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1 Introduction

All groups in this paper are finite and G always stands for a group. H < G means that H is a proper

subgroup of G. The other notations and terminologies in this paper are standard (see [13]).

Let Σ be an abstract group theoretical property, for example, solvability, nilpotency, supersolvability,

p-close, etc. Following Chen [7], if all proper subgroups and all proper quotient groups of a group G have

the property Σ but G does not have the property Σ, we say that G is an inner-Σ-group and an outer-

Σ-group, respectively. If G is both an inner-Σ-group and an outer-Σ-group, then G is called a minimal

non-Σ-group. The inner-Σ-groups here are also called minimal non-Σ-groups in [18, p. 258] or [5], or

critical groups or S-critical groups for the class of Σ-groups in [10, VII, 6.1] or [6, p. 252], respectively,

and the outer-Σ-groups here are just the groups in the boundary or Q-boundary of Σ in [10, III, 2.1]

or [6, 2.3.6].

Theorem 1.1. (see [7, Theorem 0.6]) Let G be a group and {1} be a Σ-group. Suppose that G is not

a Σ-group. Then there must exist a subgroup G0 and a quotient group G of G such that G0 and G are

an inner-Σ-group and an outer-Σ-group, respectively.

This is an obvious result, but it shows the importance of inner-Σ-groups and outer-Σ-groups in the

group theory. The properties of a group may be refracted by its proper subgroups and quotient groups.

In fact, in the research of the group theory, subgroups and quotient groups have central importance.

The proof of some results in the group theory often tends to the analysis of inner-Σ-groups and outer-

Σ-groups. And many problems are often solved by using the analysis of a minimal counterexample. For
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many properties Σ, the minimal counterexample of the assertion “G is a Σ-group” is just an inner-Σ-

group or an outer-Σ-group. Hence many people are interested in the research of inner-Σ-groups and

outer-Σ-groups. After Miller and Moreno [16] gave the structure of inner-abelian-groups, many people

took part in the classification of inner-Σ-groups and outer-Σ-groups for a property Σ. For example,

Schmidt [19] and Rédei [17] studied inner-nilpotent groups, and Doerk [9] studied inner-supersolvable

group, with a complete description given by Ballester-Bolinches and Esteban-Romero [5]. These results

have an independent interest and are also a powerful tool in the theory of groups.

Our purpose in this paper is to generalize the concepts of inner-Σ-groups and outer-Σ-groups and

obtain a common way to prove different problems in the theory of groups. We give the concepts of inner-

Σ-Ω-groups, outer-Σ-�-groups and some basic results in Section 2 and obtain some interesting results as

applications of inner-Σ-Ω-groups method in Sections 3.

2 Minimal inner-Σ-Ω-groups and outer-Σ-�-groups

Let G be a group. Ω is a functor that associates with every group G, a family Ω(G) of subgroups of G

such that if ϕ : G1 → G2 is an isomorphism of groups, then H ∈ Ω(G1) if and only if ϕ(H) ∈ Ω(G2),

and � is a functor that associates with every group G, a family �(G) of quotients G/N of G such that

if ϕ : G1 → G2 is an isomorphism of groups, then G1/N ∈ �(G1) if and only if G2/ϕ(N) ∈ �(G2).

Definition 2.1. (1) A group G is called an inner-Σ-Ω-group if the following statements hold.

(i) G is not a Σ-group but every element of Ω(G) is a Σ-group.

(ii) For every proper subgroup H of G, the condition that every element of Ω(H) has the property Σ

implies that H has the property Σ.

(2) A group G is called an outer-Σ-�-group if the following statements hold.

(i) G is not a Σ-group but every element of �(G) is a Σ-group.

(ii) For every proper quotient group G of G, the condition that every element of �(G) has the property

Σ implies that G has the property Σ.

(3) If Φ(G) = 1 and G is an inner-Σ-Ω-group and an outer-Σ-�-group, then G is called a minimal

inner-Σ-Ω-group and a minimal outer-Σ-�-group, respectively.

If Ω(G) (respectively, �(G)) is empty for every group G and T is an inner-Σ-Ω-group (respectively, an

outer-Σ-Ω-group), then we think that every proper subgroup (respectively, every proper quotient group)

of T has the property Σ. Obviously, if Ω(G) (respectively, �(G)) are the sets of all proper subgroups

(respectively, all proper quotient groups) of a groupG, then the inner-Σ-Ω-groups (respectively, the outer-

Σ-Ω-groups) are exactly the inner-Σ-groups (respectively, the outer-Σ-groups), and the inner-Σ-Ω-group

and outer-Σ-�-group are exactly minimal non-Σ-group.

For example, taking Σ to be supersolvable, we obtain the conceptions of inner-supersolvable, outer-

supersolvable, minimal inner-supersolvable group and minimal outer-supersolvable group, respectively.

First, we have also the following obvious result.

Theorem 2.1. Let G be a group. Suppose that the identity group {1} is a Σ-group. Assume that G is

not a Σ-group. Then there must exist a subgroup G0 and a quotient group G of G such that G0 and G

are an inner-Σ-Ω-group and an outer-Σ-�-group, respectively.

