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Banach space. The conditions for the existence of a unique positive solution are established.
In addition, an explicit iterative sequence for approximating the solution of the boundary
value problem is derived together with an error estimate. Furthermore, the conditions of
the theorems can be easily verified.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The theory of impulsive differential equations has been emerging as an important area of investigation in recent years,
because its structure has deep physical interpretation and practical motivation and is based on realistic mathematical mod-
els [1-3]. However, the theory for impulsive integro-differential equations in Banach spaces has yet to be developed [4-14].
Most of the previous work in this area only discussed the first-order and second-order equations [4,9-12,14]. Recently, in
[6-8], Guo discussed the existence of solutions, multiple solutions and extremal solutions for nth-order nonlinear impulsive
integro-differential equations with nonsingular arguments in Banach spaces by using the fixed point theory, fixed point in-
dex theory and upper and lower solutions together with the monotone iterative technique. Guo also discussed, in [5], the
existence of positive solutions for a class of nth-order nonlinear impulsive singular integro-differential equations in Banach
spaces by means of the fixed point theory for completely continuous operators. The problem of uniqueness of solution has
been investigated by many scholars. However, most of the recent work in this area only discussed initial value problems
(IVPs) on bounded domains. Recently, for a special case where the IVP has no impulsive and singular arguments, Liu [15]
established a unique solution for the IVP by the monotone iterative technique with coupled upper and lower quasi-solutions.
A similar conclusion was also obtained by Liu [16]. But one of the requisite assumptions in [5-8,13,15,16] is that the forcing
function fin the equation must satisfy some compactness-type conditions, which as we know is difficult and inconvenient to
verify in abstract spaces. Recently, Liu got a unique solution for a first-order IVP with no singular arguments by the mono-
tone iterative technique with only an upper (or a lower) solution [14]. The same conclusion was also obtained by Xu in [9,10]
and Liu in [11,12] by applying the Banach fixed point theorem.
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Although various results for IVP of nonlinear impulsive integro-differential equations have been obtained, few results are
available for the unique solution of boundary value problems (BVPs). For the case where there do not exist impulsive argu-
ments, Guo [6] investigate the unique solution of a BVP for second-order nonlinear nonsingular integro-differential equa-
tions of mixed type on an infinite interval in a Banach space. However, there is no result on unique positive solution for
the nonlinear impulsive integro-differential equations at the presence of singularities. Therefore, in this paper, we shall
use the fixed point theory and monotone iterative technique to investigate the unique positive solution of a BVP on an un-
bounded domain for a class of nth-order nonlinear impulsive singular integro-differential equations in Banach spaces. We
can avoid any compactness-type conditions such as those assumed in Refs. [5-8,15,16] and also the lower or upper solution
conditions in [6,7,14-16]. The aim of this paper is to reestablish existence of a unique positive solution, develop an approx-
imation sequence of the solution and derive an error estimate of the approximation sequence for BVP (1.1) under some norm
type conditions.

Let E be a real Banach space and P be a cone in E which defines a partial ordering in E by x < y if and only if y — x € P. Let
P, =P\ {0}. So, xe P, if and only if x > 0. Let x; ¢ P, (i=0,1,...,n—1) and P ={xeP:x > Jx;} (A>0,i=0,1,...,n—1).
When 1=1, we write P; =P;;. For details of the cone theory, the reader is referred to Ref. [3].

In this paper, we consider the following BVP for nth-order nonlinear impulsive singular integro-differential equations of
mixed type on an unbounded domain in a real Banach space (E, || - ||):

XO(£) = F(£,X(1), X (L), ..., x0D(0), (TR)(8), (SX)(t)), VEe],,
A, = Tie(X(6), X (8. ... X"V (8)

(i=01,....n—1; k=1,2,3,..),
X0(0) = xoi (i=0,1,...,n—2),x"(c0) = fxn-1(0),

(1.1)

where | =[0,+00), 0<t; < <ty <---, tg—o00, J, =(0,00), J' =J, \{t1,...,tes...}, fF€CY, x Py x P1; x -+ x Py_1),%
PxP,P] for any 4i>0, Iy €C[Poy; xPy;x---xPyq,; P for any 41>0 (i=0,1,....,n—1; k=1,2,3,..), p>1,
X1 (o0) = lim,_.x")(t) and

