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Abstract. In this paper, a discontinuous Galerkin finite element method with interior
penalties for convection-diffusion optimal control problem is studied. A semi-discrete
time DG scheme for this problem is presented. We analyze the stability of this scheme,
and derive a priori and a posteriori error estimates for both the state and the control

approximation.
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1. Introduction

Finite element approximation of optimal control problems has been an important topic
in engineering design work. There has been extensive theoretical and numerical stud-
ies for standard finite element approximation of various optimal control problems. For
instance, for the optimal control problems governed by some linear elliptic or parabolic
state equations, a priori error estimates of the finite element approximation were estab-
lished long ago, see [1, 2, 3, 4, 5]. Furthermore, a priori error estimates were established
for the finite element approximation of some important flow control problems in [6]. Some
recent progress in a priori error estimates can be found in [7, 8] and in [9, 10, 11, 12],
for a posteriori error estimates. Systematic introduction of the finite element method for
PDEs and optimal control problems can be found in, for example, [13], [14] and [15].

In recent years, the discontinuous Galerkin methods have been proved very useful in
solving a large range of computational fluid problems ([16, 17, 18]). They are preferred
over standard continuous Galerkin methods because of their flexibility in approximat-
ing globally rough solutions, their local mass conservation, their possible definition on
unstructured meshes, their potential for error control and mesh adaptation.

The idea of using penalty terms in a finite element method is not new. Baker [19] was
the first one who used interior penalty with nonconforming elements for elliptic equa-
tions. Douglas and Dupont [20] analyzed a method which used interior penalties on the
derivatives with conforming elements for linear elliptic and parabolic problems. Inspired
by [19], Wheeler [21] presented an interior penalty method for second order linear el-
liptic equations. Closest to [21], Arnold [22] formulated a semi-discrete discontinuous
Galerkin method with interior penalty for second order nonlinear parabolic equations.
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These methods [20, 21, 22] generalized a method by Nitsche [23] for treating Dirichlet
boundary condition by the introduction of penalty terms on the boundary of the do-
main. Applications of these methods to flow in porous media were presented by Douglas,
Wheeler, Darlow and Kendall in [24]. These methods frequently referred to as interior
penalty Galerkin schemes.

In general, penalty terms are weighted L? inner products of the jumps in the function
values across element edges. The primary motivation of including interior penalties is
to impose approximate continuity. These terms enable closer approximation of solutions
which varies in character from one element to another and allow the incorporation of
partial knowledge of the solution into the scheme. Numerical experiments have clearly
demonstrated the value of penalties for solving certain problems (see, e.g., [20]). New
applications of discontinuous Galerkin method with interior penalties to nonlinear para-
bolic equations were introduced and analyzed by Riviere and Wheeler ([17, 25, 26]). It
was shown that the method in ([17, 25, 26]) was elementwise conservative, and a priori
and a posteriori error estimates in higher dimensions were derived.

Optimal control for convection-diffusion equation is widely met in practical applica-
tions. For example, in Environmental Sciences, some phenomena modelled by linear
convection-diffusion partial differential equations are often studied to investigate the dis-
tribution forecast of pollutants in water or in atmosphere. In this context it might be
of interest to regulate the source term of the convection-diffusion equation so that the
solution is as near as possible to a desired one, e.g., to operate the emission rates of
industrial plants to keep the concentration of pollutants near (or below) a desired level.
This problem can be conveniently accommodated in the optimal control framework for
convection-diffusion equation. Some existing works ([27, 28, 29, 30]) focus on the sta-
tionary convection dominated optimal control problem. They used several stabilization
methods to improve the approximation properties of the pure Galerkin discretization
and to reduce the oscillatory behavior, e.g SUPG method in [27], stabilization on the
Lagrangian functional method in [28], reduced basis (RB) technique in [29]. However to
our best knowledge, there has been a lack of proper study for general time-dependent
convection-diffusion optimal control problem.

The purpose of this paper is to extend the discontinuous Galerkin method with interior
penalties in [17, 22] to time-dependent convection-diffusion optimal control problem. A
semi-discrete time DG scheme for this problem is presented. The first difficulty for
our problem is to derive the discretization of the co-state equation and the optimality
conditions. We first establish the semi-discrete time DG scheme for the state equation,
prove the stability and the existence of this scheme, then apply the theory of optimal
control problem (see, [31]) to this scheme for deriving the discretization of the co-state
equation and the optimality conditions. The DG scheme of state equation is complicated
so that it is much more difficult to derive the discretized co-state equation, which is
quite complicated. The complexity of the DG schemes of the state and the co-state
equation also leads to the difficulties in deriving a priori error estimates and a posteriori
error estimates later. To our knowledge, this paper appears to be the first trial to
approximate convection-diffusion optimal control problem by using the Discontinuous
Galerkin method with interior penalties.

The outline of the paper is as follows. In Section 2, we first briefly introduce convection-
diffusion optimal control problem and optimality conditions. In Section 3, we give some
definitions, then use discontinuous Galerkin method with interior penalties to construct
a semi-discrete approximate scheme for convection-diffusion optimal control problem.
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For this scheme, we prove the stability and the existence of the approximate solution.
Then by the theory of optimal control problem, we present the semi-discrete optimality
conditions. A priori error estimates are derived for both the state and the control approx-
imation in Section 4. In Section 5, a posteriori error estimates are discussed for the case
of an obstacle constraint under an assumption the velocity vector is incompressible. This
assumption is needed to give stability bounds for the corresponding dual problem (see,
Lemma 5.4) and not be satisfied by general convection dominated problems. Hence, we
point out that the theoretical analysis of a posteriori error estimates here is not valid for
general convection dominated problems. We will research on a posteriori error estimates
for general convection dominated problems later.

