
PHYSICAL REVIEW B VOLUME 51, NUMBER 11 15 MARCH 1995-I

Dynamic model of epitaxial growth in ternary III-V semiconductor alloys

Bing-Lin Gu
Department of Physics, Tsinghua University, Beijing 10008$, People s Republic of China;

Center of Theoretical Physics, Chinese Center of Advanced Science and Technology (WorLd Laboratory),
P. O. Boz 8780, Beijing 100080, People s Republic of China;

and Institute for Materials Research, Tohoku University, Sendai g80, Japan

Zhi-Feng Huang
Department of Physics, Tsinghua University, Beijing 10008$, People s Republic of China

Jun Ni
Department of Physics, Tsinghua University, Beijing 10008$, PeopLe s Republic of China

and Center of Theoretical Physics, Chinese Center of Advanced Science and Technology (World Laboratory),
P O. B.oz 8780, Beijing 100080, People's Republic of China

Jing-Zhi Yu, Kaoru Ohno, and Yoshiyuki Kawazoe
Institute for Materials Research, Tohoku University, Sendai 980, Japan
(Received 21 April 1994; revised manuscript received 20 October 1994)

A concentration-wave method for several interpenetrating Bravais sublattices is presented by
considering the intralayer and interlayer efFective interactions and the difference between the surface
layers and the deep layers of ternary III-V alloys. The most stable ordered structures of ternary
III-V semiconductor alloys are deduced and a dynamic model for epitaxial growth is proposed.
The present results are compared with the experimental observations, and the relations between
interaction parameters are also given.

I. INTRODUCTION

The long-range-ordered structures of III-V ternary
semiconductor alloys in epitaxial growth have attracted
much attention. There have been some experimental
results showing the Llq (CuPt-like) superstructure
(only two directions [111] and [ill] out of four possi-
ble directions have been found) and the coexistence of
[001]Ilo, [010]Llo, and Elq structures appear most com-
monly in (001) substrate growth. In (110) substrate
growth, only the [001] variant of the Llp structure has
been reported. i 9

In theoretical research, total-energy calculations from
first principles of the ordered structures have been
conducted. Initially, the stability of ordered struc-
tures was determined by bulk-structure calculations.
Many authors also considered the surface e8'ect, and
CuPt ordering at the (001) surface was investigated for
the Ga-In-P alloy in which the atomic mobilities and
surface reconstruction was taken into account. Re-
cently, starting &om surface thermodynamics, Osorio et
al. used first-principles total-energy calculations for the
surface and subsurface layers and the cluster-variation
method to study the ground-state ordered structures and
finite-temperature thermodynamics. They attributed the
observed ordering features to a thermodynamically stable
phase at the growth temperature.

Some pheonomenological models were applied to study

the ordered structures. By means of the concentration-
wave method, ' Binglin Gu and Jun Ni determined

the most stable ordered structures for bulk alloys. Fur-

thermore, based on a two-dimensional planar model, Jun
Ni et al. deduced the planar most stable ordered struc-

tures of a specific growth plane and obtained the possible
ordered structures for the alloy through layer-by-layer

growth process, but they considered only the interac-

tions within a single growth plane. It has been shown

that because of the coupling between diferent growth

layers, it was insufhcient to determine the stacking pro-

cess from two-dimensional planar structures to correct
three-dimensional bulk structure by only considering a
single layer. Therefore, the present study focuses on the

interlayer eKective interactions between different layers

and also the intralayer interactions within a single growth

plane. Accordingly, a phenomenological epitaxial growth

model for ternary III-V alloys can be established.
We consider that the intralayer and interlayer effective

interactions of the alloy are the main factors of the ap-
pearance of ordered structures, and surface layers and
deep layers are diBerent on structure stability in the
layer-by-layer growth process of III-V alloys. Therefore,
we apply the concentration wave method. ' for sev-
eral interpenetrating Bravais sublattices to deduce the
ordered structures. As is well known, each growth layer
represents a planar Bravais lattice. If we want to con-
sider the interlayer interactions to the third neighbor-
hood, three consecutive growth layers must be included
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and studied as a whole when we regard them as three
interpenetrating planes. That is, three two-dimensional
growth planes which are parallel to the substrate are
considered as three interpenetrating Bravais lattices, and
each plane represents a Bravais sublattice. Accordingly,
we can get a quasi-two-dimensional lattice with a basis,
and each basis consists of three atoms each belonging to a
single growth plane. Therefore, we can simplify a three-
dimensional problem to a quasi-two-dimensional one, and
establish a model of epitaxial growth in the alloys to
deduce the most stable ordered configurations. This
method can be characterized as a three-interpenetrating-
planes method.

