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Abstract We study the effects of atomic beams classical harmonic vibrations of micro
amplitudes and low frequencies perpendicular to the wave vectors of atomic branches
on the mean numbers of atoms arriving at the detectors in an atomic Mach–Zehnder
interferometer, where the two atomic beams are in the same wave surface and have
the same phase. We propose a vibrant factor F to quantitatively describe the effects of
atomic beams vibrations. It shows that: (i) the vibrant factor F depends on the relative
vibrant displacement and the initial phase rather than the absolute amplitude, (ii) the
factor F increases with the increase of the initial phase, and (iii) the frequencies can be
derived from equal time interval measurements of the mean numbers of atoms arriving
at the detectors. These results indicate that it is possible to detect the classical harmonic
vibrations of micro amplitudes and low frequencies by measuring the variations in the
mean numbers of atoms arriving at the detectors.

Keywords Micro amplitudes · Low frequencies · The vibrant factor F ·
An atomic Mach–Zehnder interferometer

1 Introduction

Atoms in an atom interferometer are deliberately given the option of traversing an
apparatus through two or more alternate paths, and then an interference pattern is
observed. Atom interferometers do not need a complex source and are far more sensi-
tive than neutron interferometers because of their considerably large signal. The atom
translational motions are coherently manipulated, where coherently means based on
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the phase of de Broglie wave. Atom interferometers already works with magneto-
optical traps or Bose–Einstein condensates, so atom interferometers are useful tools
for studying quantum mechanical phenomena, probing atomic and material properties
and measuring inertial displacements [1–4]. Atom interferometer is even designed for
the gravitational wave detection [5,6]. A Mach–Zehnder interferometer is a device
to determine the relative phase shift between two collimated beams from a coherent
light source [7,8], for instance one of the two beams is caused by a small sample or
the change in length. An atomic Mach–Zehnder interferometer [9–11] is the simplest
atom interferometer, the interferometers with mechanical gratings have been used to
measure phase due to rotations [12], to study decoherence due to scattering photons
and background gas [13–15], to perform the separated beam experiments with mole-
cules(Na2) [11] and to measure the polarizability of He and He2 [16]. The atomic
Mach–Zehnder interferometer with light gratings has been used to measure the polar-
izability of Li atoms [17–19]. In an atomic Mach–Zehnder interferometer, an auxiliary
interaction grating is inserted and removed from each path to measure the phase shift
due to van der Waals interaction [20].

As we know, a gravitational wave is an extremely weak wave. A plane gravitational
wave with two polarization states travelling in the z direction will deform the particles
around a circle in the xy plane [21], a gravitational wave can be confirmed by measuring
the oscillatory motions hit by a plane gravitational wave [22] (unfortunately, it is not
accepted). In this article we study the detections of the classical harmonic vibrations of
micro amplitudes and low frequencies. The classical harmonic vibrations are simpler
but more fundamental than the oscillatory motions induced by a plane gravitational
wave with two polarization states. We investigate the effects of atomic beams classical
transverse harmonic vibrations of micro amplitudes and low frequencies on the mean
numbers of atoms arriving at the detectors in an atomic Mach–Zehnder interferom-
eter. We expect that the classical harmonic vibrations of micro amplitudes and low
frequencies can be detected by measuring the variations of the mean numbers of atoms
arriving at the detectors. Our methods probably provide a new detection principle for
a gravitational wave. The paper is organized as follows. In Sect. 2 we present how the
atomic beams classical harmonic vibrations of micro amplitudes and low frequencies
affect the mean numbers of atoms arriving at the detectors and derive a vibrant factor
F to quantitatively describe the situation. In Sect. 3 we discuss the main properties of
the vibrant factor F and illustrate how to detect the classical harmonic vibrations by
measuring the variations of the mean numbers of atoms arriving at the detectors. In
Sect. 4 we give a summary.