2. Convection-diffusion Optimal Control Problem

Let 2 and Qy be bounded convex polygon domains in R"™ (n < 3) with Lipchitz
boundary I' = 902 and 0Qy. In this paper, we adopt the standard notations for Sobolev
spaces on €2 and its norms. In addition, ¢ or C' denotes a general positive constant
independent of the mesh size h.

We shall take the space W = L2(0,T;V) with V = H*(2), the control space X =
L?(0,T;U) with U = L?(Qy). The state space will be specified later. Let B be a
bounded linear continuous operator from L2(0,T;U) to L?*(0,T;L?(2)). Let K be a
closed convex set in U = L?(Q). Let g(-) be a convex functional which is continuously
differential on L?(Q2), and h(-) be a strictly convex continuously differential functional on
U. We further assume that h(u) — 400 as ||u||y — oo and that g(-) is bounded below.

We are interested in the following convection-diffusion optimal control problem:

T
(2.1) J(u) = min { / (9(y) + h(u))dt},

u(t)eK
subject to
% V- (aVy)+B-Vy+ay=f+DBu, z€Q te(0,T],
y(@,0) =yo(z), xeQ,
(2.2)

y|1'*7 =0, te (O,T],

(a(x)Vy) - v =0, xely, te(0,T],

where f(z,t) € L*(0,T; L*(Q)), yo(z) € H*(2), and a(x) = (a;; ())nxn € (C(Q)) ">
such that there is a constant ag > 0 satisfying

(2.3) ¢ha(2)€ > aolél?, Ve R,
and B(x) = (B1(z), Ba(x), -+, Bu(x))T, v is the outer normal vector to ' =T_ UT,
'.={zel: pz) v(z)<O0} 'y ={xzel: pz) v(z)>0}

Assuming that 3;(z) € CY(Q), i = 1,2,---,n , a(x) € C(Q) and a constant ¢y > 0
satisfying

(2.4) ax) — %divﬁ(m) = co(x) > cp.
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Let a(v,w) :/

Q

(fl,fz)Z/ﬁfz, Vo€ IX(Q).

Q
It follows from the assumption on a(x) that there are constants ¢ and C' > 0 such that

a(v, v) > c||v||iﬂ, la(v, w)| < Clv 1o, Yu,w € HY(Q).

(a(z)Vv) - Vw, ¥ v, w € HY(Q); (v,w)y = / vw, Y, w € L*(Qu);
Qu

1,02 |U/
The weak form of the convex optimal control problem reads:
T
I = min { [ (o) + hla))ds)
u(t)eK ~ Jg

where y € H(0,T; L*(Q)) N W, u € L*(0,T; L*(Q)), u(t) € K subject to

0y
(

30 W) +aly,w) + (8- Vy +ay,w) = (f + Bu,w), t€(0,T],

(25) y(I,O) = yO(x)a x €,

y|F, =0, te (O,T],

(a(z)Vy) -v =0, z €Ty, te(0,T],

for w € HY(Q). It is well known (see e.g., [32]) that the above problem admits a unique
solution y.

By the theory of optimal control problem (see, [31]), we can deduce that: the control
problem (2.5) has a unique solution (y, u), and that a pair (y, u) is the solution iff there is
a co-state p € H(0,T; L?(Q))NW such that the triplet (y, p, u) satisfies the following
optimality conditions:

(2.6)
(a) (%711)) +a(y,w) + (8- Vy + ay,w) = (f + Bu,w), Vwe HY(Q),

(b)  y(z,0) =yo(x), ylr_ =0,  (a(x)Vy) - v|r, =0,
(0 —(2,9)+alg.p)+ (=Y (Bp) +ap,q) = (9 (¥), ), Vqe HY(Q),

(d) plz,T)=0, plr, =0, (a(sc)Vp) v|lr_ =0,

(e) [ (W(u)+ B pv—uydt>0, ult)e K,VvekK,

where B* is the adjoint operator of B, ¢’ and h’ are the derivatives of g and h, which
have been viewed as functions in L?(Q2) and L?(0,T; L?(Q)), respectively.

3. Semi-discrete DG approximation

3.1. Preliminaries. Let us consider the discontinuous Galerkin finite element approxi-
mation of the control problem (2.5). Define T" = {7y, 79, --- , 7n, } be a non-degenerate
quasi-uniform subdivision of 2. Each element has at most one face on I', and two neigh-
boring elements have either only one common vertex or a whole edge (n = 2) or face
(n = 3). Let hj = diam(7;) and h, = maxz{h;}, j =1,--- , Nj,. Here, the non-degeneracy
requirement is that there exists a constant p > 0 such that each 7; contains a ball of
radius ph;. And the quasi-uniformity requirement is that there is a constant v > 0 such
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that h/h; < v forall j €1,---,Np. For an element 7 € T", we denote O7 is the union
of open faces of 7. Let # € 07 and suppose that n,(z) denote the unit outward normal
vector to Ot at x. With these conventions, we define the inflow and outflow parts of 9,
respectively, by

_={zeor: Bx) n(z) <0}, Orp={xe€or: pz) n(x) >0}

For an element 7 € 7" and v € H'(7), we denote by vt the interior trace of v on
Or, i.e. the trace taken from within 7. Now considering an element 7 such that the set
of 97 \ T'_ is nonempty; then for each z € 97\ T'_ there exists a unique element 7/,
depending on the choice of x, such that = € 97

Now suppose that v € H'(r) for each 7 € T". If 37\ I'_ is nonempty for some 7 € T",
then we can also define the outer trace v~ of v on 07\ I'_ relative to 7 as the inner trace
v relative to those elements 7" for which 97/ has intersection with 97\ T'_ of positive
(d — 1)-dimensional measure. We also introduce the average and jump of such v across
or\I'-

{v} =35 (v +v7), ] =vt —v".