Next, we consider the relations between inner-Σ-Ω-groups and inner-Σ-groups and between outer-Σ-

�-groups and outer-Σ-groups. We have the following results.

Theorem 2.2. Let G be a group. Suppose that Ω(H) ⊆ Ω(G) for any subgroup H of G. Then G is

an inner-Σ-Ω-group if and only if G is an inner-Σ-group; moreover, G is a minimal inner-Σ-Ω-group if

and only if G is a minimal inner-Σ-group.

Proof. The sufficiency of the theorem is obvious. We only need to prove the necessity of the theorem. Let

G be an inner-Σ-Ω-group, H be an arbitrary proper subgroup of G. For A ∈ Ω(H), since Ω(H) ⊆ Ω(G),

A is a Σ-group. By Definition 2.1, H is a Σ-group. By the arbitrariness of H , G is an inner Σ-group. �
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Theorem 2.3. Let G be a group. Suppose that �(G) ⊆ �(G) for any quotient group G of G. Then G

is an outer-Σ-�-group if and only if G is an outer-Σ-group; moreover, G is a minimal outer-Σ-�-group

if and only if G is a minimal outer-Σ-group.

Proof. We only need to prove the necessity of the theorem. Let G be an outer-Σ-�-group, N be an

arbitrary non-trivial normal subgroup of G and G = G/N . For every element G/A of �(G), since

�(G) ⊆ �(G), G/A is a Σ-group. By the definition of outer-Σ-�-groups, G is a Σ-group. Hence G is an

outer Σ-group. �

Let Σ be an abstract group theoretical property. The property Σ is called subgroup closed (respectively,

quotient group closed) if a group G has the property Σ, it implies that every subgroup (respectively, every

quotient group) of G has the property Σ. Ω(H) � Ω(G) means that for any L ∈ Ω(H), there exists an

element ˜L ∈ Ω(G) such that L � ˜L.

Theorem 2.4. Let G be a group and Σ be a subgroup closed. Suppose that Ω(H) � Ω(G) for any

subgroup H of G. Then G is an inner-Σ-Ω-group if and only if G is an inner-Σ-group; moreover, G is a

minimal inner-Σ-Ω-group if and only if G is a minimal inner-Σ-group.

Proof. The sufficiency of the theorem is obvious. We only need to prove the necessity of the theorem.

Let G be an inner-Σ-Ω-group, and H be an arbitrary proper subgroup of G. For each element A of

Ω(H), since Ω(H) � Ω(G), there exists L ∈ Ω(G) such that A � L. Since Σ is a subgroup closed, A is a

Σ-group. By Definition 2.1, H is a Σ-group. By the arbitrariness of H , G is an inner-Σ-group. �

Theorem 2.5. Let G be a group and Σ be a quotient group closed. Suppose that G is an inner-Σ-Ω-

group, Φ(G) = 1 and Ω(H) ⊆ Ω(G) for any subgroup H of G, then G is also an outer-Σ-group.

Proof. Suppose that 1 < N �G such that G/N = G is not a Σ-group. Let S be a subgroup of G such

that G = 〈S,N〉. Then G = SN and G/N = SN/N ∼= S/S ∩N is not a Σ-group. Since Σ is a quotient

group closed, S is not a Σ-group. If S < G, since G is an inner-Σ-Ω-group and Ω(S) ⊆ Ω(G), it is easy

to get that S is a Σ-group, a contradiction. Hence S = G and so N � Φ(G) = 1, a contradiction. This

contradiction shows that G is a Σ-group. Hence G is an outer-Σ-group. �

Corollary 2.1. Suppose that G is an inner-nilpotent-Ω-group and Ω(H) � Ω(G) for any subgroup H

of G. Then

(1) |G| = paqb, where p and q are primes.

(2) G has a normal Sylow q-subgroup Q; if q > 2, then exp(Q) = q and if q = 2, then exp(Q) � 4; G

has a cyclic Sylow p-subgroup P = 〈a〉.
(3) Let c ∈ Q, then c is a generator of Q if and only if [c, a] 
= 1.

(4) If c is a generator of Q, then [c, a] = c−1ca is also a generator of Q.

(5) If c is a generator of Q, then Q = 〈c, ca, . . . , ca
p−2

, ca
p−1〉, namely, Q = 〈[c, a], [c, a]a, . . . ,

[c, a]a
p−1〉.

Proof. By Theorem 2.4, G is an inner-nilpotent group. By [7, Theorem 1.1], it is easy to see that the

result is true. �

By Theorem 2.4, if G is a minimal inner-supersolvable-Ω-group and Ω(H) � Ω(G) for any subgroup

H of G, then G is also a minimal inner-supersolvable group. By [7, pp. 49–51, Theorem 7.3], the minimal

inner-supersolvable groups belong to six classes. In this paper, we denote by Gt a generic group in the

t-th class. Then Gt may be described in the following Corollary 2.2.