(Tx)(t) = /OtK(t,s)x(s)ds., (Sx)(t) = /OOC H(t,s)x(s)ds, (1.2)

in which K € C[D,J],D = {(t,s) €] xJ: t = s},H e C[J xJJ]. AxV|_, =x"(t;) — xV(t;), where x(t;) and x?(t; ) represent
the right and left limits of x?(t) (i=0,1,...,n—1) at t = t;, respectively. BVP (1.1) is singular because we permit that
f(t, x0,X%1, .., Xn_1,Xn,Xn11)|| =00 as t—0" or x—0" (i=0,1,....n—1) (x; — 060" meansx; >0,x; — 0), and
Ilik(X0, X1, ..., X0 1)]| w00 asx;— 6" (j=0,1,....n—1;i=0,1,....,.n—-1; k=1,2,3,..)).

Let PC[J,E] = {x : x is a map from ] into E such that x(t) is continuous at t # ti, left continuous at t = t;, and x(t}) exist
for k=1,2,3,...} and BPC[J,E] = {x € PC[J, E] : sup,;e~||x(t)|| < oo}. It is easy to see that BPC[J,E] is a Banach space with
norm x|y = sup,; (e [Ix(t)]).

Let PC"'[J,E]={x:x"-1(t) exist at t # t; and be continuous at t # t, and X"~V (t;") and X"~ (t;,) exist for k=1,2,3,...}. For
xePC"'[JE], as shown in [13], x¥(t}) and x®(t;) exist for i=0,1,2,....,n—2 and k=1,2,3,.... Define x7(t;)=x9(t;)
(i=1,2,...,n—1). Then x® cPC[J,E] and, naturally, in (1.1) and in what follows, x¥(t;) is understood as x(t;)
(i=1,2,...,n—1).

Let DPC"'[J,E] = {x € PC"'[J,E] : X € BPC[J,E], i =0,1,...,n— 1}.Itis easy to see that DPC""'[J, E] is a Banach space with
norm x|, = max{x|lg. [ 5. .-, [x"V]l5}.

Let BPC[J,P| = {x € BPC[J,E] : x(t) > 0Vt €J} and DPC" '[J,P] = {x € DPC"'[J.E] : x0(t) > 0Vt e],i=0,1,....n—1}. It
is easy to see that BPC[J, P] is a cone in space BPC[J,E] and DPC""'[J, P] is a cone in space DPC""'[J, E].

The function x € PC"'[J,E] N C"[J',, E] is called a positive solution of BVP (1.1) if x?(t) > 0 (i =0,1,...,n— 1) for t € J and
x(t) satisfies (1.1).

The rest of the paper is organized as follows. In Section 2, we give several important lemmas. The main theorems are for-
mulated and proved in Section 3, followed by an example in Section 4 to demonstrate the application of our results.

2. Preliminaries
For convenience in presentation, we list below some conditions to be used throughout the rest of the paper.
(Hi)
t t
k" =sup [ K(t,s)ds < oo, h"=sup <e‘t / H(t, s)esds> < 00
tef 0 tef JO

and

00

lim [H(t',s) — H(t,s)le’ds=0 Vte].

t'—t Jo
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(Hz) There exist a; € C[J,,J] (i=0,1,...,n+ 1) such that

n+1

IF (¢ o, U, - Unir) = F(E, U, T, W) | < Y @il)|Jus —Wil| VE€],, u€Pi (i=0,1,...,n=1), Up,Un1 €P,
i=0

oo | n-1
/ {Zal + ay(t +an+1(t)h*}etdt<oo,

1

[} nl 00
‘c_/ £)[x:[1dt < oo, y:/ (EX, . X, 1.0,0)dt < oc.
0

(Hs) There exist bjkl >0(,l=0,1,....n—1; k=1,2,3,...) such that Vu; ¢ P; (i=0,1,...,n—1)

n-1

o~ n-1 n-1
(i (uo, ua, ... Upq) — Lig(Uo, Uy, .. ., Un_1)]| Z bjullui — ||, b* = Z bjue' < oo,
=0 =1 =0 =0
o n-1 n-1 oo n-1
=> biallXll < oo, 5= > I(Xg,Xi - Xn_p)l| < e
=1 j=0 =0 =1 j=0

(Hg) There exist 0 < t, < t* < oo and o € C[I,]] (I = [t,, t*]) such that
F(t,X%0, X1, ... Xn1,Xn, Xns1) = O(O)X;_; VE.<t<Ut, x=2x (i=0,1,....n-1), X, =0, Xpq =0,

and

/t o(s)ds = p—1.
Ly

Lemma 2.1 [8]. If condition (H,) is satisfied, then the operator T and S defined by (1.2) are bounded linear operators from BPC|[J, E]
into BPC[J,E] and ||T|| < k™, ||S|| < h*. Moreover, T(BPC|J,P]) c BPC]J,P], S(BPC[J, P]) c BPC[J, P].