Let r > 1 be a positive integer. The finite element space associated with 7" is taken
to be

(3.1) Vi ={ve L*Q):v|, € P.(r), VT €T"},

where P,.(7) denotes the set of polynomials of degree less than or equal to 7 on 7. With
each edge (or face) ey, we associate a unit normal vector vg. For k > Py, vy is taken to
be the unit outward vector normal to 2. The norms associated with this space are the
following ”broken” norms for positive integer m ([33]):

5
oll* = OIIZ2 (o, 8): 2(2) =/ o (-, )l dt,

B
lellZ, = Z 10112, WlZ2 (0, py: 2rm(2)) :/ (-, )12, 4.
j=1 «

It is easy to see that V" ¢ V. For later use, we define the space Y" = H'(0,T,V").

We denote the edges (or faces) of the elements by {e1, e2,--- ,ep,,ep, 1, " ,em, },
where e, C Q, 1 <k < Py, and e, C 0Q, Pyy1 < k < M},. The interior penalty term is
defined as

(3.2) J§(6,9) = Z |he | [,

where |h,, | denotes the measure of ey and oy, is a real nonnegative constant associated
to the interior edge ey, which is bounded below by o¢ > 0, above by ¢*.

For each 7; € T", we denote 0T; is an edge (or a face) of 7;. By regular subdivision
T" of 2, we hold the following approximation properties([22]). There exists a constant
C depending on r, p, 7 such that the local inverse inequalities

. 0o _
(3-3) 181136+, < Chi 0115+, IIaTkllg,aTj < Chi |IVél3 -,
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are valid for ¢ € P,.(7). Directly from the above inverse inequalities, there exists a
constant C depending only on p,~y such that

(3-4) Zlhekll\{ }Iloek < CilllVellls, V¢ eVh

This inequality will be used often later.

Let Tg be a partition of €2 into disjoint regular n-simplices 7y. Each element has at
most one face on I', and two neighbor elements have either only one common vertex or
a whole edge or face. Let h,, denote the maximum diameter of the element 7 in Tg.
Associated with T{} is another finite element space

(3.5) UM ={ve L*(Qu) : 0|y, € Pulty), ¥ 1u € THY,

where P,,(7y) denotes the set of polynomials of degree less than or equal to m > 0
on 7. The definitions of ”broken” norms for U" are similar to that of V. Let X" =
L2(0,T; UM). Tt is easy to see that U" C U, X" C X. Let K" be an approximation of K.
For ease of exposition, we assume that K" is a closed convex set in U and K c U'NK.
More complicated cases can be considered following the approach in [10].

Note that in general the sizes of the elements in T} are smaller than those in 7" in
computations. Therefore, we assume that h,, /h, < C in this paper.

3.2. DG Scheme for the state equation. Using the above notations and defini-
tions, we present the following: semi-discrete DG method of convection-diffusion optimal
control problem is (QCP)"

3.6 h dt
(3:6) i ot + nwar,
with y, € YP = HY(0,T; V") subject to

Np

(a) (%, wp) + Z J;, a@)Vyn - Vwy, — Z . Aa(@)Vyn - vy} wn]

+ Z . Aa(@)Vwy - v ya] + J§ (s wa) + (B - Vyn + ayn, wp)

Z.f(r)‘r \I'— ﬂ nT[yh ZIBT Nnr-— ﬁ nTthh

= (f—i—Bu;“wh), Y wy, € Vh,

() yn(z,0) =yh(z),  wnlr_ =0, (a(x)Vys) - v|r, =0,

where y# € V" is an approximation of yo(z).
Then, we introduce a nonsymmetric bilinear form: V ¢, ¢ € V",

Ala(z); ¢,9) = Zf )V - Vip — Zfek{a )V - vy}
(3.8)
+ Z Jo {a(@)VY - v }g].
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Suppose that y,, vy, € V* and V 7 € T", we define two bilinear forms as follow

(3-9a) U(yn, vn) = (B~ Vyn + ayn, vn)r —/ B nrlynlvy —/ B neyoy
or_\T'— or_Nr_

(3.90) L(yn, va) = Y Uyn, vn)-

T

For ease of exposition, in this paper we introduce an inner product and a corresponding
norm on edge (or face) e of an element 7 as follow

:/|ﬁ~u\wvds, Hv||§:/ |ﬁ-1/|v2ds.
e e

Now we turn to prove a stability lemma for the state equation, which is useful in the
rest of the paper.

Lemma 3.1. Suppose that there exils a positive constant ¢y such that (2.4) holds.
Then yp, of (3.7) obeys the following bound ¥Vt € (0,T)

t t
1lyn@)I11* + 2a0 ; IHVyhlllzle?/O I3 (yn, yn)dt

t
(3.10) +/0 > Acollynll? + Iy 3-_cr_ + Ilynll3- e+ Iy I3, e, } dt

< NE + 2 [ QAR + 1Bl .