Corollary 2.2. Suppose that G is a minimal inner-supersolvable-Ω-group and Ω(H) � Ω(G) for any

subgroup H of G. Then G is isomorphic to a group Gi in one of the following classes, where 1 � i � 6.

(I) G1 is a minimal nonabelian group and |G1| = pqβ, where p � q − 1, β � 2.

(II) G2 = 〈a, c1〉 and |G2| = pαrp and pα−1‖r − 1, where α � 2, ap
α

= cr1 = cr2 = · · · = crp = 1;

cicj = cjci; c
a
i = ci+1, i = 1, 2, . . . , p− 1; cap = ct1, the exponent of t modulo r is pα−1.

(III) G3 = 〈a, b, c1〉 and |G3| = 8r2 and 4 | r − 1. a4 = cr1 = cr2 = 1, a2 = b2, ba = a−1b, ca1 = c2,

ca2 = c−1
1 , cb1 = cs1, c

b
2 = cs2, the exponent of s modulo r is 4.
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(IV) G4 = 〈a, b, c1〉 and |G4| = pα+βrp and pmax{α,β} | r − 1, where β � 2. ap
α

= bp
β

= cr1 = cr2 =

· · · = crp = 1; cicj = cjci, ab = b1+pβ−1

a; cai = ci+1, i = 1, 2, . . . , p− 1; cap = ct1, c
b
i = cu

1+ipβ−1

i , i = 1, 2,

. . . , p; the exponents of t and u modulo r are pα−1 and pβ, respectively.

(V) G5 = 〈a, b, c, c1〉 and |G5| = pα+β+1rp and pmax{α,β} | r − 1. ap
α

= bp
β

= cp = cr1 = cr2 = · · · =
crp = 1; cicj = cjci, ba = abc, ca = ac, cb = bc, cai = ci+1, i = 1, 2, . . . , p − 1; cap = ct1, cci = cui ,

cbi = cvu
p−i+1

i , the exponents of t, v and u modulo r are pα−1, pβ and p, respectively.

(VI) G6 = 〈a, b, c1〉, |G6| = pαqrp and pαq | r − 1, p | q − 1, α � 1. ap
α

= bq = cr1 = cr2 = . . .= crp = 1;

cicj = cjci, i, j = 1, 2, . . . , p; cai = ci+1, i = 1, 2, . . . , p− 1; cap = ct1; b
a = bu, cbi = cv

ui−1

i , i = 1, 2, . . . ,

p; the exponent of t and v modulo r are pα−1 and q, respectively; the exponent of u modulo q is p.

Lemma 2.1. Let G be a group. Suppose that G has a unique minimal normal subgroup N and N is

solvable. If Φ(G) = 1, then

(a) G = AN and A ∩N = 1, where A is a maximal subgroup of G.

(b) Assume that G′ is nilpotent. Then A is a cyclic subgroup.

Proof. By [7, p. 34, Main Lemma], the result is true. �

3 The join of a pair of conjugate subgroups

In [2], Aschbacher and Guralnick proved that any group G is generated by a pair of conjugate solvable

subgroups and so a group G is determined by some join 〈H,Hg〉. This motivates the search for group

properties Σ which can be characterised by the fact that every subgroup generated by two conjugate

subgroups satisfies the property Σ. And this result also tells us that we should consider some special

subgroups.

Let G be a group. The famous Baer theorem [3] shows that x ∈ Op(G) if and only if 〈x, xg〉 is a

p-subgroup for every g ∈ G, where x is a p-element of the group G. In this paper, we investigate the

properties of G from the properties of the subgroups which are generated by two conjugate elements. We

get many interesting results and improve also some results of Baer and Thompson.

Let Ω2(G) = {〈a, ag〉 | a, g ∈ G}. Then Ω2(G) = {〈A,Ag〉 | g ∈ G, A is a cyclic subgroup of G}. We

have the following Proposition 3.1.

Proposition 3.1. Let G be a group and Σ a group theoretical property.

(1) Suppose that Σ is a subgroup closed and H � G. If every element in Ω2(G) has the property Σ,

then for any K ∈ Ω2(H), K also has the property Σ.

(2) Suppose that Σ is a quotient group closed and N �G. If every element in Ω2(G) has the property

Σ, then for any K ∈ Ω2(G/N), K also has the property Σ.

Proof. (1) is clear. We only need to prove (2). Let H/N be a cyclic subgroup of G/N , then H = 〈xN〉.
By the hypothesis, 〈x, xg〉 has the property Σ for all g ∈ G. Since 〈H/N, (H/N)gN 〉 = 〈x, xg〉N/N ∼=
〈x, xg〉/〈x, xg〉 ∩N for all g ∈ G, the group 〈H/N, (H/N)gN 〉 has the property Σ. Hence (2) is true. �

Lemma 3.1. Let G be a group. Suppose that G is isomorphic to an inner-nilpotent group or G2. Then

there exist a cyclic subgroup H of G and g ∈ G such that 〈H,Hg〉 = G.

