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Abstract Mycielski introduced a new graph transformation μ(G) for graph G,
which is called the Mycielskian of G. A graph G is super connected or simply super-κ
(resp. super edge connected or super-λ), if every minimum vertex cut (resp. minimum
edge cut) isolates a vertex of G. In this paper, we show that for a connected graph G
with |V (G)| ≥ 2, μ(G) is super-κ if and only if δ(G) < 2κ(G), and μ(G) is super-λ
if and only if G � K2.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Unless stated
otherwise, we follow Bondy and Murty [2] for terminology and definitions.

Mycielski [6] defined an interesting graph transformation μ(G). Let G = (V, E),
the Mycielskian of G is the graph μ(G) whose the vertex set is V (μ(G)) = V ∪ V ′ ∪
{u}, where V ′ = {x ′ : x ∈ V } and edge set E(μ(G) = E ∪ {xy′ : xy ∈ E} ∪ {y′u :
y′ ∈ V ′}. The vertex x ′ is called the twin of the vertex x (and x is the twin of x ′) and
the vertex u is called the root of μ(G). For n ≥ 2, μn(G) = μ(μn−1(G)).
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Let G = (V, E) be a connected graph, dG(v) the degree of a vertex v in G (or
simply d(v)), and δ(G) the minimum degree of G. The set of neighbors of a vertex v

in G is denoted by NG(v), or briefly, by N (v). More generally for S ⊂ V , NG(S) =
{x | x ∈ V \S, x is adjacent to a vertex in S} denotes the neighbor set of S in G, and a
vertex x in NG(S) is also called a neighbor of S. S′ = {x ′ : x ∈ S} is the twin of S.
G − S denotes the subgraph of G induced by the vertex set of V \S. For X, Y ⊂ V ,
denote by [X, Y ] the set of edges with one end in X and the other in Y .

The connectivity κ(G) of a connected graph G is min{|S| : S ⊂ V , and G − S
is disconnected or reduces to the trivial graph K1}. The edge connectivity λ(G) of
a connected graph G is defined similarly. A graph G is super connected, or simply
super-κ , if every minimum vertex cut is the set of neighbors of a vertex of G, that is
every minimum vertex cut isolates a vertex. Similarly, we can define super-λ graphs.

An obvious inference from the definition of μ(G) is that dμ(G)(x ′) = dG(x) + 1
for all x ∈ V . Consequently, if G is a connected graph, then δ(μ(G)) = δ(G) + 1.

Balakrishnan and Francis Raj [1] investigated the vertex connectivity and edge
connectivity of μ(G). We [3] investigated the vertex connectivity and arc connectiv-
ity of the Mycielskian of a digraph. In this paper, we study the super connectivity
and super edge connectivity of μ(G). It is proved that for a connected graph G with
|V (G)| ≥ 2, μ(G) is super-κ if and only if δ(G) < 2κ(G), and μ(G) is super-λ if and
only if G � K2.

2 Super Connectivity of the Mycielskian

Lemma 2.1 (Balakrishnan and Francis Raj [1]) If G is a connected graph and 0 ≤
i < κ(G), then κ(μ(G)) = κ(G) + i + 1 if and only if δ(G) = κ(G) + i .

Lemma 2.2 (Balakrishnan and Francis Raj [1]) If G is a connected graph, then
κ(μn(G)) = κ(G) + n if and only if δ(G) = κ(G).

Lemma 2.3 (Balakrishnan and Francis Raj [1]) If G is a connected graph, then (i)
κ(μ(G)) = 2κ(G) + 1 if and only if δ(G) ≥ 2κ(G). (ii) κ(μ(G)) = min{δ(G) +
1, 2κ(G) + 1}.

Theorem 2.4 For a connected graph G with |V (G)| ≥ 2, μ(G) is super-κ if and only
if δ(G) < 2κ(G).

Proof Suppose μ(G) is super-κ , but δ(G) ≥ 2κ(G). By Lemma 2.3, κ(μ(G)) =
2κ(G) + 1. But since μ(G) is super-κ , κ(μ(G)) = δ(μ(G)) = δ(G) + 1. Therefore
we have δ(G) = 2κ(G). Hence, for any minimum vertex cut S of G, G − S has no
isolated vertices, and so, for the minimum vertex cut S ∪ S′ ∪ {u} of μ(G), where S′
is the twin of S, μ(G) − (S ∪ S′ ∪ {u}) also has no isolated vertices, a contradiction.