The disordered phase structure in the ternary alloys of
type A B C and A C D is zinc blende (Fig.
1). To simplify the contents, we consider the discussion
only on the "common-cation" alloy Az B C in the
following deduction, which is applicable to "common an-
ion" alloy A C D . For the alloy A. B C in an
ordered phase, V atoms fully occupy one set of fcc posi-
tions, and A, B atoms orderly occupy the other set,
while in disordered phase A and B occupy randomly.
Because the ordered structures all involve the ordering of
the fcc positions occupied by III atoms, we consider only
the planes occupied by atoms A and B in the three-
interpenetrating-planes method.

In Sec. II, we describe the concentration-wave method
for serveral interpenetrating Bravais sublattices. Formu-
lation of a dynamic growth model and the ordered struc-
tures deduced &om the model in (001), (110), and (111)
substrate growth are given in Sec. III. Finally, we give
the conclusion and compare the results to the experimen-
tal features.

II. THE CONCENTRATION-WAVE THEORY

For several interpenetrating Bravais sublattices, the
site vector of an atom is represented by

R =R+h, (2.1)

where R is the position vector of a unit cell and h is
the displacement of the nth sublattice with respect to
the origin.

In the pair interaction approximation, the energy of
the structure can be written as

E= Uo — ) ) 'W p(R)
ap R

+—) ) 'W p(R —R')p(n, R)p(P, R'), (2.2)
ap RR'

where

W p(R —R') = W~~(R —R') + Wg~(R —R')
—2W~~~ (R —R'), (2.3)

Uo — ) ) ' W~~~(R) + ) ) ' Wg~~(R),
np R ap R

(2.4)

and W, ~(R —R') represents the effective interaction en-
ergy between ith ion at the R site in the o.th sublattice
and jth ion at the R site in the Pth sublattice. N~ and
N~ are the numbers of A and B atoms, respectively. P'
means that the term for R=R' is excluded in the sum.
p(n, R) represents the occupation probability of A atom
at R site in the o,th sublattice.

After a Fourier transformation, Eq. (2.2) is trans-
formed into a standard quadratic form,

E = Uo — N ) V p(0)
exp

(2.5)

where

V p(k) = ) ' W p(R)exp(ik R),
R

(2.6)

) V p(k) v (P, k) = A (k) v (o., k),
p

(2.7)

A (k) and v (n, k) are the eigenvalues and the orthonor-
mal eigenvectors of V p(k), respectively. N is the sum of
Ng and Ng.

Accordingly, p(n, R) is represented by

FIG. 1. The disorder structure of III-V ternary semicon-
ductor A -H -C', which is a zinc blende structure.

p(n, R) = 2:+ —) ) [v (o., k)Q (k)
k

xexp(ik. R) + c.c.j, (2 g)



7106 GU, HUANG, NI, YU, OHNO, AND KAWAZOE 51

where Q (k) are the amplitudes of the concentration
wave and the corresponding normal concentration modes,
x is the composition of A atoms.

The configurational energy in Eq. (2.5) derived for the
pair interactions approximation has a form suitable for
the instability analysis. It has been demonstratedz4, is, xs

that instability will occur for the wave vectors k which
will provide the absolute minimum of A (k), and the
structures of the most stable ordered phase are deter-
mined by these wave vectors. In detail, if A (k) ) 0, the
energy reaches its minimum when all Q (k 4 0) = 0,
because any Q (k) which is not equal to zero will make
the energy described by Eq. (2.5) increase. Therefore we
have p(n, R) = x from Eq. (2.8), which corresponds to
the disordered state. If A (k) ( 0, in order to minimize
the energy, the spectrum of the normal mode will tend to
peak, that is, Q (k) will be its maximum, at those wave
vectors k where A (k) is minimum. Therefore in the pair-
wise interaction approximation, the necessary extremum
condition for finding the absolute minimum of A (k) in
order to minimize the energy is given by14~15i18i19

OA (k)
Bk k=kp

and (2 9)

If ko g 0 and are the minimum points of A (k), the most
stable ordered structure appears.