2 The corrected mean numbers of atoms arriving at the detectors
due to the atomic beams classical transverse harmonic vibrations

We study a thought experiment whereby a stream of atoms are sent through a Mach–
Zehnder interferometer during a measurement time �t , the two branches are in the
paper plane, as shown in Fig. 1. The atoms are split at the beam-splitter 1, follow
the paths α or β, are reflected off the mirrors, and are recombined at the beam-
splitter 2. The atomic branches during the measurement time�t are induced by some
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Fig. 1 Schematic of an atomic Mach–Zehnder interferometer, where phase changes by beam-splitters and
mirrors illustrate accumulated phase shifts in α or β branches, the short solid lines of the atomic branches
denote the collective vibrations induced by a polarized plane harmonic transverse wave. The two atomic
branches are in the same wave surface and have the same phase. The collective vibrant directions are
perpendicular to the wave vectors of the two branches

plane harmonic wave, which makes the atomic branches vibrate perpendicular to
the atomic wave vectors. To realize the expected design, we make a plane harmonic
longitudinal wave perpendicular to the paper plane hit the two atomic branches. As for a
polarized plane harmonic transverse wave, we make the transverse wave perpendicular
to the paper plane be transformed into the shapes of the four branches, and now
the vibrant directions induced by the transverse wave are in the paper plane and
perpendicular to the wave vectors. The reasons why the vibrant directions of the
branches are perpendicular to the wave vectors of the branches are that the collective
classical harmonic vibrations of the branches induced by the plane harmonic wave
fully decouple with the translational motions of the branches and that we can extract
the frequency knowledge of the collective vibrations from the translational motions.
How do we succeed? Please see the following text.

We suppose that the measurement time �t is much smaller than the harmonic
vibration period. The recombined atoms are detected at the upper detector A or the
lower detector B. The atoms are reflected from a beam-splitter surface, they have a
phase shift. Without loss of generality, we take the phase shift to be π/2, one should
know that the actual phase shift depends on the structure of the beam-splitter. After
passing through a beam-splitter, the atom undergoes a phase shift ϕi (i = 1, 2 for the
first and the second beam-splitter respectively), the cumulative effect leads to a wave
function ψa, ψb corresponding to detector A and detector B [23],

ψa = ψ

2
eiθa [1 − e−ik(lα−lβ)] (1)

and

ψb = ψ

2
eiθb [1 + e−ik(lα−lβ)], (2)

where θa = klα −π/2 and θb = klα , and we let ϕ1 = ϕ2 = π . In Eqs. (1) and (2), k is
the atomic wave vector, and lα, lβ are the path lengths through the α and β branches.
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We suppose the flux of the atomic stream is j (the number of atoms per second passing
through a plane), so the number of atoms in the stream during a measurement time
�t is N = j ·�t . An appropriate state vector for i th atom after the recombination by
beam-splitter 2 is a superposition state and is given by

|φ >i= eiθa

2
(1 − e−iϕαβ )|1a, 0b >i +eiθb

2
(1 + e−iϕαβ )|0a, 1b >i , (3)

where we set ϕαβ ≡ k(lα − lβ), and |1a, 0b >, |0a, 1b > denote an atom incident on
detector A or detector B. The state vector of the atomic stream with the number N of
atoms is constructed by a direct product of the individual atomic states, i.e.

|
 >N ≡
N∏

i=1

|ϕ >i .

Now we know that the atomic streams have a collective harmonic vibration with the
same phase induced by some plane harmonic wave and that the vibrant directions are
perpendicular to the wave vectors of the beams, so the collective vibrations do not
couple with the translational motions. The Hamiltonian of atomic streams with the
number N of atoms is given by

H = P2⊥
2M

+ 1

2
M�2x2 +

N∑

i=1

p2
i

2m
, (4)

where M = Nm,m is the mass of one atom, and� is the angle frequency of the plane
harmonic wave. The state vector of the atomic streams is written as

|� >N = |n > ⊗|
 >N = |n > ⊗
N∏

i=1

|ϕ >i (5)

In Eq. (5) |n > is the eigenstate vector of the atomic stream vibrations, the correspond-
ing eigen energy is En = (n + 1/2)h̄�. In this article we suppose that � is so low
that the behaviors of the harmonic vibrations can be regarded as those of a classical
harmonic oscillator.