Proof. Assume that G is isomorphic to an inner-nilpotent group. Using the same description as in

Corollary 2.1, G = PQ, where P = 〈a〉. We choose H = P and g = c, where c is a generator of Q. Then

(a−1)c ∈ 〈H,Hc〉, so [c, a] = (a−1)ca ∈ 〈H,Hc〉, thus a, [c, a], [c, a]a, . . . , [c, a]ap−1

belong to 〈H,Hc〉. By
Corollary 2.1 (4) and (5), we have 〈H,Hc〉 = G.

Assume that G is isomorphic to G2. We use the same description as in Corollary 2.2. Let P ∈ Sylp(G).

We choose H = P = 〈a〉 and g = c1, then (a−1ac1)−1 = c−1
1 c2 ∈ 〈H,Hc1〉, so (c−1

1 c2)
a = c−1

2 c3 ∈
〈H,Hc1〉, thus c−1

1 c2c
−1
2 c3 = c−1

1 c3 belongs to 〈H,Hc1〉. Similarly, c−1
1 c4, c

−1
1 c5, . . . , c

−1
1 cp belong to

〈H,Hc1〉. Then (c−1
1 cp)

a = c−1
2 ct1 ∈ 〈H,Hc1〉, so c−1

1 c2c
−1
2 ct1 = ct−1

1 ∈ 〈H,Hc1〉. Since the exponent of
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t modulo r is pα−1 and α � 2, we get (t − 1, r) = 1, thus c1 ∈ 〈H,Hc1〉. Hence a, c1, . . . , cp belong to

〈H,Hc1〉. We have 〈H,Hc1〉 = G. Thus this result is true. �

3.1 Nilpotent groups and an improvement of Baer’s theorem

Let Z be a complete set of Sylow subgroups of a group G, that is, for each prime p dividing the order of

G, Z contains exactly one Sylow p-subgroup of G (see [1]). Let Z ∩E={P∩E |P ∈Z}. Let S be a class

of groups. If there is not the section in a group G to be isomorphic to a member of S, then G is called

S-free. Let F1 denote the set of the inner-abelian groups of order pqr described in [7, Theorem 1.5].

Theorem 3.1. Let G be a group and Z be a complete set of Sylow subgroups of G. Suppose that E is

a normal subgroup of G such that G/E is nilpotent and G is F1-free. If for every cyclic subgroup C of

every Sylow subgroup of E contained in a member of Z ∩E, 〈C,Cg〉 is nilpotent for all g ∈ G, then G is

nilpotent.

Proof. Assume that the result is false, and let G be a counterexample with least |G|+ |E|.
Let H < G. Of course, H is F1-free. Obviously, H/H ∩E ∼= HE/E is nilpotent. Let K = H ∩E and

Kp be a Sylow p-subgroup of K. Then Z = {Kp | p ∈ π(K)} is a complete set of Sylow subgroups of K.

Assume that C is a cyclic subgroup of Kp. Since K � E, there exists a x ∈ E such that Cx � P ∩ E

where P ∈ Z. By the hypothesis, 〈Cx, Cxg〉 is nilpotent for all g ∈ G, then 〈C,Cgx−1 〉 is nilpotent for all
g ∈ G. One can check easily that τ : G → G defined by τ(g) = gx

−1

, where g ∈ G, is a bijective map.

Since gx
−1

runs over G as g does for a fixed x, we get 〈C,Cu〉 is nilpotent for all u ∈ G. Hence H and

its normal subgroup K satisfy the hypothesis. By the minimal choice of |G| + |E|, H is nilpotent. By

Corollary 2.1, we may assume that G = P ∗Q, where Q is a normal Sylow q-subgroup of G and P ∗ is a

cyclic Sylow p-subgroup of G.

Suppose that N is a normal subgroup of G. We shall prove that (G/N,EN/N) satisfies the hypothesis.

Clearly, (G/N)/(EN/N) ∼= G/EN is nilpotent and G/N is F1-free. Let H/N be a cyclic subgroup

of a Sylow subgroup of EN/N ∩ ZN/N . Then we may assume that H = 〈xN〉 and 〈x〉 is a cyclic

subgroup of a Sylow subgroup in E ∩ Z. By the hypothesis, 〈x, xg〉 is nilpotent for any g ∈ G. Since

〈H/N, (H/N)gN 〉 = 〈x, xg〉N/N ∼= 〈x, xg〉/〈x, xg〉∩N , the group 〈H/N, (H/N)gN 〉 is a nilpotent subgroup
of G/N for all g ∈ G. Then (G/Φ(G), EΦ(G)/Φ(G)) satisfies the hypothesis of the theorem. The

minimality of |G| + |E| implies that G/Φ(G) is nilpotent and so is G, a contradiction. Thus Φ(G) = 1.

By [7, Theorem 1.5], G ∈ F1, again, a contradiction. This shows that there exists no counterexample,

therefore the result is true. �

Remark 3.1. The condition of “G is F1-free” cannot be removed. For example, let G = S3. We

choose E = A3, then the pair (S3, A3) satisfies the hypothesis of Theorem 3.1. Nevertheless, S3 is not

nilpotent.