Lemma 2.2 [6]. If x € PC"'[J,E| N [J,,E] and [;° ||x™ (t)||dt < oo, then

1 t _ G
Zt— 0 %/(t—s)“ syds+ ) Z (t t" x5 —x0(t)] Vel (2.1)
:0] n-— ) 0 O<ty<t j=0
In what follows, we write Q = {x € DPC"'[J,P] : x(t) > x; Vt € J,i=0,1,...,n— 1}. Evidently, Q is a closed convex set in

space DPC"'[J, E].

Lemma 2.3. If conditions (Hy), (H,) and (Hs) are satisfied, then

/ow 1f (5,%(5),X (), -..,x" "V (s), (Tx)(s), (SX)(9))|ds < @’[|x[[, +T+7 VxeQ (2.2)
and

o n-1

DO (), X (6, - x| < DY Xlp + A+ 6 VxeQ. (2.3)

k=1 j=0

Proof. By (H,) and (Hs), we have

n+1

n-1
“f(ta Up, Uy, - .. 7un+1)” < Zai(t)Hui” + Zal(t)HX:H + Hf(nxgaxylﬂa cee aX;—la67 0)”
i=0

i=0

and

=
|
—_

n-1 n-1 n-1

hie(tto, o un )l < DD bl + 167 1)+ D e, X5, -, 5.

j=0 =0 j=0

T
S
-
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So, for x € Q, Lemma 2.1 implies that

xt Tx)(t Sx)(t
“f(t,x(t),xl(t), . 7X(ﬂ—])( ) ) || < zal el ” )H + an(t)et H( e)t( )” + Upiq (t)et ”( e)t( )”
n—1
+Zal(t)‘|x?”+|V(t7x67xyl‘7"' n— 170 9)”
i=0
n-1 n-1
<D ai()e’ Xl + an(t)eK (Xl + anar ()R |xl|5 + D ai(t)]x;]]
i=0 i=0
+ “f(t xavx’lfv' o 7x:1—176a 6)”
n-1 n-1
< D ai(t) + K an(t) + h o (f)} e|xllp + Y ai()||x]]
i=0 i=0
+|If(t Xa,x;,,.,7x;;71,67 e)” (24)

and

3
,_.

) . n-1 n-1 t<
Hlm( (), X' (E), -, XD (8))]| < bi ( e X ')H+||Xz|\) +Z||Iﬂ< Xgs X155 X )l

j=0 j=0 1=0 Jj=0
n—-1 n-1 n-1
< bia(€*|1Xllp + 16 1) + D w5, %3, %5 1) (2.5)
j=0 =0 j=0

It follows from (2.4) and (2.5) that (2.2) and (2.3) hold, and Lemma 2.3 is proved. O

Remark 2.1. If conditions (H;), (H,) and (Hs) are satisfied, then, for any x € Q, the infinite integral

/Oocf(s, x(s),X(s),...,x"D(s), (Tx)(s), (Sx)(s))ds

and the infinite series

—_

n—

NgE

Li(X(t), X' (t), - .. x" "V (t))

=~
Il
Il
o

1
are convergent.

