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Abstract—Mobile cloud computing is a promising technique
that shifts the data and computing service modules from individ-
ual devices to a geographically distributed cloud service architec-
ture. A general mobile cloud computing system is comprised of
multiple cloud domains, and each domain manages a portion of
the cloud system resources, such as the Central Processing Unit,
memory and storage, etc. How to efficiently manage the cloud
resources across multiple cloud domains is critical for providing
continuous mobile cloud services. In this paper, we propose a
service decision making system for interdomain service transfer
to balance the computation loads among multiple cloud domains.
Our system focuses on maximizing the rewards for both the
cloud system and the users by minimizing the number of service
rejections that degrade the user satisfaction level significantly.
To this end, we formulate the service request decision making
process as a semi-Markov decision process. The optimal service
transfer decisions are obtained by jointly considering the system
incomes and expenses. Extensive simulation results show that the
proposed decision making system can significantly improve the
system rewards and decrease service disruptions compared with
the greedy approach.

Index Terms—Blocking probability, mobile cloud computing
service domain, semi-Markov decision process (SMDP), system
rewards.

I. INTRODUCTION

C LOUD computing is a promising platform to assist mo-
bile devices in computing and communication. In cloud

computing, data and computing modules are located at remote
devices in a resource-on-demand and a pay-as-you-go manner
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Fig. 1. Example of mobile cloud computing.

[1]. Mobile cloud has become a service model that allows
mobile devices to utilize the resource from the cloud without
complex hardware and software implementations at the device
side [2]–[5]. Due to the mobility of mobile users, location-
based (or geo-based) cloud resource provisioning is required to
reduce the end-to-end communication delay. As the result, the
mobile cloud system should consist of multiple cloud service
domains (i.e., partitioned by geographic locations). One cloud
service domain usually provides cloud services to local mobile
devices that are connected through local base stations or Inter-
net access points. Although the resources of the mobile cloud
are considered as “infinite” compared with those in a single
mobile device, the available resources in one cloud service
domain are usually limited. Therefore, the service transitions
between different mobile cloud domains play a critical role in
improving the overall cloud resource utilization and quality of
experience (QoE) [6] for mobile users (e.g., less response time).

Fig. 1 shows our mobile cloud service model, which is a
geographically distributed mobile cloud system that is currently
developed by MobiCloud [7]. The mobile cloud service model
follows the mobile cloud service framework of [2], where a
virtual machine (VM) is the minimal portion of the cloud
resource that can be allocated to a cloud service. When a mobile
user sends a service request to the mobile cloud system, a
cloud service domain (i.e., confined by a geographic location)
that is close to the mobile users’ location is selected. After
connecting to the mobile cloud, one or multiple VMs are
dedicatedly assigned to each mobile device that is located in
any mobile cloud service domain. We denote the connecting
mobile cloud service domain as the home cloud domain, which
is geographically close to the mobile device’s location.

In MobiCloud, the elastic mobile cloud service model is de-
fined as follows: To initiate the mobile cloud service, a mobile
user first initiates a request to its home cloud domain according
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to its geographical locations; if the mobile cloud service request
is new in the home cloud domain, the resource management
controller of the home cloud domain decides whether the
service request should be accepted or transferred based on the
available system resource; when a request is accepted, a VM is
or multiple VMs are allocated to the requesting mobile device
for cloud related operations; if the available resources of the
home cloud domain is not sufficient, a transfer decision will
be made, and then the service request will be transferred to an
adjacent cloud service domain.

In this paper, we study cloud resource allocation in a mul-
tidomain mobile cloud system that has the following properties:
1) Both the arrivals and departures of mobile cloud services
follow Poisson distribution; 2) the available resource of the
cloud is time varying; and 3) current resource decision may
have a big impact on the future decision. In a multidomain cloud
system, the overall system performance degrades if the mobile
cloud system does not consider the relationship between present
and future in terms of the resource allocation decisions and
outcomes [8]. To construct a comprehensive resource allocation
model for geo-based mobile cloud computing, we present a
decision support system for resource management with con-
sidering cloud system resource, profit gain, and mobile users’
QoE. The objective of this paper is to maximize the overall
rewards of the cloud system and mobile users. In our presented
model, both the arrivals and departures of mobile application
services are random and bring the state changes of the cloud’s
resource. According to the definition of semi-Markov decision
process (SMDP) [8], [9], the decision epoch of SMDP can
be chosen at the point when any random event occurs. Thus,
we first analyze the system rewards within a cloud domain
considering interdomain resource transfer based on a SMDP
model. The presented resource allocation decision model is
to obtain the optimal resource allocation among mobile cloud
service domains. We show that the presented solution can not
only improve the cloud system resource utilization but also
achieve better QoE for mobile users. To verify the performance
of our proposed model, we perform a simulation-based study
by comparing the performance of our model with the greedy
algorithm [10], where greedy algorithm always allocates as
much resource as possible to the mobile service requests. Our
extensive simulation results show that the service rejection
probability with interdomain service transfer is decreased by
20% compared with the greedy approach.