Now suppose δ(G) < 2κ(G) but μ(G) is not super-κ . Then, by Lemma 2.1,
κ(μ(G)) = δ(G) + 1. Then there is a minimum vertex cut S of μ(G) with |S| =
κ(μ(G)) = δ(G) + 1 ≤ 2κ(G) such that μ(G) − S is not connected but has no
isolated vertex.
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Case 1 |V ∩ S| < κ(G). Then G − (V ∩ S) is connected, and each vertex of V ′\S
is adjacent to at least κ(G) vertices of V and so is adjacent to at least one vertex in
V \S. Thus μ(G) − S is connected, which is impossible.

Case 2 |V ∩ S| ≥ κ(G).

Subcase 2.1 u /∈ S. Then (V ′\S) ∪ {u} induces a star in μ(G) − S, say S∗. In
addition, since |S| = κ(μ(G)) = δ(G) + 1 ≤ 2κ(G), we have |V ′ ∩ S| ≤ κ(G).

If |V ′ ∩ S| < κ(G), then each vertex in V \S is adjacent to at least one vertex in
V ′\S (that is, in S∗), and so μ(G) − S is connected, a contradiction.

Otherwise, |V ′∩S| = κ(G), and so |V ∩S| = κ(G). Then |S| = 2κ(G) = δ(G)+1.
If κ(G) > 1, then κ(G) < δ(G). So any vertex in V \S is adjacent to at least one
vertex of V ′\S, and so μ(G) − S is connected, a contradiction. In the other case,
κ(G) = δ(G) = 1, and |S| = 2. Let S = {x, y′}, x ∈ V , and y′ ∈ V ′. Then, for any
vertex z ∈ V − x , either z is adjacent to a vertex in V ′ − y′ or z is adjacent to only
the vertex y′ in V ′. For the latter, the twin y of y′ must be not equal to x (otherwise
μ(G) − S would have an isolated vertex z, contradicting our assumption). Thus zyz′
is a path in μ(G) − S, that is, z is connected by the path zyz′ to one vertex z′ in S∗.
This means that μ(G) − S is connected, again a contradiction.

Subcase 2.2 u ∈ S. Then |V ′ ∩ S| ≤ 2κ(G) − |V ∩ S| − 1, and every vertex z′
in V ′\S is adjacent to at least one vertex in V \S (otherwise, S would isolate z′, a
contradiction).

If G − (V ∩ S) is connected, then μ(G) − S is connected, a contradiction. Hence
G − (V ∩ S) is not connected. Let Ci , C j be any two connected components of
G − (V ∩ S). Each of V (Ci ) and V (C j ) has at least κ(G) neighbors in V ∩ S, and so
both V (Ci ) and V (C j ) have at least 2κ(G) − |V ∩ S| common neighbors in V ∩ S.
Let T be the set of the common neighbors of V (Ci ) and V (C j ) in V ∩ S, and let T ′ be
the twin of T . Then |T ′| = |T | ≥ 2κ(G)−|V ∩ S| > |V ′ ∩ S|, and so there is a vertex
in T ′ adjacent to a vertex of Ci and also a vertex of C j , implying that Ci and C j are
contained in a common connected component of μ(G) − S and so do all connected
components of G − (V ∩ S). Since every vertex z′ in V ′\S is adjacent to at least one
vertex in V \S, the graph μ(G) − S is connected, which is impossible. 
�
Corollary 2.5 If T is a tree with |V (T )| ≥ 2, then μ(T ) is super-κ .

Corollary 2.6 If G is an edge transitive connected graph with |V (G)| ≥ 2, then μ(G)

is super-κ .

Proof If G is an edge transitive graph, then δ(G) = κ(G) < 2κ(G)(we can see [4]),
and so μ(G) is super-κ by Theorem 2.4. 
�
Lemma 2.7 (Mader [5]) If G is a connected graph which is vertex transitive and
K4-free, then δ(G) = κ(G).

Corollary 2.8 If G is a nontrivial connected graph which is vertex transitive and
K4-free, then μ(G) is super-κ .

Corollary 2.9 If G is a connected graph with |V (G)| ≥ 2 and δ(G) = κ(G), then
μn(G) is super-κ .
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Proof Since δ(G) = κ(G) < 2κ(G), by Lemma 2.2, δ(μn(G)) = κ(μn(G)) =
κ(G) + n < 2κ(μn(G)) for n = 1, 2, . . .. By Theorem 2.4, the graph μn(G) is
super-κ for n = 1, 2, . . .. 
�

3 Super Edge Connectivity of the Mycielskian

Lemma 3.1 (Balakrishnan and Francis Raj [1]) If G is a connected nontrivial graph,
then λ(μ(G)) = δ(G) + 1 = δ(μ(G)).