Let c†
σ,i and cσ,i , where σ = A, B, be the creation and annihilation operators for

the number states |n A, nB >i , and we have the number operators nσ,i = c†
σ,i cσ,i ,

where the eigenvalues n A and nB are 0 or 1. The operator c obeys the commutation
relations cσ i c

†
σ j ± c†

σ j cσ i = δi j , where the plus or minus sign indicates Bose or Fermi
statistics. However, the statistics are neglected in this article, because we suppose that
the density of atomic stream is not large and there is only one atom at a time within a
single coherence length. The number operator Nσ of the atomic stream is given by

Nσ =
N∑

i=1

nσ i (σ = A, B). (6)
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The expectation values 〈Nσ 〉N of these number operators Eq. (6) are written as

N 〈�|NA|�〉N =
∫

�t

〈n|x〉〈x |n〉dx ·
N∑

i=1

∣∣∣∣
1 − e−iϕαβ

2

∣∣∣∣
2

i 〈1A0B |n Ai |1A0B〉i

N 〈�|NB |�〉N =
∫

�t

〈n|x〉〈x |n〉dx ·
N∑

i=1

∣∣∣∣
1 + e−iϕαβ

2

∣∣∣∣
2

i 〈0A1B |nBi |0A1B〉i .

One easily works out the mean numbers of atoms in detector A and detector B during
the measurement time �t [23],

N 〈�|NA|�〉N = N sin2 ϕαβ

2
·
∫

�t

〈n|x〉〈x |n〉dx (7)

N 〈�|NB |�〉N = N cos2 ϕαβ

2
·
∫

�t

〈n|x〉〈x |n〉dx, (8)

where N = j · �t has above been declared. Because the measurement time �t is
much smaller than the vibration period T = 2π/�, the mean numbers of atoms in
detector A or B have a correction F ≡ ∫

�t 〈n|x〉〈x |n〉dx .
We define the corrected coefficient F of the mean numbers of atoms arriving at

the detectors as the vibrant factor F , because it comes from the vibrations induced by
the plane harmonic wave. The vibrant factor F quantitatively describes the effects of
the collective vibrations on the mean numbers of atoms in the detectors and includes
the frequency knowledge of the collective vibrations. From the vibrant factor F , it
becomes probable to confirm the existence of the collective vibrations, especially
the vibrations with very micro amplitudes, by measuring the variations of the mean
numbers of atoms arriving at the detectors. Now we derive the vibrant factor F .
Because of the condition of low frequencies, 〈n|x〉〈x |n〉 can be regarded as a classical
harmonic oscillator probability density. Given α = √

M�/h̄ and ξ = αx , we obtain
the classical vibrant equation of the atomic branches ξ = √

2n + 1 sin(�t +δ), where
n is the vibrant quantum number, δ is the initial phases of the two atomic beams, and√

2n + 1 denotes the absolute amplitude. The classical harmonic oscillator probability
density is w(ξ) = 〈n|ξ 〉〈ξ |n〉 = 1

π
√
(2n+1)−ξ2

, and w(ξ) increases with the increase

of the displacement ξ in ξ ∈ [0,√2n + 1] during one-half period T/2. We do not
consider ξ ∈ [−√

2n + 1, 0] region because of the probability density’s symmetry
between [0,√2n + 1] and [−√

2n + 1, 0], seen from the probability density w(ξ) =
1

π
√
(2n+1)−ξ2

.

We work out F = ∫
�t 〈n|x〉〈x |n〉dx = ∫

�t 〈n|ξ 〉〈ξ |n〉dξ during a very short mea-
surement time �t i.e.

F(δ) =
ξ0+ζ∫

ξ0

w(ξ)dξ = 1

π

[
arcsin

(
ζ√

2n + 1
+ sin δ

)
− δ

]
, (9)
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where ζdenotes the absolute displacement during the measurement time �t , and δ is
the initial phase i.e. ξ0 = √

2n + 1 sin δ with ξ0 denoting the initial displacement at
the initial time t0 = 0. Equation (9) is a fundamental formula in this article, which
was firstly derived in [24]. It is the condition of the measurement time �t 	 T that
makes the integral upper limit and lower limit in Eq. (9) be [ξ0, ξ0 + ζ ] rather than
(−∞,+∞) and lets the relative displacement be very small i.e. 0 < ζ√

2n+1
	 1.