The remainder of this paper is organized as follows. The
related work is presented in Section II. The system model is
described in Section III. An SMDP model is developed in
Section IV. Based on the SMDP model, we derive the dropping
probabilities in Section V, followed by performance analysis
in Section VI. Finally, concluding remarks and future work are
given in Section VII.

II. RELATED WORK

Recent research on cloud computing has been focused on
mobile devices of cloud computing [11], which enables run-
ning applications between resource-constrained devices and
Internet-based clouds. Moreover, resource-constrained mobile

devices can outsource computation/communication/storage in-
tensive operations to the mobile cloud. CloneCloud [5] fo-
cused on execution augmentation with less consideration
on user preference or device status. Elastic applications for
mobile devices via cloud computing were studied in [12].
Oberheide et al. [13] presented a framework that outsources
the antivirus services from mobile devices to a cloud. Goyal
and Carter proposed a secure cyber foraging mechanism for
resource-constrained devices [14]. In [2], Huang et al. pre-
sented a mobile cloud computing model that allows the mobile
device related operations residing either on mobile devices
or dedicated VMs in the cloud. The problem of ensuring the
integrity of data storage in cloud computing is studied in [15]
and [16]. Although resource management in wireless networks
has been extensively studied [17]–[24], it is not well studied in
mobile cloud computing. In [25], an economic cloud computing
model is presented to decide how to manage the computing
tasks with a given configuration of the cloud system, i.e., the
computing tasks can be migrated between the mobile devices
and the cloud servers.

Specialized hardware-based solutions for high availability
(HA) are expensive and may require changes on the appli-
cations [26]. Software-based solutions for HA provide virtu-
alized execution environment (VM) for applications and fast
recovery mechanisms when physical hosts become unavailable
[27], [28]. A game theory-based resource allocation model to
allocate cloud resources according to the users’ QoS require-
ments is proposed in [29]. The other mobile cloud computing
solutions are limited and solely focused on the enhancement
of the individual mobile device’s capability. To the best of
our knowledge, none of the previous works addressed how to
construct a mobile cloud computing system reward model for
resource allocation considering the whole rewards of both cloud
systems and mobile users and how to select a cloud domain to
allocate system resource through interdomain service transfers.

III. SYSTEM MODEL

In this section, we present our proposed mobile cloud re-
source management model for choosing the optimal adjacent
cloud domains. We first describe the optimal algorithm of our
presented mobile cloud resource management model. Then, the
system states of our proposed model and the actions of each
state are described. Finally, we describe the system reward
model, which is critical for connecting home cloud domain to
decide whether the mobile service should be accepted, rejected,
or transferred to an adjacent cloud domain. Before making a
decision, home cloud domain needs to obtain the entire system
reward for each action (i.e., accept, reject, and transfer) and
makes the optimal decision for our reward model.

A. System Description

As shown in Fig. 1, we consider a mobile cloud system that
is composed by multiple service domains. Suppose there are
K-VM resource available in one cloud domain, and a service
occupies c VMs, where c ∈ {1, 2, . . . C}, C ≤ K. In each
service domain, there are two types of service requests, namely,
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Fig. 2. System algorithm of proposed dynamic selection adjacent mobile
cloud domain model.

new service requests initiated in the home cloud domain and
interdomain transfer service request from/to adjacent cloud do-
mains. We assume that the arrival rates of both new service re-
quests and interdomain transfer service requests follow Poisson
distributions with mean λn and λt, respectively. For different
services, the service time follows an exponential distribution
with different mean rates. Let µ denote the computation rate of
one VM for the requested service task. However, when a request
is admitted, computing resources (i.e., VMs) will be allocated.
Thus, the occupation time of c VMs in the cloud is 1/(cµ).