Proof. The proof is similar to that of Lemma 2.4 in [34]. Taking wp = y in (3.7a),
this gives

Iy o
(3.11) (vah) + A(a(z); Y, yn) + J5 (Wn, yn) + L(Yn, yn) = (f + Bun, yn)-
Upon partial integration, we have
(3.12)

the left-hand side of (3.11)

2dt\|\yh|\|2+z/ Vs V), 498 o) + 3 f 0= B

+;/8T(5 nr)|y ? ds—/(%_\F_(ﬁ.nr)[yh]y;:ds—/ (3 - nr)|y |2ds}

or_nNr'—

The last three terms in (3.12) can be rewritten as

%Z/Br,mp —(B-n, |y |2ds+ Z/ —(B- nT)\yh —yh| ds

(3.13)
1

s / (B n)li |2 ds.
22 87—+OF+ h
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Using (3.13) in (3.12) yields
the left-hand side of (3.11)

d 2 2 2
> —||lynlll* + aol||[Vyrll|® + I3 (Yn,yn) + co Yull7
- s 19011+ 0ol IVl 1 -+ J5 () + o 3

1 1 _ 1
5 Z Iy 3 r_ + By Z Iy — vn ||%T,\r, T3 Z HyZ||§T+nP+~
Now we bound the right-hand side in (3.11):
Co 1
(3.15) |(f + Bup,yn)| < 5 > llyall + a{\llfl\l2 + |1 Bunl[|*}-

Inserting (3.14),(3.15) into (3.11) and integrating time from 0 to ¢ lead to (3.10). O

By Lemma 3.1, we can prove the following existence theorem.

Theorem 3.1. (Existence Theorem) Let J(-) be a continuous functional in U.
Suppose that h(u) — 400 as ||u||y — co. Then there exists at least one solution for the
minimization problem (3.6).

Proof. Let uj, € K " be a minimization sequence. Then it is clear that up are bounded
in L?(0,T; L?(Qy)). Thus there is a subsequence u}! such that u} converge to uj weakly
in L2(0,T; L*(Qu)).

For the subsequence ujy, we have

(3 16) (%y(uﬁ),wh) + A(a(x),y(UZLwh) + Jg(y(U’Z)a wh) + L(y(uZ)v wh)
. = (f + Bu},wp), Y wp, € VP

By Lemma 3.1, we know that |||y(u}!)|||2(0,7;11 (0)) is bounded. Thus

y(up) = v, weakly in L0, T5 H' (),
y(up) — yi strongly in  L*(0,T; L*(2)).
By trace theorem: H(Q) < HY?(T), we have
ou
B17)  Nulmem) < cllulla@) and [|5>m-2w) < clullm), ¥u e H(Q),
n oy (u}
Hence, |||y(up)|l £2(0,7;m1/2(r)) and [[| a(yh) [l 7-1/2(ry are bounded. Thus
y(ull) — weakly in  L*(0,T; H/*(T)),
Oy (up,) Oy, . 2 L rr—1/2
5 oy weakly in  L*(0,T; H (I)).

So, we have

a * * o[, * * *
(3:18a)  (5yn, wn) + Ala(@);yh, wn) + J5 (Yp, wn) + Llyp), wn) = (f + Buy, wh)-

Since g(-) be a convex functional on space L?(2) and h(-) be a strictly convex func-
tional on U, we have

T T
(3.180) / (9(u) + h(uf)) dt < lim{ / (9(u) + h(ul)) dt}.

Thus (y;;, u}) is a solution of (3.7). O
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3.3. Optimality conditions. Supposing that p,, ¢, € V" and V 7 € T", we define
other two bilinear forms as follow

(3.19a) I*(pn, qn) = (=V-(Bpn)+aph, qn)-+ / B3-n-[palaf + / B-nepyay
87'+\F+ 8T+ﬂF+
(3.19b) L*(pn, qn) = > _ 1" (o an)-

By the theory of optimal control problem (see, [31]), we can deduce that the control
problem (QCP)" has a unique solution (ys, up) and that a pair (yn, up) € Y x X" is
the solution of (QCP)" iff there is a co-state p, € Y" such that the triplet (ys, pn, un) €
Y x Yh x X" satisfies the following optimality conditions: (QCP — OPT)"

(@) (%, wp) + Aa(@); yn, wn) + I (Yn, wn) + L(yn, wn)
= (f + Buh,wh), A wy € Vh,

®) yn(2,0)=yh(x),  wnlr_ =0, (a(x)Vys)-v|r, =0,

(3.20) (c) *(agth qn) + A(a(x); qn, pr) + J§ (P> an) + L* (pns qn)
=(9'(yn),qn), VaqneV"h,

(d) pn(z,T)=0, prlr, =0, (a(m)Vph) -v|lp_ =0,

(€) [T (W (un) + Bpa,vn — up)u dt >0, ¥ vy, € K™,

Similarly to Lemma 3.1, we can get the following stability lemma for the co-state
equation.

Lemma 3.2. Suppose that there exits a positive constant ¢y such that (2.4) holds.
Then pp, of (3.20¢c) obeys the following bound

T T
|||ph(t)|||2+2ao/ |||Vph|||2dt+2/ J3 (pn, pn)dt
t t

T
(3.21) +/t > ALcollpnll? + I 13- cr_ + Ieall3e \r, + 108137 ar, } dt

I )
/
< [ g )P .
0 Jt

The proof of (3.21) is analogous to that of (3.10) by using pp(z, T') = 0.
4. A priori error estimates

In this section, we shall derive a priori error estimates for the semi-discrete DG
schemes (3.20). For ease of exposition, we simply write L?(0,T; L?(Qy)) as L2(L*(Qu)),
L2(0,T; L*(2)) as L*(L?), L*(0,T; H (Qu)) as L2(H'(Qy)), and L2(0,T; HY(Q)) as
L?(H%Y), ete. in the following contents of the paper.