Lemma 2.4. Let conditions (H,)—(Ha) be satisfied. Then x € Q N C"[J',, E] is a solution of BVP (1.1) if and only if x € Q is a solution
of the following impulsive integral equation:

n—-2 4j %)
x(t) = Z F—],Xoj +(ﬂ7 P {/ f(s,x(s X("])(5)7(TX)(3)7(5X)(5))d5+zl<n1)k(X(fk),X/(fk)~~~zx<"])(fk))}
= J st
+ 1 t(t — )" (5,x(5),X(S), ..., X"V (s), (Tx)(s), (Sx)(s))ds
(n—-1"Jo
ry Y }tkyl,-ux(tk),x'(tk),...,x<"”><tk>> vee. (2.6)
O<tp<t j=0 :

Proof. If x € QN C"[J', E] is a solution of BVP (1.1), then by Lemma 2.3, we have

/0oc X (t)]|de = /OX IF(,x(8),X'(0), ... . X" (E), (Tx)(t), (SX) () [t < @*[[x]|p + T +7 < <. (2.7)

So, (2.1) holds. Differentiating (2.1), we can get

xV(t) = x- 1>(0)+/tx<”)(s)ds+ Z XDt —x" V()] Vel (2.8)
0

o<ty <t
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Substituting (1.1) into (2.1) and (2.8), we have

X(t) B n-2 gx +LX(”‘U(O) +L /t(t _ S)nflf(s X(S) X/(S) x(n—l)(s) (TX)(S) (SX)(S))dS
,]:0 T (n-1) (n—1" J , , e , ,
O (t — tk)j , (n—1)
+ Z Z ! L (x(t), X' (te), - . ., X (ty)) Vtel], 29)
O<ty<t j=0 .
and
XD (£) = xn-) / F(5.%(8).X(5). ... X" V(). (TX)(), (KNS + 3 T el(6), X (8), .. X" D(t)) Ve ],

O<ty<t

(2.10)
Letting t — oo in both sides of (2.10) and using the conclusion in Remark 2.1, we obtain
X" (o0) = x"1(0) + / F(5,%(5),X (), ... X"V(s), (TX)(5), (SX)(5))dS + Y Iin 1k(X(te), X (&), .-, X"V (ty)) VEe].
0 k=1
(2.11)

Using the relation x"(c0) = px™1(0), we get

x<””(0)=ﬁl—1{ /tf(s,x(s)m’(s),...,x<”*”(5)() ds+21n1 X(6), X (6). "”(tk))}. (212)
- 0

Now, substituting (2.12) into (2.9), we see that x(t) satisfies Eq. (2.6). Conversely, if x € Q is a solution of Eq. (2.6), then, direct
differentiation of (2.6) gives

n-2 '—i n—1-i 00
X0t Z(, i+ 1;”_1_1.)!{ /0 F(5.X(5),%(5), ... . X"V (s), (Tx)(s), (SX) ) ds

J=1

+ 500 T 1r(X(6), X (E), -, XD (8) +% /[(t—S)”’l’if(s,X(S),X’(S),.--7x<”’”(5),(TX)(S%(SX)(S))CIS
Pt (n—1-1)! Jg
(-t / - :
+ ._7.Ijk(x(tk),x(tk),...,x< N(ty)) Vte] (i=0,1,...,n-2), (2.13)

=7
+Zln D X (ty), . ””(t,())}
+ t (8, X(5),X(5),...,x"V(s), (Tx)(s), (SX)(s))ds (2.14)
JO
+ 37 T ®(t), X (8, .. X"V (8) Ve,
O<ty<t
XM (t) =f(t,x(t), X (t),...,.x"V(b), (Tx)(t), (SX)(t)) Vte],. (2.15)

So, x € C"[J',,E] and, by (2.13)—(2.15), it is easy to see that x(t) satisfies (1.1). Then, Lemma 2.4 is proved. [
Consider an operator A defined by
n-2 t] tn—]

5 (B—=T1)(n-1)!
X {/Oxf(s,x(s),x’(s), XD () (Tx)(s), (Sx)(s))ds+il(n,”k(x(tk)x(tk), . ,x<”‘”(tk))}
. k=1

1 t -1 / (n—1)
Ty / (t )" (5.X(5),X(5), .. X" (5), (T)(5), (59)(5))ds

n—1
Yl w (X(t0). X (t), ... X" () Ve, (2.16)
O<ty<t j=0

It is easy to verify that x € Q N C"[J', , E] is a positive solution of BVP (1.1) if and only if x € Q is a fixed point of the operator A.
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Lemma 2.5. If conditions (H;)—(H,) are satisfied, then the operator A defined by (2.16) is an operator from Q into Q.

