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ABSTRACT Recent studies indicate that caspase-3 has distinct characteristics in postmitotic
and neuronal progenitor apoptosis. Pyramidal neurons in CA1 and CA3 of the hippocampus
become postmitotic during early postnatal development, whereas granule cells in the dentate gyrus
(DG) undergo self-renewal throughout life. The distribution of caspase-3 in the hippocampal sub-
fields during postnatal development is largely unknown. We used immunofluorescent staining for
two isoforms of caspase-3 (an active 17 kDa isoform and an inactive 35 kDa precursor) and the
Hoechst 33342 staining for nuclear chromatin to assess caspase-3 expression in the CA1, CA3, and
DG of rat hippocampus during postnatal development. The expression of active caspase-3 reached
a peak at P7 in CA1, at P2 in CA3, and then decreased with age. Whereas in DG, active caspase-3
expression increased slightly after P7, and remained at high levels for the rest of the investigated
period. Procaspase-3 immunoreactivity was strong at P2 and decreased gradually to a basal
plateau by P21 in the three regions examined. In addition, the number of apoptotic cells in the
three regions all reached maximum levels at P7, and then decreased with age. These data indicate
that there were specific spatio-temporal patterns of expression of active and precursor caspase-3
in the postnatally developing rat hippocampal subregions, and that the activation of caspase-3
in neuronal progenitor cells of DG and that in the postmitotic neurons of CA1 and CA3 may have
distinct roles and mechanisms during postnatal development. Microsc. Res. Tech. 71:633–638,
2008. VVC 2008 Wiley-Liss, Inc.

INTRODUCTION

The mammalian hippocampus plays a central role in
learning and memory (Hussain and Carpenter, 2001).
It contains several distinct neuronal populations, of
which those most frequently studied are the pyramidal
neurons in CA1 and CA3 and the granule cells in den-
tate gyrus (DG). Each of these two types has distinct
temporal characteristics in development. Whereas the
proliferation of pyramidal neurons is largely completed
by birth, that of granule cells in DG continue to
undergo self-renewal throughout life (Gould and Tana-
pat, 1999; Lu et al., 2005). Apoptosis, a type of pro-
grammed cell death (PCD), is widely accepted as a
prominent event during development of the nervous
system (White and Barone, 2001). Apoptotic cell death
is executed via molecular pathways that are mediated
by activation of cysteine protease caspase family. Cas-
pase-3, a key effector caspase, is strongly implicated in
neuronal apoptosis (Sophou et al., 2006). Epistatic
genetic analysis has revealed that the function of cas-
pase-3, in the apoptosis of neuronal progenitor cells, is
distinct from the classical role of PCD in postmitotic
neuronal population (Kuan et al., 2000; Roth et al.,
2000). Evidence also indicates that the alteration of
active caspase-3 is not the result of the alteration of
precursor caspase-3 in the brain of the developing rat
(Mooney and Miller, 2000).

In the present study, we evaluated whether caspase-
3 has different functions in neurons of CA1, CA3, and
DG during postnatal development by determining the

expression of active caspase-3 and procaspase-3 in
these regions with immunofluorescence methods.

MATERIALS ANDMETHODS
Animals and Tissue Preparation

Wistar rats (n 5 32) were used in this study. Rats
were harvested on postnatal day (P) 0 (the day of
birth), P2, P4, P7, P14, P21, P28, P56 (n 5 4 for each
age). Rats were rapidly decapitated, and their brains
were carefully dissected. Consecutive coronal sections,
25 lm, were cut from each brain on a freezing microtome
(CM1850, Leica, Mannheim, Germany). For selected
sections and delineation of the contours and rostral and/
or caudal borders of the hippocampus, the atlas of
Paxinos andWatson (2005) was used as a reference.

Immunofluorescence

The expression of active caspase-3 and procaspase-3
and Hoechst 33342 staining were evaluated on adja-
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cent tissue sections. For each method, sections from all
time points were stained simultaneously to ensure uni-
form conditions for subsequent quantitative analysis.