Corollary 3.1. Let G be a group. Then G is nilpotent if and only if for every cyclic subgroup H of G

with prime power order, 〈H,Hg〉 is nilpotent for all g ∈ G.

Proof. We only need to prove the sufficiency. Suppose that G is a minimal counterexample. Then for

every proper subgroup H of G, since every element in Ω2(H) is nilpotent, H is nilpotent. Hence G is an

inner-nilpotent group. By Lemma 3.1, there exists a cyclic subgroupH and g ∈ G such that G = 〈H,Hg〉,
thus G is nilpotent by the hypothesis, a contradiction. This contradiction completes the proof of this

corollary. �

3.2 Supersolvable groups and the join of a pair of conjugate cyclic subgroups

Recall that Baer in [4] proved: A group is supersolvable if and only if every two elements generate

a supersolvable subgroup. But we find that “every two elements” can not be replaced by “every two

conjugate elements” in Baer’s result. For example, every two conjugate elements of G3 generate a

supersolvable subgroup but G3 is not supersolvable. But we can get the following theorems.
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Theorem 3.2. Let G be a group and assume that G′ is nilpotent. Then G is supersolvable if and only

if for every cyclic subgroup H of G, 〈H,Hg〉 is supersolvable for all g ∈ G.

Proof. We only need to prove the sufficiency. Suppose that G is a minimal counterexample. Then

for every proper subgroup H of G, since every element of Ω2(H) is supersolvable, H is supersolvable.

Hence G is a inner-supersolvable group. Suppose that Φ(G) 
= 1. By Proposition 3.1, every element in

Ω2(G/Φ(G)) is supersolvable. By the minimality ofG, G/Φ(G) is supersolvable. HenceG is supersolvable,

a contradiction. Thus Φ(G) = 1 and G is a minimal inner-supersolvable group. Hence G is one of the

groups listed in Corollary 2.2. Since G′ is nilpotent, by Lemma 2.1, the complement of a Sylow r-subgroup

in G is cyclic. Then G is isomorphic to G1 or G2. By Lemma 3.1, there exist a cyclic subgroup H and

g ∈ G such that G = 〈H,Hg〉. By the hypothesis, G is supersolvable, a contradiction. This contradiction

completes the proof of this theorem. �

Theorem 3.3. Let G be Gl-free for 3 � l � 6. If for every cyclic subgroup H of G, 〈H,Hg〉 is

supersolvable for all g ∈ G, then G is supersolvable.

Proof. By the proof of Theorem 3.2, if G is a minimal counterexample, then G is a minimal inner-

supersolvable group. Hence G is one of the groups listed in Corollary 2.2. By Lemma 3.1, the result is

true. �

In [14], Janko and Newman proved a finite group all of whose proper two-generator subgroups have

cyclic commutator subgroups which have an ordered Sylow tower. If we consider the join of a pair of

conjugate subgroups, then we can extend this result to the following.

Theorem 3.4. Let G be a group. If for every cyclic subgroup H of G, 〈H,Hg〉′ is a cyclic subgroup

for all g ∈ G, then G is supersolvable.

Proof. Suppose that G is a minimal counterexample to our theorem. Then by Proposition 3.1, it is easy

to see that G is a minimal inner-supersolvable-Ω2-group. By Corollary 2.2, one of the following occurs.

(1) G is isomorphic to G1 or G2.

By Lemma 3.1, there exist a cyclic subgroup H and g ∈ G such that G = 〈H,Hg〉. Then, by the

hypothesis, G′ = 〈H,Hg〉′ is cyclic, so G is supersolvable, a contradiction.

(2) G is isomorphic to G3.

Let H = 〈a〉. By the hypothesis, 〈H,Hg〉′ is a cyclic subgroup for all g ∈ G. In particular, we

choose g = c1 and let T = 〈a, ac1〉. Then T ′ is a cyclic subgroup. So a−1ac1 = (c−1
1 )ac1 = c−1

2 c1 ∈ T ,

(c−1
2 c1)

a = c1c2 ∈ T , thus c−1
2 c1c1c2 = (c1)

2 ∈ T . Since (2, r) = 1, we have {c1, c2} ⊂ T . Then

[a, c1] = c−1
2 c1 ∈ T ′, [a, c2] = c1c2 ∈ T ′, so c−1

2 c1c1c2 = (c1)
2 ∈ T ′. Since (2, r) = 1, we get c1 ∈ T ′,

then c2 also belongs to T ′. Hence R � T ′, where R ∈ Sylr(G) is an elementary abelian r-subgroup of G,

contrary to the condition that T ′ is cyclic.
(3) G is isomorphic to Gi, where i ∈ {4, 5, 6}.
Let H = 〈a〉. By the hypothesis, 〈H,Hg〉′ is a cyclic subgroup for all g ∈ G. In particular, we choose

g = c1 and let T = 〈a, ac1〉. Then T ′ is a cyclic subgroup.