Proof. Let x € Q. Differentiation of Eq. (2.16) gives

(#% Z U - it 1)th1—i1 —)
x { [ 9. (9) . X5, (105, (59 (5) s+ iu,,])k(x(tk),x/(rk), - ,xm—w(tk))}
+ ﬁ [ 95,405 X16) 05, (08 (599
+OZ Z tk-)l l;k (x(tx), X (te), .., X" V() Vte](i=0,1,....,n-2),
and
W) —ﬁl—l{ / wf(s,x<s>,x'<s>,...,x<“”(s),<Tx><s>,<Sx><s>>ds+glm_nk(x(tk),x'(rkx...,x<"”(tk))}
+ /0 tf(S:X(S),X/(S),---7x(”*”(5)v(TX)(S)7(SX)(S))ds+ 37 Lo X (), X (t), . X" V(t)) Ve €.

O<ty<t

It follows from (2.2), (2.3), (2.17) and (2.18) that

1A%V (©)]] < max{|ixoll, - |

tel(b'|x|l, + A+08) Vte]

which implies

[Xow-2 [} + 2= @ Xllp + T+ 7+ D[]l + 2+ 0} + e (@ [|x]lp + T +7)

ﬂ
(i=0,1,...,n —1)7

B B

1(A%)Vlp < max{|[xoil| :1=0,1,...,n =2} +——(T+ )+ i +06) +——(a +b)|x|, (=0,1,....,n—1).

f—1 f—1

Hence, by (2.16) and (2.20), we have that A : DPC"'[J,P] — DPC""'[J, P] and

1AX[|

By (2.17), we get

< max{||xo| :i=0,1,..

(Ax) ()

=X =X Vte](

.,n—2}+ﬂ_i1(r+y+x+5)+ﬁ%(a*+b*)\|x|\D Y x € DPC"'[J, P).

i=0,1,....n-2).

Moreover, (2.18) and condition (H4) imply

(Ax)""

1

ﬁ‘lj/t f(s,x(s),X(s

It follows from (2.21)-(2.23) that Ax € Q and Lemma 2.5 is proved. [

3. Main results

Theorem 3.1. Let conditions (Hy)—

o=

1

(a

“+b") <1

(H4) be satisfied. Assume that

L xTD(s), (Tx)(s), (SX)(5))ds > ﬁ]j(/f (s )ds> 1 =X VEE]

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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then BVP (1.1) has a umque positive solution X € Q N C"[J',, E]; moreover, for any x, € Q there exists a monotone 1terat1ve sequence
{Xm(t)} such that x{ (t) — X (t) as m — oo (i=0,1,...,n—1) uniformly on J, = [0,r] for any r >0 and x{ (t) — XM (t) as
m — oo for any t € J',, where

Z(?Jt_ n—] {/ F(S X1 (8), X1 (S)s- -+ X1 (5), (TXm-1)(5), (S¥m-1)(5))dis

+i11 k (Xm_1 (6), X, 1(tk)7...,x§,'}]1)(tk))}

+ ﬁ /Ot<f = )" (8, X1 (8), X1 (8), -+ X (8), (Tm-1)(S), (SXim-1)(5))dis

+ 0;[ 12;: (t ;!tk)fjjk(xmﬂtk),x;nl(tk), XMy Vee) (m=1,2,3,...). (32)

In addition, there exists an error estimate for the approximation sequence

_ om
Xm = Xllp < 37— X1 = Xoll. (3.3)

Proof. By (2.17) and (2.18), we find
(A% (1) — (Ay)" 1 / {If(s,x(s - X (s), (Tx)(s), (SX)(5))

f(sy (8).Y'(5), -,y V(5), (Ty)(s), (Sy)(5)) | }dls
(X(tk)vx/(tk)v cee 7X(n_1)(tk)) - I(Yl—1)k(y(tk)7y/(tk)7 cee 7y(n_])(t’<))”}

k=1
+ [ U X(9). X (5) . X7 (5) (T0)(8), (56)6)
~fEYE).Y ()Y I (S), (TY(s), (V)s)] s
n-1
+ 30D e () X (6, X (0) = ()Y (8, YV (G

O<ty<t j=i

vx,yeQ (i=0,1,...,n—1). (3.4)
By (2.2), (2.3), (3.4) and conditions (H;)—(Hs), we obtain