We shall assume that the following convexity conditions:

(4.1a) (W' (u) =B (v),u—v) >cllu—|gq,, VYu, veL*(Q),



96 T. SUN

that is to say h(-) is uniformly convex.
Noting that g is convex, it is easy to see that

(4.1d) (¢ (u) —g'(v),u—v) >0, Vu, v eHY(Q).
Also, we have that
(4.2) |(Bv,w)| = |(v, B'w)| < Vo € L*(Qp), w € H'(Q),

because that B is a bounded linear operator.
Let

T () (v — u) = /T(h’(u) b Bpu(u)v -y dt, Y € K,
where py,(u) € Y is the solutio(; of the system:
(a) (2, wn) + Ala(e): yn(w), wn) + I (yn(u), wn) + Llyn(u), wp)
— (f + Bu,wy), Yuwy, €V
®) yn(uw)(@,0)=yi(x),  w(Wlr- =0, {a(zx)Vyn(w)} vlr, =0,

() —(2288 g0y + Ala(@); n, pr(w)) + J§ (pr(w), an) + L*(pr(w), qn)

(4.3)

=(g'(yn(w),an), Yan €V"

(d) pa(u)(@,T)=0,  pu(u)lr, =0, {a(x)Vpp(u)}-vlr_ =0.
To derive a priori estimates, we need prove the following three lemmas.
Lemma 4.1 If k() is uniformly convez, and g(-) is convex, then

(4.4) Tn (@) (v —w) = Jp(u)(v = u) > cllv = ullZ2 12, )-

Proof. Note that
Jp(0) (0 = u) = Jh(w)(v —u)
(45) T T
= / (W (v) = W' (u),v —u)y dt + / (B*pr(v) — B*pp(u),v — u)y dt.
0 0

Moreover, it follows from (4.3) that

(4.6) / (B*ph(v) — B*pa(u), v — w)y dt = / — o (un (1)), yn (v) — g () di.

Noting that h(-) is uniformly convex and g(-) is convex, (4.5) and (4.6) imply that

Jh(0) (v —u) = Jy(u)(v —u) > /0 (W (v) = ' (u),v = w)u dt 2 cl|lv = ullfz2(qy))-
This proves (4.4). O

Lemma 4.2 Let (y,p,u) and (yn,pn,urn) be the solutions of optimality conditions
(2.6) and semi-discrete DG optimality conditions (3.20), respectively. Assume that u €
L2(0,T; H'(Qp)), p € L*(0,T; H (), K" c UM N K, W () is Lipschitz continuous,
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ur € K", where uy is the standard Lagrange interpolation of uw. Moreover, assume that
all conditions of Lemma 4.1 exist. Then

(A7) Mu—unlllZ2 22y < CREANlILe 1 @0y HIIPIZ2 ) Y+ Cll R () =l 12),

where p(u) € Y is the solution of the system (4.3).
Proof. Tt follows from (2.6), (3.20) and Lemma 4.1 that

cllu = unllZ2 1200y < Ih(w)(w—un) = Jh (un) (w — up)
(48) T T
< / (B*p — B*pp(u),up —u)y dt —|—/ (W (up) + B*pp,ur — u)y dt.
0 0

Note that

T
/ (R (un) + B*pp,ur — u)y dt
0

T
woy <[ 0@+ B =y dt+C@lur —ullEaam

+CS|[[B (un) = W' (W)[||72 20y + COllIB 1 — B pr(W)|[ 72120 )

+C6]||B*pn(u) — B*pll|72(12(00 )

where § is an arbitrary small positive constant. Moreover, we have

T
(4.10) /0 (h'(u) + B*p,ur — w)y dt < Chir{|l[ulllZ2(miqyyy + 2172 a1y}
and
(4.11) ur = ulll2(2(p)) < ChulllulllLz(mr (@u))-

Then it follows from (4.8)-(4.11) that

1w = wnlllZa(p200y) < CRE (lulllZ2 i uy) + NP ) + Colllpa(u) = PllIZ2 2
(4.12)
+C0||lu = unlllF2 (12 (py) T COlllPn = Pr(W)l[F2(12)-

Furthermore, from (3.20), (4.3), Lemma 3.1 and Lemma 3.2, we can deduce that

(4.13) llpn — pr(WllL2z2) < Clllyn — yn(Wll2(z2) < Clllu — unlllL2(2(00))-

Then (4.12) and (4.13) prove (4.7). O

Lemma 4.3. Let (y,p,u) and (yp(w), pn(u)) be the solutions of (2.6) and (4.3), respec-
tively. Assume that g'(+) is Lipschitz continuous, y, p € L*(0,T; H*(Q2))NH(0,T; H(£2)).
Then

Iy (w) = ylllL2(ey + llpa(w) = plllLzcam)
(4.14)

< Crlylll L2 a2y + [llyelll L2y + [Pl 222y + [lpelll 2y }-



98 T. SUN

Proof. Note that yp(u) is the semi-DG finite element solution of y. Then, from (4.3a)
and (2.6a) we have

(%(yh(U) —y),wn) + Ala(x); yn(u) — y,wn) + Jg (yn(u) — y, wn)
(4.15)