(I) Assume that p � 3. Then a−1ac1 = (c−1
1 )ac1 = c−1

2 c1 ∈ T , (c−1
2 c1)

a = c−1
3 c2 ∈ T , thus

c−1
2 c1c

−1
3 c2 = c−1

3 c1 ∈ T . Hence [a, c−1
2 c1] = c−2

2 c1c3 ∈ T ′, [a, c−1
3 c1] = c−1

2 ca3c1c
−1
3 ∈ T ′. Let

S = 〈c−2
2 c1c3, c

−1
2 ca3c1c

−1
3 〉. Then S � T ′. If p > 3, then ca3 = c4. It is clear that S is an elemen-

tary abelian r-subgroup of G. If p = 3, then ca3 = ct1, we also get that S is an elementary abelian

r-subgroup of G. If not, there exists i such that (c−2
2 c1c3)

i = c−1
2 ct+1

1 c−1
3 , where i is non-zero integer and

−r < i < r. Then r | i + 1, r | 1 − 2i and r | i − 1 − t, so r | 3i. Since p | r − 1, we get r � 3, so r | i, a
contradiction. Thus S is an elementary abelian r-subgroup of G and S � T ′, contrary to the condition

that T ′ is cyclic.
(II) Assume that p = 2 and α � 2. Then we have c1c

−1
2 ∈ T and (c1c

−1
2 )a = c2c

−t
1 ∈ T , so

c1c
−1
2 c2c

−t
1 = c1−t

1 ∈ T . Since the exponent of t modulo r is pα−1 and α � 2, we get r � t − 1, that is,

(1 − t, r) = 1, thus c1 ∈ T . Hence a, c1, c2 belong to T . Therefore, T = HR, where R ∈ Sylr(G) and R

is an elementary abelian r-subgroup of G. Then [a, c1] = c−1
2 c1 ∈ T ′, [a, c2] = (ca2)

−1c2 = (c1)
−tc2 ∈ T ′.
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Thus (c1)
−tc2c

−1
2 c1 = (c1)

1−t ∈ T ′, so c1, c2 belong to T ′, hence R � T ′, contrary to the assumption

that T ′ is cyclic.
(III) Assume that p = 2 and α = 1. We choose H = 〈b〉, g = c−1

1 c−1
2 .

If G ∼= G4, then l = b−1bc
−1
1 c−1

2 = cu
1+pβ−1−1

1 cu
1+2pβ−1−1

2 ∈ 〈b, bc−1
1 c−1

2 〉. Suppose that 〈l〉� 〈b, bc−1
1 c−1

2 〉.
Then lb = lm, where 0 � m � r − 1(m ∈ Z), so

(cu
1+pβ−1−1

1 )b(cu
1+2pβ−1−1

2 )b = c
(u1+pβ−1−1)m
1 c

(u1+2pβ−1−1)m
2 ,

c
(u1+pβ−1−1)(u1+pβ−1−m)
1 = c

(u1+2pβ−1−1)(m−u1+2pβ−1
)

2 ,

thus r | (u1+pβ−1 − 1)(u1+pβ−1 − m) and r | (u1+2pβ−1 − 1)(m − u1+2pβ−1

). Since the exponent of

u modulo r is pβ , we have upβ ≡ 1 (mod r) and r � u. Since β � 2, we have 1 + pβ−1 < pβ , so

r � u1+pβ−1 − 1, thus r | u1+pβ−1 − m. If r | u1+2pβ−1 − 1, then r | u1+pβ − upβ

= upβ

(u − 1), so

r | u− 1, contrary to the condition that the exponent of u modulo r is pβ. Thus r | m− u1+2pβ−1

, hence

r | u1+pβ − u1+pβ−1

= u1+pβ−1

(upβ−1(p−1) − 1), so r | upβ−1(p−1) − 1, contrary to the condition that the

exponent of u modulo r is pβ. Hence 〈l〉 � 〈b, bc−1
1 c−1

2 〉. Therefore, b, c1, c2 belong to 〈b, bc−1
1 c−1

2 〉. Using

the same method as in (II), we get a contradiction.

If G ∼= G5, then l = b−1bc
−1
1 c−1

2 = cvu
p−1

1 cvu
p−1−1

2 ∈ 〈b, bc−1
1 c−1

2 〉. Suppose that 〈l〉� 〈b, bc−1
1 c−1

2 〉. Then

lb = lm, where 0 � m � r − 1(m ∈ Z), so

(cvu
p−1

1 )b(cvu
p−1−1

2 )b = c
(vup−1)m
1 c

(vup−1−1)m
2 ,

c
(vup−1)(vup−m)
1 = c

(vup−1−1)(m−vup−1)
2 ,

thus r | (vup−1)(vup−m) and r | (vup−1−1)(m−vup−1). Since the exponents of v and u modulo r are pβ

and p, we have vp
β ≡ 1(mod r) and up ≡ 1(mod r), respectively. If r | vup−1, then r | vup−1− (up−1),

that is, r | up(v − 1), so r | v − 1, contrary to the condition that the exponent of v modulo r is pβ. Thus

r | vup −m. If r | vup−1 − 1, then r | up − 1− (vup−1 − 1) = up−1(u− v), that is, r | u− v, so r | vp − 1,

thus β = α = 1, we have that the complement of a Sylow r-subgroup in G is abelian, a contradiction.