[ {Za e S VIS 10~ 6]
_1 1 n

H(Ax)“ (t) - (Ay)"

et es o
_ o n-1 () 0)
+0n41 (s)es “(SX)(S) o (Sy)(s)”}ds+ — Z {bn Dk fkw}
k=1 [=0
t ((n-1 )
+ /0 { ai(s)e”*[[XV(s) —yV ()] + an(s)e*|(Tx)(s) — (Ty)(S)[[+ans1(s)e*[|(SX)(s) — (Sy)(s)|}ds
i=0
n-1 n-1
+ > biwe X0 (t) — yU ()|
O<ty<t j=i =0
‘1 oo n-1 ) )
ﬂgﬁ/o { a;(s)e’[|x" y<1>|s+an(5)es’<*llxYI|B+an+1(S)esh*||XJ’IIB}C‘S
i=0
1 oo n-1
+—= > > {bu-1ue|x? — x|}
p-1 k=1 1=0
00 n-1 ) )
+/0 {Zai(SHx(') — Y5 + an($)K" X — Yllg + a1 (S)A" || _le}ds
i=0
o n-1 n-1
+> billx® —yV|y  Vte], xyeQ (i=0,1,...,n—1), (3.5)
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which implies
1A% = (Ay) 5 <
Hence

[Ax —Ay[lp < ofx —yllp Vxy€Q. (3.6)
Since o < 1 on account of (3.1) and Q is a closed convex set in space DPC"'[J, E], the Banach fixed point theorem and Lemma
2.5 imply that A has a unique fixed point X in Q, and for any x,€Q,|xn —X|p —0 as m — oo, where
Xm =AXm_1 (m=1,2,3,...). By Lemma 2.4, this unique fixed point X is the unique solution of BVP (1.1) in Q nC"[J', ,E]. By
(3.6), we have

[ — X1l < ™y — Xollp (M =1,2,3,..),
and so,

B
F—1

(@+b)x—ylp, (i=0,1,...,n—1).

om(1 — okm)

ol |
o = xollp, 1<m<k

Xk — Xmllp < [1Xk — Xe-1llp + -+ + [[Xmi1 — Xm|lp < (akq +o o™X = Xollp =

Letting k — oo in both sides of (3.7), we have that (3.3) holds. By the definition of the norm in DPC""'[J, E], we have
[xD(t) —xD(t)]| < €'l|xm —X||p VE€](i=0,1,....n—1; m=1,23,...),

and therefore, the iterative sequence {x,,(t)} satisfies that x{ (t) — X (t)asm — oo (i =0,1,...,n — 1) uniformly onJ, = [0, 7]
for any r > 0. Let t € J, be arbitrarily fixed. By (3.3), we have

am
H(E,$)lxm(8) = y(S)II < 3= H{E,S)€l1x1 = o[l (3.8)
By (3.8) and the dominated convergence theorem, we have

1(Sxm)(t) — (SX)(t / H(t,s)||xm(S) — X(s)||ds — 0, as m — oo,

which implies that
(Sxm)(t) — (SX)(t) asm — oo for any t € J. (3.9
Differentiating both sides of (3.2), we have forany t € J, (m=1,2,3,...)

X0 (6) = F(t, X1 (£), Xy (0, X0 (1), (TXim1)(0), (SXm-1)(1)),
which implies by virtue of (3.9) that
lim XV (t) = f(t,X(t), X (t), ..., X"V (t), (TX)(t), (SX)(t)) = X" (t) Vte],.

m—oo

Hence, Theorem 3.1 is proved. [

Theorem 3.2. Let conditions (H{)—(H4) and inequality (3.1) be satisfied. Denote by x(t) and y(t) the unique solutions in
QN C"J,,E| of BVP (1.1) and the following BVP
yO(t) = f(&y(6),Y'(), ...y (), (Ty)(0), (Sy)(t)) Vte],,
AYO |y = (Y (t), X (t), -, Y™V (E)

. (3.10)
(i=0,1,....n-1;k=1,2,3,...),
Y0) =yg (i=0,1,...,n=2), y™V(co) = py"1(0),
respectively, where y,; = x; (i=0,1,...,n—2). Then
X = ¥llp < (1= o))" max{[|xo; = Yoill : i =0,1,..,n—1}. (3.11)