+L(yn(u) =y, wa) =0, Vo, € Vh

Let yp,(u)—y = 0—¢, where 0 = y(u) —yr, £ = y—yr and y; is the standard Lagrange
interpolation of y. Taking w;, = 6 in (4.15) and noting that [{] = 0 on the interior edges
ekkpil, we can obtain

(gf 0) + Ala(z): 0,6) + JS(6,0) + L(0, 0)
o€ O
(4.16) = (550 + (a(@)VE VO = 3 | {a(@)VE - 1}o]
k=1"°¢k

S (- Verag), — [ penerery,
T T_NI'_

Similar to the inequality (3.14) in the proof of Lemma 3.1, it is easy to see that
the left-hand side of (4.16)

(417 > 612 + ao [Vl + J5 (6,6) + B

1 1 1
S SR S [ MRS Wy s Y

Now we bound the terms on the right-hand side of (4.16).

(1)
0

(4.18) I(g |<CH\ H\Z <lle.

(I1)

(4.19) |[(a()VE, V6) - Z 7)VE - m 6] < CUIVEI + DIIVOIP + 55 6,6),
1%

where we used the mequahty (3.4).
(I11)

-V ,0), — SNy +ot
A0 et aso) /65 n,EH0%)]
(4.20)
1
< CLIVENR + NENPY + IO +C S 1E Br e + 3 32 10¥ 130 e

Combining (4.17)-(4.20) together, integrating time from 0 to 7', taking 6(0) = 0 and
by the trace theorem and Lagrange interpolant approximation property, we can derive

(4.21) 01|22y < CRIIyll| L2 a2y + yelllo ey -
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Hence, we have

(4.22) [[lyn(w)=ylllL2cary < MOz +EN L2y < ORIl L2y +Helll L2 3-
By (4.3¢) and (2.6¢) and Lemma 3.2, we can deduce similarly

(4.23) lpn(w) = plll L2y < CRAIpl| 2 a2y + MPelll 22 ey 3

Then (4.14) follows from (4.21) and (4.22). O
By Lemma 4.1 and 4.3, we can derive the following theorem for a priori estimates.
Theorem 4.1 Let (y,p,u) and (yn,pn,ur) be the solutions of optimality conditions

(2.6) and semi-discrete DG optimality conditions (3.19), respectively. Assume that all

conditions of Lemmas 4.1-4.3 are valid. Then

|l —unlllz2z2u)) + 11y = ynlll2 @y + e — pulllLza
(4.24) < Chu{lllulllL2(mr (o)) + Pl L2y}

+CMIyll|z2arzy + Wyelll2cery + [1pll 22y + [llpelll 2}
Proof. Tt follows from (4.7) and (4.23) that
llw = unlllzzz2uy < Chodlllulllezar @y + [1IPIL2 )}
(4.25)
FCM|lIplllz2(a2) + [llpell 2}
Moreover, it follows from (4.13), (4.14) and (4.25) that

Ny — ynlllLzayy + lllp — prlll Lz
(4.26) < Chu{lllulllzzar o)) + P2 a1y}

+CR{IYll| 2 a2y + llyelll 2 ey + Pl 22y + lpell L2y }-
Then (4.24) follows from (4.25) and (4.26). O

5. A Posteriori Error Estimates

In this paper, we consider a posteriori error estimates only for the case of an obstacle
constraint and assumption that the velocity vector 8(x) is incompressible i.e. div§(z) =
0, Vz € Q.

Remark 5.1. The assumption of the velocity vector (z) incompressible is needed
to give stability bounds for the corresponding dual problem (cf. Lemma 5.4). For the
case of compressible B(x), similar stability estimates have been derived for a system of
convection-diffusion problems in [39].

We assume that the constraint on the control is an obstacle such that

(5.1) K={veX=L0,T;L*(Q)): v>d, ae. in Qy x (0,T]},

where d is a constant. This obstacle constraint is met most frequently in practical
application. We define the coincidence set (contact set) Q2 (¢) and the non-coincidence
set (non-contact set) Q7 (¢) as follows:

(5.2) Q) ={z € Qu :u(z,t) =d}, Q) = {z € Qu :u(x,t) > d}.

The convexity assumptions (4.1) for h(-) and g(-) will still be used.
Let

(5.3) Kh={veU": v>dinQy x (0,T]}.
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Hence, we have that K" C K.
It can be seen that the inequality in (2.6) is now equivalent to the followings:
(5.4)  A(u)+Bp>0, u>d, (W(u)+Bp)(u—d)=0, a.e. inQy x (0,T].

In order to derive sharper a posteriori error estimate, we divide Qy into the following

three subsets:
Q; ={z € Qu: B*pp(x,t) < =h'(d)},

Qg = {$ € Qu : B*pp(x,t) > —h'(d), up = d},

QF ={z € Qu: B*py(x,t) > —1/(d), up > d}.
Then, it is easy to see that above three subsets are not overlapped each other, and
Qu=0; UQuQ;.
Now let us have an intuitive analysis on the approximation error for the control. On
Qg, asymptotically we can assume that

(5.5) 0 < B*pp + h'(up) — B*p+ h'(u).

Hence it follows from the optimality conditions that u = up, = d on 4. Thus the error
on 2y may be negligible. We should only to estimate the error on

QU\Qd = QJ U Q}_

in order to avoid over-estimate.

Further it is clear that the states and control approximation errors alone cannot con-
trol the approximation errors of numerical coincident sets (see [36] for elliptic obstacle
problems). Thus, the measurement of the coincident set approximation errors in our a
posteriori error estimates should be considered.