Active Caspase-3 and Caspase-3

Sections were fixed in ice-cold 4% paraformaldehyde
(10 min), rinsed in phosphate-buffered saline (PBS),
and permeabilized in PBS containing 0.3% Triton X-
100 (30 min, RT). All reagents and incubations were in
PBS containing 0.3% Triton X-100 and 0.3% horse se-
rum. Sections were blocked (3% horse serum in PBS,
30 min, RT) and incubated overnight (48C) with pri-
mary antibodies: active caspase-3 (polyclonal rabbit
active caspase-3, 1:500; Sigma, Saint Louis, MO),
which detected only the cleaved p17 fragment of cas-
pase-3, or caspase-3 (polyclonal rabbit caspase-3, 1:50;
Cell Signaling Technology, Beverly, MA), which
detected endogenous levels of full length caspase-3 (35
kDa) and the large fragment of caspase-3 resulting
from cleavage (17 kDa). After thorough washing, sec-
tions were incubated with Alexa Fluor1 488-conju-
gated goat antirabbit IgG (1:500; Molecular Probes,
Eugene, OR) for 2 h (RT). Control sections in which pri-
mary antibodies or secondary antibodies were omitted
showed no labeled cells.

Hoechst Staining

Cell apoptosis was examined by bisbenzimide
(Hoechst 33342) (Sigma) staining. Following immuno-
fluorescent staining, sections were rinsed in PBS, and
incubated with Hoechst 33342 (1:1000 in PBS) for 15
min in the dark. After thorough washing, sections were
mounted in antifading medium. Apoptotic cells were
identified as those showing nuclear pyknosis. The rela-
tive number of apoptotic versus total number of cells
was measured in at least five randomly chosen micro-
scopic fields (4003 magnification).

Quantitative Analysis

To define the boundaries of hippocampus in the
study, we used the atlas of Paxinos and Watson (2005)
as a reference. For animals of early postnatal ages (P0
� P7), sections for analysis were collected at 100 lm
intervals; for animals of later postnatal ages (P14 �
P56), sections were collected at 200 lm intervals. Areas
of interest, CA1 and CA3 pyramidal neuronal layer
and DG granule cell layer, were observed with a Leica
fluorescence microscope (DM 5000 B; Leica) with exci-
tation and emission wavelengths of 470 and 525 (Alexa
Fluor1 488) and 340 and 425 nm (Hoechst 33342),
respectively. Images were obtained with Leica applica-
tion suite (version 2.20) and analyzed with Leica imag-
ing systems (Leica QWin Standard V2.2). Immunofluo-
rescence intensity of selected areas of tissues (CA1,
CA3, or DG) was evaluated with imaging software. The
frequency of apoptotic cells was expressed as the pro-
portion of apoptotic cells per 1,000 cells. All reported
values are expressed as mean 6 S.E.M., for the differ-
ent age groups examined.

Statistical Analysis

The nonparametric Kruskal-Wallis tests were used
to evaluate age-dependent differences in all groups, fol-
lowed by the Mann-Whitney U test to determine signif-
icant differences between specific groups. Correlation

analyses were performed using Pearson’s correlation
coefficient (rp). All statistics were carried out using
SPSS software (V 11.5).

RESULTS
Expression of Active Caspase-3 in

Hippocampal Cells

The active caspase-3 was expressed in CA1, CA3,
and DG during development (Fig. 1), but temporal
shifts were apparent as differences among the regions
were observed (Fig. 2). In CA1, active caspase-3 expres-
sion increased gradually, reached a plateau at P7 (P <
0.05 versus P4), after which the intensity decreased
with age. In CA3, active caspase-3 expression reached
a peak at P2 (P < 0.05 versus P0), and then decreased.
In DG, the expression of active caspase-3 increased
from P0 to P4, after which it showed a transient reduc-
tion. After P7, caspase-3 expression increased again,
reaching a maximum at P14 (P < 0.05 versus P7). After
P14 it was only slightly decreased and stayed at such a
level for the rest of the period investigated.