Proof. By Lemma 2.4, x(t),x0(t) (i=1,...,n — 2),x"1(t) satisfy (2.6), (2.13) and (2.14), respectively, and y(t) satisfies

n-2 ;i
> Gt e T {/ F5.5(5).5/(8),-.. 7"V (s), (TP)(S). (9)(5))ds

2 (1), ¥ (6. y"”<tk>>}+(n_1_,~)! L= 55656, 78 (T8 ()9

n-1
+ ) Z tu_t".' L (V(t), ¥ (&), -,y V(t)) Vte] (i=0,1,....,n-2), (3.12)
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and

f*%n=ﬁ11{Awﬂ&wsywxnw¢*W$w ¥)(s), ¢+§:h1 V(). y“%m»}

+A f(shv(s)vy,(s)w"7}7("71)(5)7(Ty)(s)v(sy)(s))ds+ Z I(n—])k(y(tk)7yl(tk)7"'7}7(”71)(&()) Vte] (313)

O<ty<t
Arguing similar to (3.5), forany t € Jand i = 0,1,...,n — 1, we have from (2.6), (2.13), (2.14), (3.12) and (3.13) that
Wm—www

et

< max {||xoi — Yoil :i=0,1,...,n -2} +L /OO{|Lf(s,5<(s),>’<’(s), XD () (TR)(s), (SX)
B—1J

% (8)) = f(5.9(5), 7 (5),....3"(s), (TY)(s), (Sy)(5)) ]| }ds + ﬁ%

X Z{an DX (t), X (t), - X"V (8) = TP (Ee), Y (8, - YD (81}

+/ e {[If (5. x(9),X(5),... . X" V(). (TX)(5), (SX)(5)) — £(5,¥(5),¥'(5), ... 3" (5, (T)

X (), (SY)(s)lds + Ze X)X (t), - X"V (1)
O<ty<t j=i
— L@ (), Y (&), -, YV (&)1}
< max{|[Xo; — yoill : 1 = 0,17.-.711—2} + % = Yllp, (3.14)

which implies that
% = Yllp < max{[[xo; — Yoill : i=10,1,....,n =2} + af|x = y|p.
So, (3.11) holds and the theorem is proved. O

Remark 3.1. In [5], by requiring that f satisfies some noncompact measure conditions and P is a normal cone, the author
establishes the existence of positive solutions for BVP (1.1). In this paper, we do not impose any compactness condition
on f, but we also obtain the unique positive solution of BVP (1.1).

Remark 3.2. Form (3.11) we know that x?(t) — y?(t) (i=0,1,...,n— 1) uniformly on any finite sub-interval of ] when
Xoi — Yoi (i=0,1,...,n—2). This means that, when conditions (H;)—(H4) and inequality (3.1) are satisfied, the unique solu-
tion of BVP (1.1) in Q N C"[J', , E] is continuously dependent on the boundary values xo; (i =0,1,...,n— 2).

Remark 3.3. In [5], the author obtains only the existence of positive solutions for BVP (1.1). In this paper, we not only estab-
lish the conditions for the existence of a unique positive solution for the BVP, but also develop an iterative sequence for
approximating the solution and give an error estimate for the approximation. The iterative sequence {xn,} defined by
(3.2) is expressed explicitly, which is an important improvement of existing results.

Remark 3.4. For the special case where IVP (1.1) has no singularities and J = [0, a] and the condition X"~V (c0) = Sx(™1(0) is
replaced by x™D(0) = Xon_1), papers [9-12] also get a unique solution.

4. Example

Example 4.1. Consider the infinite system of scalar second-order impulsive singular integro-differential equations

-2t R S—
xXn(6) = g (3501"’ + X1 () + X, () + i + 16n4}<’2n(t))

e {1 + (f e~ (t+sx, (s )ds) }1

+1dse73 [ te 2 sin’ (¢ — 5)Xu(s)ds
V0<t<oo t+k k=1,2,3,...,
AXpleey = e,‘ (x2n(k)+xn+l(l<) o k) k=1,23,...,

DX e = 20 (X1 (K) + Xy (K) + b ), k=1,2,3,..,

ek nx; (k)

Xn(0) =1, 2% (c0) =3x.(0), n=1,2,3,...,

n

(4.1)
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where M = [;° %dt > 0. The infinite system has a unique positive solution {x,(t)} satisfying x,(t) > 1, and x,(t) > % for

0<t<oo(n=1,2,3,...). This unique solution can be obtained by taking limit of an iterative sequence.