In the first Brillouin zone, there are two kinds of A (k)
minima. The first kind corresponds to arbitrary points
of the reciprocal space. Their positions depend on the
type of interatomic interaction parameters, and they shift
when the latter changes. The second kind is the high
symmetry points (special points) according to the Lif-
shitz criterion, which depend solely on the symmetry
of the crystal disordered phase. At the special points,

(k) must present extrema regardless of the choice of
pair interaction, and the minima lead to the most stable
ordered structures.

It is known that structure instabilities may occur for
any position k in reciprocal space. However, as has been
pointed out by Sanchez, Gratias, and Fontaine, special-
point ordered structures have the smallest Bravais lattice
compatible with the disordered phase, and will invariably
be ground states for short-range interactions.

It must be noticed that the configurational energy in
Eq. (2.2) is presented in the pairwise interaction approx-
imation, and what we discuss above corresponds to the
case when only the harmonic terms of the configura-
tional &ee energy is considered, which has been generally
discussed. ' ' When the anharmonic contributions are
included, the stability of the ordered structures is thus
due not to a miniinum of A (k), that is, Eq. (2.9) is not
true in this case. Therefore the wave vectors ko, which
minimize the energy, can deviate &om special points.

To study the epitaxial growth mechanism of ternary
III-V alloys, we consider that the properties of the al-
loys are governed mainly by the harmonic part, and the
anharmonic contributions can be neglected. In our three-
interpenetrating-planes methods only the limited range
of intralayer and interlayer effective pair interactions to
the third neighborhood are included, and the long-range

interactions are neglected. Then in the present case, the
most stable ordered crystalline structures are determined
by the special points in the first Brillouin zone.

For the special points in the first Brillouin zone, all the
wave vectors k, which make E minimum in the same star
are denoted by 8, and j, refer to different wave vectors
belonging to the same star (ki ). il, represents the long-
range order parameter, and p, is the coefBcient related
to the symmetry. The explicit expression of p(n, R) is

x ) [p, (j,)v (n, k, )exp(ik, R) + c.c.j.
$8

(2.10)

We consider the most stable structure which is a com-
plete ordered phase, and iI, = 1. To solve Eq. (2.10),
we first set g, = 1, and all the solutions of equation
p(n, R) = 0 or 1 are just the most stable structures.

III. A GROWTH MODEL
AND ORDERED STRUCTURES

W6

W2

I
W5

I

W4

FIG. 2. The structure of the alloy in (001) substrate growth
(only the sites occupied by A and B atoms are shown).
Wz, W&, Wz represent the intralayer interaction parameters in
each plane. The interlayer interactions between Brst-neighbor
layers are W4 and W&, respectively. W6 and Wz denote the
interlayer interactions between second-neighbor layers in the
alloy.

In the following, we will establish a model of
ternary III-V alloys in epitaxial growth by the "three-
interpenetrating-planes method, " and the growth on
(001), (110), and (111) substrate will be considered. We
specify three consecutive growth layers of the alloy which
are parallel to the substrate as three interpenetrating
Bravais sublattices, and each Bravais sublattice repre-
sents a layer. So the lattice with a basis, which consists
of the atoms of three layers is formed, and there are three
atoms per unit cell. Therefore, according to this inter-
penetrating method, the effective interactions between
different layers can be considered. Figure 2 shows the
structure of the alloy in (001) substrate growth. The cor-
responding high symmetry points and the first Brillouin
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1

X2 X2

X1 X1
FIG. 3. First Brillouin zones and the cor-

responding high symmetry points for the sin-
gle growth plane. (a) (001) plane, (b) (110)
plane, (c) (111)plane.

(a) (b) (c)

zones in the (001), (110), and (111)substrate growth are
shown in Figs. 3(a), (b), and (c), respectively.

A. Growth model

In expitaxial growth, the alloy grows layer-by-layer on
a substrate. Figure 4 shows the growth process, where
layers 0,2,4,6, ... refer to the growth planes occupied by
A and B atoms. Layers 1y3&5& y

occupied by C
atoms are omitted in the figure because layers 1,3,5..., are
the fcc positions fully occupied by V group atoms, and or-
dering only occurs among the positions occupied by A
and B, that is, layers labeled by 0,2,4, ... . Therefore,
we consider only the ordering situation in layers 0,2,4, ... .
In the following discussion, we assume the three following
conditions.