The decision-making procedure in a multidomain cloud sys-
tem is shown in Fig. 2. When a new mobile cloud service re-
quest arrives, the controller of the home cloud domain evaluates
the expected system gain and the expected system expenses,
including the cost of occupying VMs during the computation
period, the communication cost between the cloud and mobile
devices, and the power consumption of the mobile devices,
to decide whether to accept, reject, or transfer the request to
adjacent cloud domains. If the home domain cannot accom-
modate the mobile service request, then it needs to evaluate if
the service request can be successfully transferred to another
cloud service domain. Hence, the home domain cloud sends an
interdomain transferring request to its geographically adjacent
domains. Each adjacent domain will then return a decision
by considering the expected computing resource occupation in
its own domain, the extra communication overheads between
the mobile device and the cloud, and the involved transfer

TABLE I
NOTATIONS

fee, if there is one. If there is no adjacent domain that can
accept the service request, the home domain should only reject
the mobile service request. Then, the mobile device has to
run the service task on the device itself, the restricted power
and computing resources of which may result in a low QoE.
While if multidomains can accept the service request, the home
cloud domain needs to decide which adjacent cloud domain the
home service request can be accepted based on the feedback
collected from its adjacent cloud domains. For instance, a home
cloud domain may select a neighboring cloud domain that
can allocate the maximum number of VMs to the requested
service

ı̃ = arg max
i

{ci} (1)

where i denotes the ith adjacent cloud domain, ı̃ denotes the
optimal adjacent cloud domain that the home cloud domain
selects, and ci is the number of VMs that the ith adjacent cloud
domain can allocate to the interdomain transfer from the home
cloud domain.

In Table I, we highlight the notations used in this paper.
Detailed formulation of the system rewards and the action

model will be described in the following sections.

B. System States

The number of service requests that have been allocated c
VMs is denoted as sc. The total number of occupied VMs in a
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cloud domain is
∑C

c=1(sc ∗ c), where C is the maximum num-
ber of VMs that can be allocated to a service request. An and
At are the arrival of a new service request and an interdomain
transfer service request, respectively. When a service completes
and leaves the cloud system, the occupied VMs will be released,
and the available VMs in a cloud domain need to be updated.
We use Fc to denote a departure of a service with 1 ≤ c ≤ C
VMs. An event in the event set e of a cloud computing system
can be described as e ∈ e = {An, At, F1, F2, . . . , FC}.

The system state S of a cloud domain can be characterized
by the current services with different numbers of VMs and
an event in the system, which could be either an arrival or a
departure, i.e.,

S = {s|s = 〈s1, s2, . . . , sC , e〉 = 〈s, e〉} (2)

where s = 〈s1, s2, . . . , sC〉, and
∑C

c=1(sc ∗ c) ≤ K.

C. Actions

Upon receiving a request, three actions can be chosen from
the action set, accept with c VMs, reject, and transfer, which
can be denoted as a(s) = c, c ∈ {1, 2, . . . C}, a(s) = 0, and
a(s) = −1, respectively. When a service completes and de-
parts the cloud domain, no other action is required except
the available VMs in the cloud should be updated, which
is denoted as a(s) = −2. Thus, the action space Acts =
−2,−1, 0, 1, 2, . . . , C, and the action set a(s) is

a(s) =
{
{−1, 0, 1, . . . C}, e ∈ {An, At}
−2, e ∈ {F1, F2, . . . , FC}.

(3)

D. Reward Model

Based on the system state and the corresponding action, the
overall system reward of a cloud network, denoted by r(s, a),
can be evaluated as

r(s, a) = w(s, a) − g(s, a) (4)

where s = 〈s, e〉, e ∈ {An, At, F1, F2, . . . , FC}, w(s, a) is
the lump sum income of the cloud system by making a
decision/action a when event e occurs in state s, and g(s, a)
is the expected system cost.

The lump sum income w(s, a) is computed as

w(s, a) =



0, a(s) = −2,
e ∈ {F1, F2, . . . , FC}

Ed − Et − δsβ − δdβ, a(s) = −1, e = An

−δsβ − δdβ, a(s) = −1, e = At

−Ud − θdβ, a(s) = 0, e = An

0, a(s) = 0, e = At

Ed − δdβ − β
cµ , a(s) = c, e = An

Et − β
cµ , a(s) = c, e = At.