Expression of Caspase-3 in Hippocampal Cells

Caspase-3 is normally expressed in many mamma-
lian cells as inactive precursors (Roth and D’sa, 2001).
The polyclonal rabbit caspase-3 antibody detected en-
dogenous levels of full length caspase-3 (35 kDa). The
cleaved 17 kDa fragment of caspase-3 was not detected
by immunofluorescence and western blot (data not
shown) in our study. Although different from the
expression of active caspase-3, the expression of pro-
caspase-3 in CA1, CA3, and DG during development
followed similar time courses (Figs. 3 and 4). For all
regions, a high expression of procaspase-3 at P2 (P <
0.05 versus P0) was followed by a reduction during the
second postnatal week to a basal plateau by P21. But
the relationship between active caspase-3 expression
and procaspase-3 expression in these regions was com-
plex. The expression of active caspase-3 did not corre-
late with that of procaspase-3 in CA1 (rp 5 0.57; P 5
0.14) and DG (rp 5 20.48; P 5 0.22). Only in CA3,
there was a positive correlation between the expression of
active caspase-3 and procaspase-3 (rp5 0.92; P5 0.01).

Apoptosis in Hippocampal Cells

Hoechst 33342 is a cell fluorescent permeable dye
with an affinity for DNA. It allows a detailed analysis
of nuclear morphology for evaluation of cell death
(Bonde et al., 2005). Hoechst 33342-stained nuclei dis-
playing pyknosis were identified as apoptotic cells. In
CA1, CA3, and DG, the number of apoptotic cells
increased after birth, reached at a maximum at P7 (P
< 0.05 versus P4), and then decreased with age (Figs. 5
and 6). The alteration of apoptotic cells coincided with
the expression of active caspase-3 in CA1 (rp 5 0.71; P
5 0.04), but not in CA3 (rp 5 0.04; P 5 0.92) and DG.
(rp 5 0.18; P 5 0.66). In DG, the number of apoptotic
cells decreased after P7, whereas the expression of
active caspase-3 increased slightly after P7, and
remained at a high level during postnatal develop-
ment.

DISCUSSION

The salient finding of the present work is the dispro-
portion in the high level of expression of active cas-
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pase-3 versus the weak expression of procaspase-3 in
DG of postnatal rats after P14. In contrast to DG, the
expression of active caspase-3 showed a continuous
reduction after P7, with very low expression of procas-
pase-3 in CA1 and CA3.

Caspase-3 is normally expressed in many mamma-
lian cells as inactive precursors. In order to be effec-
tive, the inactive form of caspase-3, a 32-35 kDa pro-
tein, must be cleaved into a short (12 kDa) and a long
(17–20 kDa) subunit. Active caspases initiate a process
by which various cellular substrates are cleaved. The

later process further leads to the ultrastructural
changes of the cells that typify apoptosis (Mooney and
Miller, 2000; Zio et al., 2005). Apoptosis in the develop-
ing nervous system is an essential process. Grossly,
two general populations die during neuronal develop-
ment: neuronal precursors and postmitotic neurons
(Ryan and Salvesen, 2003; Troy and Salvesen, 2002).
The dentate gyrus is one of the few areas of the rat
brain that continues to generate new neurons well af-
ter birth (Li and Pleasure, 2007). The pyramidal neu-
rons in CA1/CA3 become postmitotic during early post-

Fig. 1. Photomicrographs of active caspase-3 immunofluorescent staining (green) in hippocampus
and cell nuclei stained with Hoechst 33342 (blue) during postnatal development. Scale bar 5 2,000 lm.

Fig. 2. Liner diagram illustrating the expression of active caspase-3 in CA1, CA3, and DG of hippo-
campus during postnatal development. Values are expressed as mean 6 S.E.M. (n 5 4 animals per
age).
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natal development (Gage et al., 1998). We are of the
view that the difference between the expression of
active caspase-3 in neurons in DG and CA1/CA3 during
postnatal development may be due to the different
functions of caspase-3 in the apoptosis of neuronal pro-
genitor cells and postmitotic neurons. Apoptosis is
principally regulated by the Bcl2 family of proteins
(pro- and antiapoptotic molecules), the adaptor protein
Apaf1 and the cysteine protease caspase family. But
the Bcl2-family proteins Bax and Bcl-XL are not
involved in the caspase-3-mediated early progenitor
cell death (Kuan et al., 2000; Roth et al., 2000). In addi-
tion, the peak of active caspase-3 expression in CA3