(i) In this model, we consider only the interactions
among three consecutive growth layers. This model is
schematically shown in Figs. 2(a), (b), and (c). The in-
tralayer interactions in surface layers are different from
those in deep layers. So do the interlayer interactions.

(ii) When the interlayer interactions to third neigh-
borhood are considered, three consecutive growth layers
are coupled to each other. During the growth process
of the alloy, if a new layer is deposited above, it would
influence the structures of top two layers. Because we ne-
glect the fourth-neighbor interlayer interaction, the new
layer will not couple to the third layer and below, whose
structures are no longer changed accordingly. Therefore,
the top two layers of the alloy are considered as surface
layers, whose structures are not fixed and are subject to
change with the cover of a new layer. However, further

interior layers in the alloy which we call the deep lay-
ers are not influenced by the cover of the new layer, and
their structures are stable. Therefore, these two kinds of
layers must be treated difr'erently. In Fig. 4 the layers
with "d" are deep layers in the alloy, and the others are
surface layers.

(iii) We consider that the controlled conditions during
the whole epitaxial growth process of the alloy are no
longer changed. Thus the intralayer and interlayer inter-
action relations of the alloy remain the same during the
process.

Figures 4(a) —(f) show the growth process in detail. For
instance, Fig. 4(d) is the case when the structure in Fig.
4(c) is covered by a new layer 4. Then this layer 4 affects
the structures of layer 6 and 8 in Fig. 4(c) and changes
them into the structure of layer 8 and the deep layer
structure of layer 10 in Fig. 4(c), respectively. It has no
influence on the deep layer structure of layer 10 in Fig.
4(d). From the process shown in Fig. 4, we can regard
that the whole structures of the three top layers as a unit
in Figs. 4(c)—(f) are invariant, where the top two are the
surface layers and the third is of the deep layer structure
which is the same as the inner layer structure in the alloy.
So we only have to deduce the ordered structure of this
three-top-layers unit. We can, therefore, stack layer by
layer according to the growth process in Fig. 4. Finally,
the whole ordered structure of the alloy is determined.

For this three-top-layers unit (just three-
interpenetrating planes), Voo(k) g V2z(k) g V44(k) g 0,
in general, where V00, V22, V44 are the intralayer interac-
tions in the k space of the three top planes denoted by 0,
2, and 4 [see Eq. (2.6)]. Solving Eq. (2.7), one can find
the ordered structures only if a high symmetry point k

6

10 10 10' (i 10 10

d 8

10

(a) — (b) = (c) = (e)

FIG. 4. The growth process of the III-V ternary semiconductor alloy. Layers 0, 2, 4, 6,... all refer to the growth planes
occupied by A and B atoms, and layers 1, 3, 5,... that are occupied by V atoms are omitted. Layers with "d" are deep
layers in the alloy, the others are surface layers. Then the layer-by-layer stacking process of the alloy is shown from (a) to (f).



7108 GU, HUANG, NI, YU, OHNO, AND KAWAZOE

satis6es the condition,

Vp2(k) = V24(k) = 0, (3.1)

1
V22 ( — (Vpp + V44) — (Vpo —V44) + 4Vp4 , (3.2)

then the eigenvalue is A (kq) = V22(kq), the eigenvector
is vq ——(0, 1,0).

The other high symmetry point k2 must satisfy

Voo(k2) = V44(k2)

and

Vpo(k2) —~Vp4(k2)
~

( V22(k2), (3.3)

where V02 and V24 are the interlayer interactions in k
space according to Eq. (2.6) between layers 0 and 2, 2,
and 4, respectively. This condition seems to be very difFi-
cult to fulfill. But it can be seen below that for some high
symmetry points, this condition can be satis6ed, and the
long-range ordered structures deduced &om this condi-
tion agree with the experimental results. This condition
implies that the coupling between erst-neighbor layers
occupied by atoms III is too small to be considered, which
is also consistent with the first-principle calculations of
Osorio et aE.