(5)

A system will not gain income when a service completes
and leaves the system, and we have w(s, a) = 0 for a(s) =
−2, and e ∈ {F1, F2, . . . , FC}. When a new service request

is admitted into the system, the income of Ed is earned, and
in the meantime, the admitted service will use c VMs in the
cloud domain, which involves δdβ transition expense and β/cµ
resource occupation expense. Here, the transition expense is
the cost to transfer the computing task from the mobile device
to the cloud, and the resource expense is the cost of VMs
being occupied during the service time of the request, where
δd denotes the time consumed on transmitting the new service
request from the mobile device to the cloud through wireless,
and β denotes the price per unit time, which has the same
measurement unit as the income.

For an interdomain transfer request, the home cloud domain
pays Et income to an adjacent domain, and thus, the expected
reward of the new cloud is Et minus the resource expense
Et − β/cµ for a(s) = c and e = At. If the new service request
is rejected, the computing task has to be run at the mobile
device, which causes energy expense Ud and the resource
expense θdβ, where θd is the service time of a mobile device,
and θd � 1/µ due to the limited computation capability of a
mobile device. There is no income to reject a transfer request
as the income has been calculated in the home cloud domain.
When a new request is transferred to an adjacent domain, the
home cloud domain earns Ed and pays Et to the transferred
adjacent domain. Similarly, there is a transition expense δdβ to
transfer the computations from mobile device to the cloud. In
addition, the migration between different cloud domains also
involves an extra communication expense, which is denoted by
δsβ, where δs denotes the time consumed when transferring
the service request between different cloud domains. Therefore,
w(s, a) = Ed − Et − δsβ − δdβ, where a(s) = −1, and e =
An. However, the reward model is different when an interdo-
main transfer request is transferred to an adjacent domain by
the home domain. In this case, the home domain obtains Et

from the adjacent domain that transfers the new request to the
home domain but pays Et to the transferred adjacent domain
for the interdomain transfer request. Thus, the earning of the
home cloud domain is 0. The costs δsβ and δdβ are the same
as that of a new request as well. Then, w(s, a) = −δsβ − δdβ
when a(s) = −1 and e = At.

The expected system cost g(s, a) is given by (4), i.e.,

g(s, a) = τ(s, a)o(s, a), a(s) ∈ Acts (6)

where τ(s, a) is the expected service time when the system
transfers from the current state s to the next state when decision
a is made; o(s, a) is the cost rate of the service time, and it is
determined by the number of occupied VMs

o(s, a) =
C∑

c=1

(sc ∗ c). (7)

IV. SEMI-MARKOV DECISION PROCESS-BASED

MOBILE COMPUTING MODEL

In this section, we develop an SMDP-based mobile comput-
ing model to analyze the performance of a cloud network. Our
main objective is to make optimal decisions at decision epochs,
i.e., when a service request arrives (i.e., An or At) or a service



2226 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 5, JUNE 2012

Fig. 3. State transition diagram.

completes and leaves the system (Fc), the long-term expected
system rewards are maximized. The time duration between
two continuous decision epochs also follows an exponential
distribution. The state transition diagram with C = 2 is illus-
trated in Fig. 3, where the first item in the state transition
diagram represents the action, and the second item presents the
state transition probability. The three tuples in Fig. 3 represents
the system state of the mobile cloud domain. Taking 〈1, 0, An〉
as an example, the first two items in the three tuples indicate
that the total number of services that occupy one and two VMs
is 1 and 0, respectively, and the third item An in the three tuples
denotes an arrival of a new service request.

Given the current state s and the selected decision a, we
denote the time duration from this epoch to the next epoch by
τ(s, a). Therefore, the mean rate of events for a given s and a,
denoted as γ(s, a), is the summation of the rates of all events in
the system, which is given by

γ(s, a)=τ(s, a)−1

=



λn+λt+
C∑

c=1
sccµ e⊆{F1, F2, . . . , FC}

e⊆{An, At}, a=−1
e⊆{An, At}, a=0

λn + λt +
C∑

c=1
sccµ + cµ, e⊆{An, At}, a=c

(8)

where λn and λt are the arrival rates of the new and transfer
requests, respectively. When a departure occurs, or an arriving
request is rejected or transferred, the total number of existing
services in the cloud domain is