Lemma 5.1. Let (y,p,u) and (yn,pn,un) be the solutions of optimality conditions
(2.6) and semi-discrete DG optimality conditions (3.20), respectively. Assume that b'(-)
and ¢'(+) are locally Lipschitz continuous. Then we have that

(5.6) w = unlllZ20.0:22 000y < Cni + Clllp(un) = prlll22(z2),
where
n = / / (W (un) + B*pp)?,
Qyual
and y(up), p(uy) € HY(0,T; L2(Q)) N W satisfy Vw, g€ H(Q)
Ay(un)

(a) ( 5 yw) + Ala(x); y(un), w) + Jg (y(un), w)
+L(y(un), w) = (f + Bup, w),

0)  ylun)(z,0) =y (x),  ylun)lr. =0, {a(z)Vy(un)}-vlr, =0,
(5.7)

(0 ~(F5,0) + Alalw): q.p(un)) + J§ (plun).0)
+L*(p(un), q) = (9'(y(un)), ),

(d) p(un)(z,T) =0, p(un)lr, =0, {a(x)Vp(up)}-vlr. =0.
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Proof.  From the uniform convexity of h(-), we have
T

el =l Baoraonn < [ (00) = W) u— ) d
T T
(5.8) = / (W' (u) + B*p,u — up)u dtJr/ (W (up) + B*p(up), up, — u)y dt
0 0

T T
4 [ o= ptun)u— wde+ [ (B pun) - uno dt
0 0
Note that the equation (2.6) and (5.7) imply that

T T
| @ )~ pu = wnde = [ (o) = 40, v = ywn) e <o
0 0

Moreover, note that u, € K" C K. It follows from (2.6) that

T
/ (W' (u) + B*p,u — up)y dt < 0.
0

Therefore

T
CH|U — uh'”?ﬂ(o,T;LQ(QU)) S /0 (h/(uh) + B*ph’uh — U)U dt

T
(5.9) <+A (B*(pn — p(un)),u — up)y dt

=1 + Is.
We first estimate I;. It is clear that for any ¢ € (0, 7]
(W (un) + B*ph,up — u)u

(5.10)
= [ W)+ B -+ [0+ B ) un ).
Q;ual Qa
It is easy to see that
(5.11)
1)
(h(un) + B*pn)(up —u) < o= (W' (un) + B*pn)* + Slllun — ull[ 220y
Q ua 20 Jazuar ! 2| L2 (Qu)

where § is an arbitrary small constant.
It follows from the definition of 4 that (h'(d) + B*pr) > 0 on Q4. Then, we have

(5.12) /Q (' (un) + B pr) (un — ) = /Q (W(d) + B*pn)(d — u) < 0.

Thus, (5.10)-(5.12) imply that

T
(5.13) I <C(9) (h'(un) + B*pr)* + CO||lun — ulll 21200 )) -
0 Jajual (E2(0))

Then for Iy, it is easy to show that

C )
(5.14) I < ol = p(un)llZ22) + 5 lllen = ull[Z2 (200
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Taking 0 small enough, we obtain from (5.9), (5.13) and (5.14) that

llw = unll 32 0722200y < O + Cllp(un) = pil [z

This proves (5.6). O
The following lemmas are important in deriving a posteriori error estimates of residual
type.
Lemma 5.2. [13] Let m, be the standard Lagrange interpolation operator. For m =0
orl,q>% andv € W24(Q),

|”U - WhU‘WZ,q(Qh) < Ch27m|’l)|w2,q(9h).

Lemma 5.3. [37] For allv € Wh9(Q"), 1 < q < oo,

1 1—1
|U‘Wo,q(a7-) < C(hT N ‘UlWO,q(T) +hs ¢ |/U‘W1,q(7-)).

In order to estimate the error |||py — p(uh)|||%2(0’T;L2(Q)) in (5.6), we shall use the
following dual equations: For given F' € L?(0,T; L?(Q2)),

99

— —div(a(x)Ve) + - Vo + ap = F, (z,t) € Q x (0,77,
(5.15) ot
¢(z,0) =0, ¢lr_ =0, {a(z)Ve} - V‘F+ =0,
and
o
5 div(a(x)VY) — V- (BY) + ap = F, (x,t) € Q% (0,7T],
(5.16)
Y(z,T) =0, Ylr, =0, {a(x)Vy} v = 0.

Under the assumption that div3(z) = 0, Vz € Q, we note that for Q convex, problem
(5.16) admits a unique solution ¢ € H(0,T; L?(Q)) N L?(0,T; H*(Q))(see, [38]). There
exists the following well known stability results.

Lemma 5.4. [38] Assume that Q is a convex domain. Let ¢ and 1 be the solution of
(5.15) and (5.16), respectively. Then, for v = ¢ orv =1,

[0l 0,1:L2(02)) < ClIFllz2(22), IVllr2r2) < ClIF||r2(ze),
1D?0]|L2(r2) < ClIF|L2(r2), 153 1122(22) < ClIF |2 (22,

where D%y = 821)/8951-8%-, 1<, 7<n.
Now we can provide a proof for |||p, — p(uh)|||2L2(L2), similar to that in [40].