3 The vibrant factor F and the detection of the classical harmonic vibrations
of micro amplitudes and low frequencies with an atomic Mach–Zehnder
interferometer

The factor F versus the initial phase δ is shown in Fig. 2 with the relative displacement
ζ/

√
2n + 1 = 0.05. Here ζ/

√
2n + 1 = 0.05 is not a particular choice but just an

example, that is to say, ζ/
√

2n + 1 can be 0.02, 0.08, 0.1, 0.3 etc., the maximum of
the relative displacement is unity. Actually we study the vibrant factor F during one
period and require the measurement time �t be less than one period T , the shorter
the measurement time �t is, the less the relative displacement ζ/

√
2n + 1 is. Seen

from Eq. (9) and Fig. 2 we observe: (1) The vibrant factor F depends on the relative
vibrant displacement ζ√

2n+1
and the initial phase δ, rather than the absolute vibrant

amplitude
√

2n + 1. This result makes it possible to detect the vibrations of extremely
micro amplitudes by measuring the variations of the mean numbers of atoms. (2)
The vibrant factor F increases with the increase of the initial phase δ. The reason is
that the different initial phases δ corresponds to the different displacements ξ and the
probability density w(ξ) increases with the increase of displacement ξ . We know that
the point (2) is correct from Eq. (9).

During the measurement time �t 	 T the small relative displacement ζ√
2n+1

is much smaller than unity, and the integral upper limit and lower limit in Eq. (9)
is [ξ0, ξ0 + ζ ] rather than (−∞,+∞), so the vibrant factor F is less than unity.
What’s more, the vibrant factor F greatly reduces the mean numbers of atoms in
the two detectors by two orders of magnitude, seen from Eqs. (7) and (8). Given

ζ√
2n+1

= 0.05, we maximally have sin δ = 0.95, i.e. δ � 1.25, due to the fact
ζ√

2n+1
+ sin δ = 1. Substituting δ � 1.25 into F(δ), we obtain that F(δ) maximum

is about 0.1. If ζ√
2n+1

= 1 is satisfied in Eq. (9), we have sin δ = 0. The maximal

value of F(δ) is 0.5, which corresponds to one-half period. In a whole period we
have F(δ) = 1, however, it is a trivial result because we can not extract any useful
information.

Given ζ√
2n+1

= 0.05 in the detection process of the numbers of atoms, the mean
numbers of atoms arriving at the detector A or detector B are given by

N 〈�|NA|�〉N = N sin2 ϕαβ

2
· F(δ)

N 〈�|NB |�〉N = N cos2 ϕαβ

2
· F(δ),
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Fig. 2 The vibrant factor F versus the initial phase δ with the relative displacement ζ/
√

2n + 1 = 0.05
lies in the left panel, and the right panel corresponding to the vibrant factor F is the harmonic amplitude
with time. A dot in the left panel corresponds to a measurement time �t with an initial phase δ, and it
takes different measurement time �t at different phase δ to keep the relative displacement ζ/

√
2n + 1 to

be constant. For instance, dot A and dot B in the left panel have different initial phases and correspond to
different displacements in the right panel. If the relative displacement ζ/

√
2n + 1 is kept to be constant

(the measurement time in dot A is less than the time in dot B i.e.�t < �t ′), the vibrant factor F(A) is less
than F(B) because of the probability in dot A less than the probability in dot B seen from Eq. (9)

where F(δ) = 1
π
[arcsin(0.05 + sin δ) − δ] and N = j · �t . Seen from Fig. 2, the

larger the initial phase δ becomes, the longer measurement time �t it takes to keep
the same relative displacement ζ/

√
2n + 1 = 0.05 to be constant. Maybe it is very

difficult and not practical to use this method to measure the mean numbers of atoms
arriving at the detectors A or B, however, we realize that the vibrant factor F increases
with the increase of the initial phase and has nothing to do with the absolute vibrant
amplitude, as shown in Fig. 2. This fact implies that the measurement of the mean
number variations of atoms arriving at detectors is one of many options to verify
weak vibrations induced by a plane harmonic wave, no matter how small the vibrant
amplitudes are. Theoretically once the left curve F versus the phase is obtained, the
micro classical harmonic vibrations of atomic beams are verified.