∑C
c=1 sc, and thus, the rate of

an existing service departing the system is
∑C

c=1 sccµ. When
a service request is admitted, we have

∑C
c=1 sc + 1 services,

which accounts for
∑C

c=1 sccµ + cµ.
We then evaluate the expected discounted reward (denoted as

r(s, a)) during τ(s, a) based on the discounted reward model
defined in [8] and [30], i.e.,

r(s, a) =w(s, a) − o(s, a)Ea
s

{∫ τ

0

e−αtdt

}

=w(s, a) − o(s, a)Ea
s

{
[1 − e−ατ ]

α

}

=w(s, a) − o(s, a)
α + γ(s, a)

(9)

where α is a continuous-time discounting factor.
q(j|s, a) is defined as the state transition probability from

state s to state j when action a is chosen. We then de-
rive the state transition probability, as shown in Fig. 3. For
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the state s = 〈s1, s2, . . . , sc, . . . , sC , An〉, q(j|s, a) can be
obtained as

q(j|s, a) =



λn

γ(s,a) , j = 〈s1, . . . , sC , An〉
a = 0,−2

λt

γ(s,a) , j = 〈s1, . . . , sC , At〉
a = 0,−2

sccµ
γ(s,a) , j = 〈s1, ., sc−1, ., sC , Fc〉, sc ≥ 1

a = 0,−2
(sc+1)cµ

γ(s,a) , j = 〈s1, ., sc, ., sC , Fc〉
a = c

smmµ
γ(s,a) , j = 〈s1, .sm−1, .sc+1, .sC , Fm〉

sm ≥ 1,m 	= c, a = c
λn

γ(s,a) , j = 〈s1, ., sc + 1, ., sC , An〉
sc ≤ C − 1, a = c

λt

γ(s,a) , j = 〈s1, ., sc + 1, ., sC , At〉
sc ≤ C − 1, a = c

(10)

where c ∈ {1, 2, . . . , C}, m ∈ {1, 2, . . . , C}, m 	= c.
For the states s = 〈s1, s2, . . . , sc, . . . , sC , At〉, q(j|s, a) can

be obtained as

q(j|s, a) =



λn

γ(s,a) , j = 〈s1, . . . , sC , An〉
a = 0

λt

γ(s,a) , j = 〈s1, . . . , sC , At〉
a = 0

sccµ
γ(s,a) , j = 〈s1, ., sc − 1, ., sC , Fc〉

sc ≥ 1, a = 0
(sc+1)cµ

γ(s,a) , j = 〈s1, ., sc, ., sC , Fc〉
a = c

smmµ
γ(s,a) , j = 〈s1, .sm − 1, .sc + 1, .sC , Fm〉

sm ≥ 1,m 	= c, a = c
λn

γ(s,a) , j = 〈s1, ., sc + 1, ., sC , An〉
sc ≤ C − 1, a = c

λt

γ(s,a) , j = 〈s1, ., sc + 1, ., sC , At〉
sc ≤ C − 1, a = c

(11)

where c ∈ {1, 2, . . . , C}, m ∈ {1, 2, . . . , C}, m 	= c.
For the states s = 〈s1, s2, . . . , sc, . . . , sC , Fc〉, when a ser-

vice leaves the system, there is no special action required, and
a = −2; thus, the transition probability q(j|s, a) is

q(j|s, a) =


λn

γ(s,a) , j = 〈s1, s2, . . . , sC , An〉
λt

γ(s,a) , j = 〈s1, s2, . . . , sC , At〉
sccµ

γ(s,a) , j = 〈s1, s2, ., sc−1, ., sC , Fc〉, sc ≥ 1
(12)

where c ∈ {1, 2, . . . , C}.
Based on the derived transition probabilities, we can obtain

the maximum long-term discounted reward using a discounted
reward model defined in [8] and [30] as

ν(s) = max
a∈Acts

r(s, a) + λ
∑
j∈S

q(j|s, a)ν(j)

 (13)

where λ = γ(s, a)/(α + γ(s, a)).

Letting w = λn + λt + K ∗ C ∗ µ < ∞, q̃(j|s, a), ṽ(s), and
r̃(s, a) are defined as the uniformed transition probability, long-
term reward, and reward function, respectively. We derive the
optimality equation of ν(s) after the uniformization as

ν̃(s) = max
a∈Ã

r̃(s, a) + λ̃
∑
j∈S

q̃(j|s, a)ν̃(j)

 (14)

where r̃(s, a) ≡ r(s, a)(1 + ατ(s, a))/((α + w)τ(s, a)), λ̃ =
w/(w + α), and

q̃(j|s, a) =

{
1 − [1−q(s|s,a)]

τ(s,a)w , j = s
q(j|s,a)
τ(s,a)w , j 	= s.