Lemma 5.5. Assume that Q is a convexr domain. Let (yn,pp,ur) be the solutions of
(3.19), let (y(un), p(up)) be defined by (5.7). Then

10

(5.17) lyn = y(un)ll72(22) + lllpn = plun)ll|Z2 2y < C D07,
=2
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where
2
m / Z/h4 *i*dw( (z )Vph)*V~(ﬂph)+aphfg’(yh)) dz dt,
T Ph
io= [0S [ Bdel) Vi vy devat
0 k—=1" €k

TPh
772 = / /hek[ph dekdt
0 e

LI ) B CR S R

3 2
w = / Z/h4 L div(a(m)Vyh)+ﬁ-Vyh+ayh—Buh) dz dt,
T Ph
2 = / / x)Vyp, - v}? dey, dt,
0 ek
T Ph
77§ = / hek yh] dey, dt,
0 k=17¢r
2 2
io= [ (6 el () et
0 T Or_NI'_
no = llyn(x,0) = yo(@)]|32,

where he, 1is the size of the face e, = T1NTa, where 71 and T2 are two neighboring elements
in Th, and vy, is the unit normal vector on ey outwards .

Proof.  Let ¢ be the solution of (5.15) with F' = p;, — p(up). Let ¢y = mp¢ be the
interpolation of ¢ defined as in Lemma 5.2. Then it follows from (5.7) and (3.20) that

T
on — )10 2y = / (o1 — plun), F) dt
0

T, 9
= / ((*aph — div(a(x)pr) — V- (Bpn) + oapn — g (yn), ¢ — ¢1)) dt
0

(5.18) T
Z (X[ @@ mo—on) i+ [ (o) =o' @) o) a

P

T T Ph
- wmenas [1(3 [ ta@ver wll =3 [ oV nod)a

k=1"Y¢k
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+/OT(—Z/(9T+\F+ﬂ'nT[ph}¢? _Z/Bm_ml‘ 8- nTph¢1)

2:D1+D2+D3+D4+D5+D6.

Now, we analyze the terms on the right-hand side of (5.18).
(I) It follows from Lemma 5.2 and 5.4 that

(5.19) Dy < C(8)15 + Cdl|lpn — p(un)|ll72(r2)-
(IT) From Lemma 5.2, 5.3 and 5.4, we see that

(5.20) Dy < C(6) + Obllpn — plun)l|2gze,

where we used

16 = d1llL2(er) < CHIPNSN m3/2(er) < CHELZ(I0]12,0-

(ITII) Lemma 5.4 and Schwartz inequality imply that

(5.21) Ds < CO)llyn = y(un)ll72(r2) + Colllpn = plun)ll72(L2)-
(IV) Similarly like Do, we derive

(5.22) Dy < ()i + Cdlllpn — p(un)|ll72(z2)-

(V) Similarly, we get
T Ph
Ds —|—/ (@)V(¢ — ér1) - vitpn +Z z)Vpy - v }e — ¢I]) di|
(5.23)

klek klek

< C(O) + COE + Oblllpn — plun)l|32(12)-

(VI) Also, we have
D . ‘N, + _ 4t dt
o |/ LT+\F+5 nelonl(6 — 67) +Z/amr+ﬁ nepf (6 61)) i

< CO)3 + Colllpn — p(un)||[32(12)-

Then letting 6 be small enough, it follows from (5.19)-(5.24) that

5

(5.25) lpn = p(un)|lZ2(z2) < CZ’?? + Clllyn — y(un)[||72(z2)-
=2
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Let ¢ be the solution of (5.16) with F' = y;, — y(up). Similarly to the proof of (5.25),
we have that

T
g — y(un) | gzs) = / (yn — y(un), F) dt

T Jy 2
4(9Yn .
6)/0 Z: /7- hT(W — div(a(z)Vyn) + 6 - Vyn + ayp — Buh> dx dt,

T Ph T Ph
/ / s 1a(x)Vyy - vY2dey dt + C (6 / / ex [yn)? dey, dt
0 ey 0 €k

6)/0 Z/@T N B, (8 nalun))” + (8- neyif)?) dew dt + C3i(w,0) 2

T
C(6) lyn (. 0) — yo(a)|2%= + C / 110

Hence, letting 6 be small enough, we have
10

(5.26) o — vl 22 or,oay < C S
i=6
Then, (5.17) follows from (5.25) and (5.26). O
From Lemma 5.1 and Lemma 5.4, we have the following a posteriori error estimates.
Theorem 5.1. Let (y,p,u) and (yn, pn, un) be the solutions of optimality conditions
(2.6) and semi-discrete DG optimality conditions (3.20), respectively. Assume that all
the conditions in Lemma 5.1 and 5.5 are valid. Then

(5.27) lyn = ylllF22y + 1lpn = PUIT2 22y + Hun = ullli2 20y < sza

where 11 is defined in Lemma 5.1, n;, 1 = 2,---,10, are defined in Lemma 5.5.
Proof. By (5.6),(5.25) and (5.26), we can get

(5.28) e = wnll[Z22(0py) < Cnf + Cllip(un) = prlllta(2) < CZm

Note that
Ny = ynllle2zzy < v = y(un)lllr2z2) + lly(un) — ynlllL2(r2),

[lp = pulllzzzzy < |lp = p(un)lllzz(z2) + [llp(un) — palllz2(z2),
and
Iy = ynlllz2z2y < Clllu —unlllz2 (20>

lp = pulllz2z2) < Cllly = y(un)lllz> 2y < Clllw = unlllL2 22 @0 ))-
Then, it follows from Lemma 5.5 and (5.28) that
10

(5.29) 11y = wnlllzzcz2) + llp = palllz22) < CY .
i=1
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Thus, (5.27) follows (5.28) and (5.29). O
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