The other practical measurement of the mean numbers of atoms arriving at detectors
is equal time interval measurements, i.e. we keep each measurement time �t to be
constant. As shown in Fig. 2, a relative vibrant displacement ζ√

2n+1
contains two

to-and-fro processes in one-half period, so we need to divide the vibrant factor F(δ)
in Eq. (9) by 2. Let the measurement time �t be constant, we surprisedly obtain
F(δ)

2 = �t
T independent of the initial phase δ. The mean numbers of atoms arriving at

the detector A or detector B are given by

N 〈�|NA|�〉N = j ·�t · sin2 ϕαβ

2
· �t

T
(10)
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N 〈�|NB |�〉N = j ·�t · cos2 ϕαβ

2
· �t

T
. (11)

As for the multi-period measurement, we have to replace �t by m�t, T by mT ,
where m is the number of periods. Seen from Eqs. (10) and (11), the vibrant factor
corrections are independent of the number of measurement periods and invariant. If
there is not the vibrations of the atomic branches, the mean numbers of atoms arriving
at the detectors A or detector B are written as [23]

N 〈�|NA|�〉N0 = j ·�t · sin2 ϕαβ

2
(12)

N 〈�|NB |�〉N0 = j ·�t · cos2 ϕαβ

2
. (13)

It is obvious that we can evaluate the frequency of the atomic branches after com-
paring the modified Eqs. (10) and (11) with Eqs. (12) and (13), the mean numbers of
atoms arriving at the detectors have nothing to do with the absolute amplitude, so the
vibrations, even micro-amplitude vibrations, are also verified by the measurement of
the mean numbers of atoms arriving at detectors.

Without considering the harmonic vibrations of the two atomic branches, when the
beams intensity is so low that there is only one atom at a time within a single coherence
length, the quantum noise fluctuations of the detectors are given by [23]

〈�NA,B〉0 =
√

N

2
sin ϕαβ (14)

with N = j ·�t . The relative quantum noise fluctuations are written as

〈�NA〉0

〈NA〉0
= cot ϕαβ2√

N

〈�NB〉0

〈NB〉0
= tan ϕαβ

2√
N

.

If we set ϕαβ ≡ k(lα − lβ) → 0, we obtain 〈�NB 〉0〈NB 〉0
→ 0. For the detector B, the mean

number correction of atoms due to the vibrations of the branches i.e. Eq. (11) is very
obvious. That is to say, the effect of the harmonic vibrations of the two branches is
not submerged in the quantum noise fluctuation of the detector B.

4 Summary

It is shown that detecting the vibrations of micro amplitudes and low frequencies is
possible by measuring the mean numbers variations of atoms arriving at the detectors
during a short time�t in an atomic Mach–Zehnder interferometer. In the condition of
low frequencies the vibrant factor F is proposed. The mean numbers of atoms arriving
at the detectors are corrected by the vibrant factor F . The vibrant factor F depends on
the relative vibrant displacement and the initial phase, rather than the absolute vibrant
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amplitude. The vibrant factor F increases with the increase of the initial phase. The
frequency of the atomic branches can be evaluated from the measurement of the mean
numbers variations of atoms. The quantum noise fluctuations of the detectors are
discussed, the effect of the two branches vibrations on the mean numbers of atoms is
not submerged in the quantum noise fluctuations of the detector B. The present results
maybe provide a new detection principle for a gravitational wave detector. In the weak
gravitational field approximation, space–time is curved in a linearized theory. The
simplest solution is a monochromatic plane wave solution, which amplitudes have
two independent modes of polarization [25]. The deformed motions of a ring of test
particles induced by the plane wave are quadrupole moment vibrations, up to now the
effects of quadrupole moment vibrations of the beams on the mean numbers of atoms
arriving at the detectors are still an open problem.
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