(15)

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the pro-
posed SMDP-based interdomain resource allocation scheme.
An important performance metric is the dropping probability
of the cloud system. When a request is rejected, there is no
system income for the mobile cloud computing system, and
the mobile user will experience a low QoE. Basically, a service
request is dropped when both the home cloud domain and any
of the adjacent cloud domains cannot accommodate it. Thus,
the dropping probability of a new service request depends on
the available resources in both the home cloud domain and the
neighboring cloud domains. In the following, we will derive the
dropping probabilities of new services and interdomain transfer
services based on the proposed SMDP model.

Let π〈s1,s2,...,sC ,e〉 (or denoted by π〈s,e〉) be the steady-state
probability of state s = 〈s1, s2, . . . , sC , e〉 in the home cloud
service domain. According to different events, i.e., an arrival
of a new service request, an arrival of an interdomain transfer
service request, or a departure of a completed service with
c VMs, π〈s,e〉 can be further divided into three items, i.e.,
π〈s,An〉, π〈s,At〉, and π〈s,Fc〉. Based on the transition probabil-
ities derived in (10)–(12), we can obtain π〈s,An〉 and π〈s,At〉 as
follows:

π〈s,An〉 =
λn

γ(s, a)
ρ〈s,An〉π〈s,An〉 +

λn

γ(s, a)
ρ〈s,At〉π〈s,At〉

+
λn

γ(s, a)

C∑
c=1

ρ〈s,An〉π〈s,An〉

+
λn

γ(s, a)

C∑
c=1

ρ〈s−1,At〉π〈s−1,At〉

+
λn

γ(s, a)

C∑
c=1

π〈s,Fc〉 (16)

π〈s,At〉 =
λt

γ(s, a)
ρ〈s,An〉π〈s,An〉 +

λt

γ(s, a)
ρ〈s,At〉π〈s,At〉

+
λt

γ(s, a)

C∑
c=1

ρ〈s−1,An〉π〈s−1,An〉

+
λt

γ(s, a)

C∑
c=1

ρ〈s−1,At〉π〈s−1,At〉

+
λt

γ(s, a)

C∑
c=1

π〈s,Fc〉 (17)
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where s = 〈s1, s2, . . . , sC〉, and s−1 = 〈s1, s2, . . . , sc −
1, . . . , sC〉. ρ〈s,An〉, ρ〈s,At〉, ρ〈s−1,An〉, and ρ〈s−1,At〉 are
parameters defined as

ρ〈s,An〉 =
{

1, a〈s,An〉 = 0,−2
0, otherwise

ρ〈s,At〉 =
{

1, a〈s,At〉 = 0,−2
0, otherwise

ρ〈s−1,An〉 =
{

1, a〈s−1,An〉 = c, c = {1, 2, . . . , C}
0, otherwise

ρ〈s−1,At〉 =
{

1, a〈s−1,At〉 = c, c = {1, 2, . . . , C}
0, otherwise.

Similarly, the steady-state probability π〈s,Fc〉 is given by

π〈s,Fc〉 =
(sc + 1)cµ

γ(s, a)
ρ〈s+1,An〉π〈s+1,An〉

+
(sc + 1)cµ

γ(s, a)
ρ〈s,An〉π〈s,An〉

+
(sc + 1)cµ

γ(s, a)

C∑
m=1,m 	=c

ρ〈s±1,An〉π〈s±1,An〉

+
(sc + 1)cµ

γ(s, a)
ρ〈s+1,At〉π〈s+1,At〉

+
(sc + 1)cµ

γ(s, a)
ρ〈s,At〉π〈s,At〉

+
(sc + 1)cµ

γ(s, a)

C∑
m=1,m 	=c

ρ〈s±1,At〉π〈s±1,At〉

+
(sc + 1)cµ

γ(s, a)

C∑
m=1

π〈s+1,Fm〉 (18)

where s+1 = 〈s1, s2, . . . sc + 1, . . . sC〉, and s±1 = 〈s1, s2,
. . . sc + 1, ..sm − 1, . . . sC〉. ρ〈s+1,An〉, ρ〈s,An〉, ρ〈s±1,An〉,
ρ〈s+1,At〉, ρ〈s,At〉, and ρ〈s±1,At〉 are defined as