Hence r | m − vup−1, thus r | vup − vup−1 = vup−1(v − 1), so r | v − 1, again, a contradiction. Hence

〈l〉 � 〈b, bc−1
1 c−1

2 〉. Therefore, b, c1, c2 belong to 〈b, bc−1
1 c−1

2 〉. Using the same method as in (II), we get a

contradiction.

If G ∼= G6, then l = b−1bc
−1
1 c−1

2 = cv−1
1 cv

u−1
2 ∈ 〈b, bc−1

1 c−1
2 〉. Suppose that 〈l〉� 〈b, bc−1

1 c−1
2 〉, then lb = lm

where 0 � m � r − 1(m ∈ Z), so

(cv−1
1 )b(cv

u−1
2 )b = c

(v−1)m
1 c

(vu−1)m
2 ,

c
(v−1)(v−m)
1 = c

(vu−1)(m−vu)
2 ,

thus r | (v − 1)(v − m) and r | (vu − 1)(m − vu). Since the exponent of v modulo r is q, we have

vq ≡ 1(mod r), r � v and r | v−m. If r | vu−1, then q | u, contrary to the condition that the exponent of

u modulo q is p. So r | vu −m, thus r | vu − v = v(vu−1 − 1). As before, q | u− 1, again a contradiction.

Hence 〈l〉 � 〈b, bc−1
1 c−1

2 〉. Therefore, b, c1, c2 belong to 〈b, bc−1
1 c−1

2 〉. Using the same method as in (II), we

get a contradiction.

These contradictions complete the proof of this theorem. �

3.3 An improvement of Thompson’s theorem on the solvability of a group

In 1968, Thompson obtained the following theorem as a corollary of his classification of minimal simple

groups in [21].

Theorem 3.5. (J. G. Thompson) A group is solvable if and only if every two elements generate a

solvable subgroup.
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A direct proof not using the classification of minimal simple groups has been obtained by Flavell in [11].

In this section, we shall get an extension of Thompson’s result above under a weaker condition, that is,

we have the following theorem.

Theorem 3.6. Let G be a group. Then G is solvable if and only if for every cyclic subgroup H of G,

〈H,Hg〉 is solvable for all g ∈ G.

Proof. The necessity of the theorem is obvious. We only need to prove the sufficiency of the theorem.

Now suppose that G is a minimal counterexample to our theorem. Then by Proposition 3.1, it is easy to

get that G is a minimal inner-solvable-Ω2-group. By Theorem 2.2, G is a simple group in which every

proper subgroup is solvable. Thus G is one of the minimal simple subgroups listed in [7, Theorem 5.1],

this means that one of the following occurs.

(1) G = PSL(2, p), p > 3, 5 � p2 − 1, |G| = 1
2p(p

2 − 1).

By Dickson’s theorem [13, II, 8.27], G has a dihedral maximal subgroup T of order p + 1. Let H be

a cyclic maximal subgroup of T with order 1
2 (p + 1). If g ∈ G \ NG(H), then H < 〈H,Hg〉 � G. If

〈H,Hg〉 
= G, then there exists a maximal subgroup S of G such that H < 〈H,Hg〉 � S. By Dickson’s

theorem, if S contains a cyclic subgroup of order 1
2 (p + 1), then S is a dihedral subgroup of G of order

p+1. Since there is the unique cyclic subgroup of order 1
2 (p+1) in a dihedral group of order p+1, we have

Hg = H , thus g ∈ NG(H), a contradiction. This implies that G = 〈H,Hg〉 is solvable, a contradiction.

(2) G = PSL(2, 2q), q is a prime, |G| = 2q(22q − 1).

By Dickson’s theorem, G has a maximal subgroup T , where T is a dihedral group of order 2(2q + 1).

We choose the maximal cyclic subgroup H of T with order 2q + 1 and g ∈ G \NG(H). Using the same

method as in (1), we also get a contradiction.

(3) G = PSL(2, 3q), q is an odd prime, |G| = 1
23

q(32q − 1).

By Dickson’s theorem, G has a dihedral maximal subgroup T of order 3q +1. We choose the maximal

cyclic subgroup H of T with order 1
2 (3

q + 1) and g ∈ G \NG(H). Using the same method as in (1), we

still get a contradiction.

(4) G = PSL(3, 3), |G| = 24 · 33 · 13.
Let H ∈ Syl13(G) and T = NG(H). By [8, p. 13], it is easy to see that T is a maximal subgroup of G

of order 39, and if g ∈ G with |g| = 2, then 〈H,Hg〉 = G. Hence G is solvable, a contradiction.

(5) G = SZ(2
q), q is an odd prime, |G| = (22q + 1)22q(2q − 1).

By [20], G has a maximal subgroup T of order 22(2q + 2
q+1
2 + 1). We choose a cyclic subgroup H of

T with order 2q + 2
q+1
2 + 1 and g ∈ G \NG(H), then NG(H) = T , H < 〈H,Hg〉 � G. If 〈H,Hg〉 
= G,

then there exists a maximal subgroup S of G such that 〈H,Hg〉 � S. By [20], it is easy to see that if S

contains a cyclic subgroup of order 2q + 2
q+1
2 + 1, then S is isomorphic to T and so S = NG(H) = T , a

contradiction. This implies that G = 〈H,Hg〉 is solvable, a contradiction.