Theorem 3.2 For a connected graph G with |V (G)| ≥ 2, μ(G) is super-λ if and only
if G � K2.

Proof If G = K2, then μ(G) = C5 and we can easily see that μ(G) is not super-λ.
Thus, the necessity is proved. Now we prove the sufficiency.

We assume that μ(G) is not super-λ. According to Lemma 3.1, λ(μ(G)) = δ(G)+
1 = δ(μ(G)). There exists a minimum edge cut F of μ(G) with |F | = δ(G)+1 such
that μ(G) − F is not connected but has no isolated vertex.

Let U be the set of edges incident with u in μ(G). For X ⊆ V and Y ′ ⊆ V ′, let
[X, Y ′] denote the set of the edges with one end vertex in X and the other end vertex
in Y ′, and let [u, Y ′] denote the set of the edges with one end vertex u and the other
end vertex in Y ′.

Claim 1 Let Gi be a connected component of G − (E ∩ F). Then there is a path from
u to a vertex of Gi in μ(G) − F.

Proof Let X ′
i ⊆ V ′ be the set of the neighbors of V (Gi ) in V ′, and U ′

i = [u, X ′
i ]. We

have that |X ′
i | = |U ′

i | ≥ δ(G), 1 ≤ |V (Gi )| ≤ |V | (equation in the last inequality
holds only if G − (E ∩ F) is connected).

Suppose in μ(G) − F there is no path from u to a vertex of Gi . We consider the
following cases.

Case 1 G − (E ∩ F) is not connected. Then |E ∩ F | ≥ 1 and |([V (Gi ), X ′
i ] ∪ U ′

i ) ∩
F | ≤ δ(G). Since |X ′

i | ≥ δ(G) and there is no path from u to a vertex of Gi in
μ(G) − F , |E ∩ F | = 1 and |X ′

i | = |([V (Gi ), X ′] ∪ U ′
i ) ∩ F | = δ(G).

If |V (Gi )| ≥ 2, then Gi contains an edge and |X ′
i | ≥ δ(G) + 1, a contradiction.

Hence |V (Gi )| = 1 and δ(G) = 1. Let V (Gi ) = {xi }, y j is the unique neighbor of xi

in G. Then F = {xi y j , uy′
j }. Since G � K2, |V (G)| ≥ 3, and dG(y j ) ≥ 2, the vertex

y′
j is adjacent to at least one vertex in G − xi . Thus μ(G) − F would be connected,

contradicting our assumption.

Case 2 G − (E ∩ F) is connected. Then |V (Gi )| = |V (G)| = δ(G) + 1 since there
is no path from u to a vertex of Gi in μ(G) − F . Hence, G is a complete graph. Since
G � K2, we have δ(G) ≥ 2. To separate paths from u to a vertex of V , F must be
equal to U . This contradicts the fact that μ(G) − F has no isolated vertex.

Claim 1 is thus proved.

123



Graphs and Combinatorics (2012) 28:143–147 147

Now we can proceed with the proof of Theorem 3.2.
By Claim 1, in μ(G) − F there is a path from u to a vertex of any connected

component Gi of G − (E ∩ F). So V ∪ {u} are contained in a same component of
μ(G)− F . On the other hand, choose x ′ ∈ V ′. Since μ(G)− F has no isolated vertex,
either x ′ is adjacent to a vertex of V in μ(G) − F or x ′u /∈ F , so that also x ′ is in the
component of μ(G) − F containing u. Thus μ(G) − F is connected, a contradiction.

The proof is thus complete. 
�
Corollary 3.3 If G is a connected graph with |V (G)| ≥ 3, then μn(G) is super-λ.

Proof is by induction on n.
Furthermore, we can generalize Theorem 3.2 to the following:

Theorem 3.4 Let G be a graph in which every connected component has at least two
vertices. Then μ(G) is super-λ if and only if G � nK2 ∪ G ′, where every connected
component of G ′ has at least three vertices and n ≥ 1.

By Theorem 3.2, it is easy to see that μ(G) is super-λ if and only if any connected
component of G is not isomorphic to K2.
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