ρ〈s+1,An〉 =
{

1, a〈s+1,An〉 = 0,−2
0, otherwise

ρ〈s,An〉 =
{

1, a〈s,An〉 = c, c = {1, 2, . . . , C}
0, otherwise

ρ〈s±1,An〉 =

 1, a〈s±1,An〉 = m, c = {1, 2, . . . , C}
m = {1, 2, . . . , C}, m 	= c

0, otherwise

ρ〈s+1,At〉 =
{

1, a〈s+1,At〉 = 0, -2
0, otherwise

ρ〈s,At〉 =
{

1, a〈s,At〉 = c, c = {1, 2, . . . , C}
0, otherwise

ρ〈s±1,At〉 =

 1, a〈s±1,At〉 = m, c = {1, 2, . . . , C}
m = {1, 2, . . . , C},m 	= c

0, otherwise.

TABLE II
SIMULATION PARAMETERS

Since the sum of the steady-state probabilities for all states is
equal to 1, we have∑

S

(
π〈s,An〉 + π〈s,At〉 + π〈s,Fc〉

)
= 1. (19)

By solving the equation sets of (16)–(19), we can obtain
the probability of each state in the steady state. The dropping
probability of a new service request, which is denoted by Pn0,
is the ratio of the sum probability of the rejected new services
over the total probability of new service arrivals. Similarly,
the dropping probability of an interdomain transfer service
request, denoted by Pt0, is the ratio of the sum probability
of the rejected interdomain transfer services over the totally
probability of interdomain transfer requests. Thus, we have

Pn0 =

∑
a〈s,An〉=0

π〈s,An〉

C∑
m=−2,m 	=−1

( ∑
a〈s,An〉=m

πs,An〉

) (20)

Pt0 =

∑
a〈s,At〉=0

π〈s,At〉

C∑
m=−2,m 	=−1

( ∑
a〈s,At〉=m

π〈s,At〉

) . (21)

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
interdomain resource allocation model using an event-driven
simulator written in Matlab. In the simulation, the parameters
are selected as an example for performance illustration. To
further study the relationship between these parameters, we
vary some parameters, such as the service arrival and departure
rates for performance comparison. A mobile cloud service
domain contains up to K = 10 resource units (i.e., VMs or
cloud server clusters, and we use VMs in our simulation study),
and the maximum number of VMs allocated to a service request
is C = 3, i.e., a service can be assigned 1, 2, or 3 VMs
based on the dynamic computing environments in the cloud
domain. Each interdomain transfer request will be accepted
by an adjacent domain with a certain probability pt, which
varies from 0.5 to 0.9. The arrival rates of new and interdomain
transfer services are λn = 7.2 and λt = 2.4, respectively. The
departure rate of a service using one VM is µ1 = 6.6, and thus,
the departure rate of services using c VMs is µc(c ∈ {1, 2, 3}),
if not otherwise specified. The discount factor is set to α =
0.1 to assure the convergence of the reward computation. We
collect the simulation results of each experiment over 18 000 s
and repeat each experiment for 1000 runs with different random
seeds to calculate the average. The other parameters used in the
simulation are listed in Table II.
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TABLE III
DECISION TABLE OF NEW SERVICE

(λn = 7.2, λt = 2.4, µ1 = 6.6, K = 10, s3 = 0, pt = 0.5)

TABLE IV
DECISION TABLE OF NEW SERVICE

(λn = 7.2, λt = 2.4, µ1 = 6.6, K = 10, s3 = 0, pt = 0.9)

Tables III and IV tabulate the optimal resource allocation
decisions or actions for new service requests under different
interdomain transfer acceptance probabilities pt. The numbers
in the table represent actions made on the state 〈s1, s2, s3〉.
For example, if there are no services in the system, when a
new service request arrives, an action a = 3 is made that three
VMs are allocated to the requesting service. If there are four
users, and each user has been allocated two VMs, implying
that there are only two VMs available, an action a = 1 is made
that only one VM is allocated to the new service request. When
the remaining computing resources are sufficient, action a = 3
is usually selected to achieve a higher utility gain over a = 2
or a = 1. On the other hand, when the available computing
resources are limited, a more conservative decision is selected.
When the available VMs in the home cloud domain cannot
accommodate the requested service, the home domain will send
a request to the adjacent cloud domains. A higher probability
of pt indicates that an adjacent domain has more available
computing resources, and it is more likely to accept the transfer
requests from the home cloud domain that has insufficient
resources. It is also observed that more transfer decisions are
made with a higher pt.