These contradictions complete the proof of this theorem. �

Remark 3.2. As pointed out by the referee, Gordeev, et al. [12] established the assertion of Theo-

rem 3.6. But the proofs follow a completely different approach, and their proof relies on the classification

of finite simple groups.

Naturally, we would like to put forward the following.

Problem 3.1. Could you prove Theorem 3.6 without using the classification of minimal simple groups?

3.4 p-closed groups and the join of a pair of conjugate cyclic subgroups

To conclude, we investigate the properties of a group in which every pair of conjugate elements generates

a p-closed subgroup.

Theorem 3.7. Let G be a group. Then G is 2-closed if and only if for every cyclic subgroup H of G,

〈H,Hg〉 is 2-closed for all g ∈ G.
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Proof. We only need to prove the sufficiency. Now suppose that G is a minimal counterexample to

our theorem. Then by Proposition 3.1, it is easy to prove that G is an inner-2-closed-Ω2-group. By

Theorem 2.2, we have the G is an inner-2-closed group in which every proper subgroup is 2-closed.

By [7, p. 23, Theorem 4.5], G = 〈a, b〉 and a2
α

= bq = 1, ba = b−1, q is an odd prime. By the

hypothesis, 〈a, ag〉 is 2-closed for all g ∈ G. We choose g = b−1, then [a, b−1] = a−1ab
−1 ∈ 〈a, ab−1〉.

Since [a, b−1] = b−2, (2, q) = 1, we have q | |〈a, ab−1〉|. Thus 2αq | |〈a, ab−1〉|, hence we get G = 〈a, ab−1〉
is 2-closed, a contradiction. This contradiction completes the proof of this theorem. �

Theorem 3.8. Let G be a group. Then G is 3-closed if and only if for every cyclic subgroup H of G,

〈H,Hg〉 is 3-closed for all g ∈ G.

Proof. We only need to prove the sufficiency. Now suppose that G is a minimal counterexample to

our theorem. Then by Proposition 3.1, it is easy to prove that G is an inner-3-closed-Ω2-group. By

Theorem 2.2, G is an inner-3-closed group. By [7, p. 24, Theorem 4.6], one of the following occurs.

(1) G is solvable.

In this case, by [7, p. 24, Theorem 4.6], G is an inner-nilpotent group of order 3αqβ. By Lemma 3.1,

we have G = 〈H,Hg〉, where H is a cyclic subgroup of G and g ∈ G, then G = 〈H,Hg〉 is 3-closed by

the hypothesis, a contradiction.

(2) G is non-solvable, then G ∼= PSL(2, 2p), p is an odd prime.

In this case, by the proof of Theorem 3.6, there exist a cyclic subgroup H of G and g ∈ G such that

G = 〈H,Hg〉. Thus G is 3-closed, contrary to the simplicity of G. �

Theorem 3.9. Let G be a group. Then G is 5-closed if and only if for every cyclic subgroup H of G,

〈H,Hg〉 is 5-closed for all g ∈ G.

Proof. We only need to prove the sufficiency. Suppose thatGis a minimal counterexample to our theorem.

Then by Proposition 3.1, it is easy to prove that G is an inner-5-closed-Ω2-group. By Theorem 2.2, G is

an inner-5-closed group. By [15, Theorem 2], one of the following occurs.

(1) G is solvable, then G is an inner-nilpotent group of order 5αqβ .

(2) G is non-solvable, then G ∼= PSL(2, 5) or G ∼= SZ(2
q), q is an odd prime.

Using the similar discussion as in Theorem 3.6 and Theorem 3.8, this theorem is true. �
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9 Doerk K. Minimal nicht überauflösbare, endliche Gruppen. Math Z, 1966, 116: 198–205

10 Doerk K, Hawkes T. Finite Solvable Groups. Berlin-New York: Walter de Gruyter, 1992

11 Flavell P. Finite groups in which every two elements generate a solvable subgroup. Invent Math, 1995, 121: 279–285

12 Gordeev N, Grunewald F, Kunyavskii B, et al. From Thompson to Baer-Suzuki: A sharp characterization of the

solvable radical. J Algebra, 2010, 323: 2888–2904

13 Huppert B. Endliche Gruppen I. Berlin-Heidelberg-New York: Springer-Verlag, 1967



1936 Li X H et al. Sci China Math September 2011 Vol. 54 No. 9

14 Janko Z, Newman M F. On finite groups with p-nilpotent subgroups. Math Z, 1963, 82: 104–105

15 Li X H. Inner p-closed groups and their generalization (in Chinese). Journal of Mathematical Research and Exposition,

1994, 14: 285–288

16 Miller G A, Moreno H C. Non-abelian groups in which every subgroup is abelian. Trans Math Soc, 1903, 4: 389–404
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