defined by lipids occupying two or

more quadrants of the cross-sectional area) were observed

in 90% of patients with STEMI, 75% of patients with

non-STEMI or unstable angina, and 59% of patients with

stable angina. Interestingly, the fibrous cap was thinner

in ACS as compared with stable angina [35]. In addition,

OCT can differentiate between an erythrocyte-rich

thrombus and a platelet-rich thrombus (Fig. 5) with

high sensitivity and specificity by measuring light

attenuation within tissue [36].

Preintervention lesion assessment
Pre-PCI OCT assessment informs decisions on adjunc-

tive therapies, stent sizing, and inflation protocols. A high

thrombus burden may influence adjunctive pharma-

cotherapy, such as the use of glycoprotein IIb/IIIa inhi-

bitors or newer P2Y12 antagonists with more rapid onset

of action [37,38], and mechanical thrombectomy [39].

High calcium burden could impact the need for rotational

atherectomy. Similar to IVUS, OCT is useful in esti-

mating vessel size, severity of stenosis, and lesion length

(Fig. 6). Clear visualization of side branches helps facil-

itate lesion preparation and stent positioning.

OCT assessment of lesion characteristics guides lesion

preparation and stent deployment. Fibrous plaques have

the lowest risk for post-PCI dissection, whereas lipid and

calcific plaques are associated with higher risks [40].

Fibrocalcific tissue is most associated with stent edge

dissection, followed by lipid-rich tissue [41]. Lipid arc

size has been identified as an independent predictor of

no-reflow after stenting in non-STEMI [42]. In addition,

thin-cap fibroatheroma and intrastent thrombus have

been associated with higher incidence of periprocedural

myocardial infarction [43]. This type of lesion-specific

prognostic information was not available previously

and may have implications in the stent deployment

Fig. 4
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Fig. 5

Evaluation of thrombus using OCT. (a) Red thrombus: high attenuation of light, poor tissue penetration/visualization behind thrombus. (b) White
thrombus: low attenuation of light, strong tissue penetration. OCT, optical coherence tomography.

Fig. 6
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strategy: higher-risk lesions might be best treated at

lower inflation pressures, whereas lower-risk lesions

could be safely treated with high pressures.

Immediate post-percutaneous coronary intervention
optical coherence tomography findings
Post-PCI imaging using OCT provides a level of detail

that was not previously possible with angiography or

IVUS. It is unclear whether the findings from IVUS can

be translated to OCT. For instance, post-PCI dissection

seen on angiography or IVUS is associated with increased

target vessel revascularization and stent expansion/

malapposition [44]. OCT documents higher rates of pla-

que protrusion between stent struts, edge dissections, and

stent malapposition (Fig. 7) [45,46]. However, there has

been no increase in adverse clinical events early in follow-

up, and there are discrepancies in the literature on the

prognostic significance of these findings [47,48]. This

uncertainty raises questions on the appropriate treatment,

if any, for such complications. TheMassachusetts General

Hospital OCT Registry was launched in an attempt to

answer these questions.

Late post-percutaneous coronary intervention findings
OCT evaluation of patients admitted with late stent

thrombosis revealed more frequent malapposition and

uncovered stent struts compared with matched controls

[49], suggesting a role for OCT in understanding the

mechanism of stent thrombosis. On identifying modifi-

able risk factors such as stent malapposition, further bal-

loon inflations to achieve optimal stent apposition may

avoid unnecessary conversion from one antiplatelet agent

to another due to presumed antiplatelet failure. Another

emerging use for OCT is the assessment of stent coverage

as a marker of vascular response to stent implantation [50];

however, clinical outcomes to support its use are lacking

despite the potential to determine the optimal duration

of dual antiplatelet therapy following stent implantation.

Fig. 7
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The degree of in-stent neointimal hyperplasia assessed

by OCT has been characterized in three patterns [51].

Homogeneous regions are rich in smooth muscle.

Heterogeneous and layered patterns are rich in extra-

cellular matrix. The development of atherosclerosis

within the neointima (neoatherosclerosis) is a mechanism

for late stent thrombosis. The presence of neoathero-

sclerosis (neointima> 100 µm) is more prevalent in DES

versus bare metal stent in early (< 9 months) and inter-

mediate (9–48 months) phases, with no difference in late

follow-up (>48 months) [52]. The duration from stenting,

the presence of a DES, and current smoking were

identified as predictors of neoatherosclerosis, whereas the

use of angiotensin-converting enzyme inhibitors and

angiotensin II receptor blockers was inversely associated

with its development [53]. Clinical studies specifically

targeting treatment of neoatherosclerosis are lacking and

are an area for further research (Fig. 8).

Limitations of optical coherence tomography
Despite improved resolution, a major limitation of OCT

is poor tissue penetration – limited to 2–3 mm – pre-

cluding imaging beyond the internal elastic lamina. In

addition, because the dimensions of individual endo-

thelial cells are below the resolution of OCT, it is not

possible to fully assess stent coverage. It can be difficult

to distinguish lipid from calcium using OCT. Evaluation

of aorto-ostial lesions is challenging because of difficulty

in opacification of the vessel. Caution should be exer-

cised when interpreting OCT images in STEMI as red

blood cell scatter artifact from red thrombus can obscure

evaluation of the lesion. The most important limitation is

the paucity of long-term post-PCI outcome data.

Conclusion
Emerging clinical trial data and the emphasis on cost-

effective care are resulting in more FFR-guided PCIs.

Further study of FFR in the setting of coronary bypass

graft lesions, preoperative evaluation, and ACS will refine

the use of the technology. OCT-guided PCI will

increasingly be used as an adjunctive tool with the goal of

decreasing adverse events. As long-term data become

available, we will gain a deeper understanding of the

clinical significance of plaque protrusion and edge dis-

sections. Faster imaging platforms and combined cathe-

ter systems will incorporate both functional and imaging

capabilities, facilitating the use of adjunctive tools during

PCI. Interventional cardiology continues to evolve at a

rapid pace. Successful interventional cardiologists must

adapt to new tools as their clinical value is demonstrated.
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