Tables V and VI tabulate the optimal resource allocation
decisions or actions for interdomain transfer requests under
different request arrival rates. A higher request rate implies
that more computing resources are demanded, and thus, a
more conservative decision is made. It is also observed that
no transfer decision is made for interdomain transfer requests

TABLE V
DECISION TABLE OF INTERDOMAIN TRANSFER DERVICE

(λn = 1.2, λt = 2.4, µ1 = 6.6, K = 10, s3 = 0)

TABLE VI
DECISION TABLE OF INTERDOMAIN TRANSFER SERVICE

(λn = 60, λt = 2.4, µ1 = 6.6, K = 10, s3 = 0)

Fig. 4. Action probabilities of interdomain transfer service under various
arrival rates of new services (λt = 2.4, µ1 = 6.6, K = 10).

due to the charge of transfer by the home domain and the extra
communication costs involved in transfer services.

The action probabilities for interdomain transfer services
under different arrival rates are shown in Fig. 4. When the
new request arrival rate is low, it is more likely that a request
will be admitted and allocated with three VMs. When the
arrival rates increase, the resource allocation decision becomes
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Fig. 5. Action probabilities of interdomain transfer service under various total
computing resources (λn = 7.2, λt = 2.4, µ1 = 6.6).

Fig. 6. Dropping probability of interdomain transfer service of adjacent do-
main under various arrival rates of new service (λt = 2.4, µ1 = 6.6, K = 10).

conservative, and the probability of allocating two and one VMs
increases accordingly. The action probability under different
numbers of VMs is compared in Fig. 5. With more available
computing resources, i.e., VMs, in a cloud domain, the drop-
ping probability keeps at a very low level. We also compare the
dropping probability of the proposed SMDP-based model with
the greedy algorithm in Figs. 6–8. In the greedy algorithm, the
cloud system always allocates the maximum number of VMs
to the requesting service when the system can afford to achieve
the highest system reward at the decision epoch. It can be seen
that the dropping probability increases with the arrival rate of
new services in general and decreases when the total number of
VMs in a cloud service domain increases. Our proposed SMDP-

Fig. 7. Dropping probability of interdomain transfer service under various
VMs (λn = 7.2, λt = 2.4, µ1 = 6.6).

Fig. 8. Dropping probability of new service under various arrival rates (λt =
2.4, µ1 = 6.6, K = 10).

based model achieves much lower dropping probability than the
greedy algorithm because our algorithm considers not only the
current system gain but the expected long-term system rewards
as well.

We further compare the expected system rewards of the
SMDP-based model and the greedy scheme. The expected
system reward of interdomain transfer services under different
service arrival rates is compared in Fig. 9. When the arrived
service requests exceed the system capacity, more requests
will be rejected, and as a result, the expected system rewards
decrease. By increasing the number of VMs in a cloud domain,
more requests can be admitted in the cloud, and thus, a high
system reward can be achieved, as shown in Fig. 10. The
reward of new services under different service rates is shown
in Fig. 11. When the new service rate is very low, almost all
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Fig. 9. Reward of interdomain transfer service under various arrival rates of
new service (λt = 2.4, µ1 = 6.6, K = 10).

Fig. 10. Reward of interdomain transfer service under different number of
VMs (λn = 7.2, λt = 2.4, µ1 = 6.6).

services can be admitted, and the system rewards increase with
the rate. However, when the computing resource of a cloud
domain is used up, some requests are rejected that degrades the
system rewards. Thus, the system reward is a concave function
of the service rates. From all figures, it can be seen that our
proposed scheme significantly outperforms the greedy scheme.
The reason is that, for the greedy scheme, a larger number of
VMs are allocated when a service request arrives, and thus, it
takes the risk of rejecting the next service request when the
available VMs are not sufficient. The proposed SMDP-based
interdomain resource allocation model is relatively conservative
for decision making by considering both the instant lump sum
income and the system expenses.

Fig. 11. Reward of new service under various arrival rates of new service
(λt = 2.4, µ1 = 6.6, K = 10).

VII. CONCLUSION AND FUTURE WORK

In this paper, we have developed an SMDP-based computing
model for interdomain services in a cloud computing system
considering both the system gain, the expenses of computing
resources, and the communication costs. The optimal decision
is made such that the overall system rewards are maximized.

In our future work, we will analyze the optimal system
resources toward the maximal system rewards under a given
dropping probability constraint for a large-scale cloud system.
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