Proof. Let E=co={x=(X1,...,Xn,...): X, > 0} with norm ||x|| =sup,|x,, and P={x= (X1,...,Xn,...)ECo:
X, = 0,n=1,2,3,...}. Then, infinite system (4.1) can be regarded as a BVP of form (1.1) in E with n = 2. In this situation,
u=(Ug,...,Uy,...), vf(vl,..‘,vn,...),w:(Wl,...,wn,...),zf(zl,.‘ Zn,..),  K(t,s)=e Vs, H(ts) = te 2 sin’(t — s),

X00:(17%,~~-,n7~ ) B=3f=(f,....fr,...)and Iy = (Iy1, . .. , likn, . ..) (=0, 1), in which

e (360M 1 1 o 1
- = (=== . -2t — 42
fu(t,u,v,w, z) GOMﬂ( 2 +u"“+vn+n2un+16n4v2n)+10” 1+w?)! +100¢ 3 Zon (4.2)
and
—k
IOkn(ua V) = ?(UZn + Vit + nzun) (43)
Ly (U v)—M(u + Vo +——) (4.4)
1kn\ Y, - e’< n+1 2n n4vn- .
Let Xj =xo0 and x; = (1,%,...,-5,...). Then Py, = {x = (X1,...,Xn,...) : X, = 4,n=1,2,3,..} and Py, = {X = (X1,...,Xp,...) :

Xp = 4,n=1,23,...} for 1>0. It is clear, f € C[J, x Po; x P1; x P x P,P], I € C[Py; x P1;,P] for any 2 >0 (i=0,1;k=
1,2,3,...). It is easy to see that

t 0o
kK'=sup [ e & V5ds =sup L(1 —e @Y <1, K = sup{te‘t/ e~sin’(t — s)ds} < sup(te™!) = e
0 o<t

o<t Jo o<t £+ 1 o<t

and

/x IH(t',s) — H(t,s)|e*ds < /m [\(t’ —t)sin®(t' —s)| +t|sin’(t' —s) —sinz(t—s)|]e*5ds< (1+20)| —t|—0,t >t (te)).
0 0

So, condition (H;) is satisfied. By (4.2), we have

flt,u,v,w,z) > 1 e, teJ,,uecPy, veP;, weP, zeP (n=1,2,3,..)),

Vi

Zt
/ be” 6/ e 2de — 3 )>%:ﬁ—1.

2

So, condition (Hy4) is satisfied for ¢, =1,t* =1 and o(t) :65—\}[2[. We see from (4.2) that, for any te],, uePy, vePbP;
(Pf:Pil (l:Oal))7 WGP,ZGP,

o et [Up — Un|  |Von — V2n|
_ < - _
lfn(t,u,V,W,Z) fn(tﬂl,V,W,Z)‘ X GOM\/E <‘uﬂ+l un+1| + ‘VH Vn| + zu un ]6n4V2nV2n)
—2t 3t
+1—On\(1 —s—wﬁ)’] — (14 w? o) |+100|22n Zom|, n=1,2,3,...,
and therefore forany t € J,, u € Py, veP1, w,z€ P
_2t -2t e—2t -3t
— Hv w7 < —1 - vV
UF 1,9, w,2) = F(60, 9w, 2| < gl = Ul 5o v =Vl o+ W= W+ 35617 - 2],
hence (H,) is satisfied for ao(t) = a1(t) = 3477 @2(t) = 55 a3(t) = S With
a*</Oo L+£+i dtf1 1
~ Jo \15MyE ' 10 " 100e 6 " 200e
and =L,y =6M+14
Similarly, it is easy to get for any Ug € Py, uq € Pq,
o 1 _ o
ok (to, t1) — To(to, 1) || < (]00 ¥ ——[lu—ul| + WHV—VH, 111k (tho, u1) — Tow(to, Uy ) |
2 _ 1 _
S——llu—ull+——=Illv-V,
(200e) (200e)
SO, (H3) IS Satlsﬁed fOl‘ bOkO - (l()#)k’b()kl - W, b]ko - m, b]k] - W Wlth b* - % + %, j. - 3(@ +200‘1T)7

35ems = % (15— + 500—)- On the other hand, we can obtain
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ﬁ * *
ﬂ—l(a +b%) <0.75

i.e. inequality (3.1) is satisfied. Hence, our conclusion follows from Theorem 3.1 immediately. O
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