appeared earlier than that in CA1. It might be due to
the fact that neurons in CA1 and CA3 possess different
functions, and display different temporal pattern in de-
velopment. It is known that CA1 pyramidal cells were
the most susceptible to ischemia (Ferrand-Drake,
2001; Nikonenko and Skibo, 2004; Zhang et al., 2005).
While the CA3 subregion was highly sensitive to brain
trauma, status epilepticus, protein hyperphosphoryla-
tion and endocrine-disruption (Chuang et al., 2007;
Madden et al., 2007; Shah et al., 2006).

Interestingly, the results of the present study dem-
onstrated that the expression of active caspase-3 was
asynchronous with procaspase-3. In an earlier study,

Fig. 3. Photomicrographs of procaspase-3 immunofluorescent staining (green) in hippocampus and
cell nuclei stained with Hoechst 33342 (blue) during postnatal development. Scale bar 5 2,000 lm.

Fig. 4. Liner diagram illustrating the expression of procaspase-3 in CA1, CA3, and DG of hippocam-
pus during postnatal development. Values are expressed as mean6 S.E.M. (n5 4 animals per age).
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it had been shown that the alteration of active cas-
pase-3 was not the result of the alteration of precur-
sor caspase-3 in the developing rat brain, for the
expression of the 32 kDa isoform of caspase-3 had a
significant temporal delay when compared with the
20 kDa isoform (Mooney and Miller, 2000). However,
our results showed that the expression of active cas-
pase-3 remained at a high level in DG during post-
natal development, whereas the expression of precur-
sor caspase-3 decreased after P2, suggesting that the
relationship between the two isoforms is quite com-
plex.

To elucidate further, the relationship between active
caspase-3 and apoptotic cell death in CA1, CA3, and
DG, we employed Hoechst 33342 staining of nuclear
chromatin. The apoptotic cell death in these regions
observed in this study coincides with that previously
reported by Gould and Tanapat, (1999) and Rahimi
and Claiborne (2007), reaching a high level at P7, and
decreasing with age. Although caspase-3 activation has
been regarded as a hallmark of apoptosis (Cohen, 1997;
Sophou et al., 2006), surprisingly, we observed that the
expression of active caspase-3 increased slightly after

P7 in DG. In light of the present finding, caspase activ-
ity may need to be reassessed as the main determinant
for assaying whether cells die by apoptosis. Recent
studies showed that cells survived despite the presence
of activated caspases in their cytoplasm (Zeuner et al.,
1999), indicating that caspase activation did not
always lead to cell death, but might be important for
cell differentiation (Abraham and Shaham, 2004), cell
proliferation and cell-cycle progression (Los et al.,
2001; Schulze-Osthoff and Schwerk, 2003), remodeled
synaptic contacts (Kudryashov et al., 2001), and synap-
tic plasticity (Mattson et al., 2000).

In conclusion, our data indicate that active caspase-3
maintains a high levels of expression, which is asyn-
chronous with procaspase-3 and apoptotic cell death in
DG during postnatal development. These results sug-
gest that caspase-3 may play a specific function in neu-
ronal progenitor cells of DG, which is different from
the function in pyramidal neurons of CA1/CA3 in post-
natal developing rat hippocampus. Taken together
with previous studies, the present findings suggested
that activation of caspases did not represent an irre-
versible commitment to physiological cell death. Other

Fig. 6. Liner diagram illustrating the frequency of apoptotic cells in CA1, CA3, and DG of hippo-
campus during postnatal development. The frequency was determined as the proportion of apoptotic
cells per 1,000 cells. Values are expressed as mean 6 S.E.M. (n 5 4 animals per age).

Fig. 5. Higher magnification views of active caspase-3 expression (green) in CA1, CA3, and DG of
hippocampus and cell nuclei stained with Hoechst 33342 (blue) during postnatal development. Scale
bar 5 20 lm.
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novel factors, possibly related to signal-transduction
mechanisms, may be at play for activating caspase-3 in
proliferative regions, such as DG, during postnatal de-
velopment.
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