(1) Degenerate case. When the energies corresponding
to two high symmetry points, ki and k2 belonging to
different stars are degenerate, the ordered structure can
be deduced. One of the high symmetry points, kz must
satisfy

by this three-interpenetrating-planes method, the same
two-dimensional ordered structures for each growth layer
can be obtained. Accordingly, we can deduce the most
stable ordered structures which are almost the same as
the results based on the two-dimensional planar model
presented by Jun Ni et al. So it is unnecessary to solve
the undegenerate case in detail here. In the following
we only consider the degenerate case, and deduce the
corresponding ordered structures.

B. Ordered structures

According to the three interaction relations Eqs. (3.2),
(3.3), and (3.4) for the degenerate case, we will deduce
the most stable ordered structures of three-top-layers
unit in (001), (110), and (111) substrate growth and of
the whole alloy after stacking layer by layer as shown in
Fig. 4.

First, we calculate the case in (001) substrate growth
in detail. Wi, W2, W3 represent the intralayer interac-
tion parameters in each plane, where Wq and W2 are
two different kinds of first-nearest neighbor interactions
because of the existence of V atoms below the layer.
The next-nearest neighbor interaction is denoted as W3.
W4 and W5 represent the interlayer interactions between
erst-neighbor layers. W6 and W7 denote the interlayer
interactions between second-neighbor layers in an alloy
(see Fig. 2). Accordingly from Eq. (2.6), for k(h, k), we
obtain

Vp2(k) = V24(k) = 0 and A (kg) = A (k2) & 0.

(3.4)

(2) Undegenerate case. For certain high symmetry
points k, if the conditions

Voo(k) = V44(k)

V22(k) = Vpp(k) —~Vp4(k)
~

& 0 (3.5)

thus the eigenvalue is A (k2) = Vpp(k2) —~Vp4(k2)~, the
eigenvector is v2 ——(1,0, +1).

Finally, as shown before, for both degenerate high sym-
metry points ki and k2, we have

voo =

V22 =

V44 =

VO2
——V2*0 =

V,4- V4, —

V04= V (3.6)

2W& cos 27t h + 2W& cos 2' k

+2Ws[cos 27r(h + k) + cos 27r(h —k)],
2'" cos 2' 6 + 2W2" cos 2+k

+2Ws'[cos2m(h+ k) + cos27r(h —k)],2' cos 2vrh + 2W2 cos 2vrk

+2Ws[cos 2m. (h + k) + cos 2vr(h —k)],
2W4[cos a(h —k) + cos 7r(h + k)]
+2Ws[cos sr(h + 3k) + cos vr(h —3k)
+ cos vr(3h + k) + cos ~(3h —k)],
2W4[cos vr(h —k) + cos vr(h + k)]
+2Ws[cosvr(h+ 3k) + cos~(h —3k)
+ cosa'(3h+ k) + cos sr(3h —k)],
Ws + 2' [cos 2m. h + cos 2m. k].

are satisfied, the eigenvector v is (+1,+1,+1). Therefore For the high symmetry points I'(0, 0), A q ( 2, 0),

JL JL JL JL

JL

JL
%F

JL JL
%F

~ 0
JL

0 ~
JL
%F

FIG. 5. Two-dimensional
planar ordered structures of
(001) plane. (a) Oq, (b) Oq, (c)
03.

(a) 0, (b) Op
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TABLE I. All of the possible most stable ordered structures of III-V ternary semiconductor alloy
according to the present growth model, where 01, Og, 03, 05, 06, 07 Og, 01p, and 011 are the
planar ordered structures shown in Figs. 5, 6, and 7, respectively. In the table, A represents A
atom, and B represents B atom. The "whole alloy configuration" in the table consists of the
structures of layers occupied by III atoms, where the leftmost structure is of the top layer.

Substrate

(001)

Ordered structure types

2Lli [111], ~Lli [111], ~ [110]

—Ll i [111], —Ll i [111], —[110]

Ll p [100], Llp [010], &
El i [021]

L10[001]

—I 1i [111], —Lli [111], 2 [001]

Lip[100], Lip[010], 2 [110]

i Ll i [111], —Ll i [111), 2 El i [021]

I lo [001]) —Ll i [111]
Lip[100] 2Ll [lill]
Lip[010], -Lli [ill]

Whole alloy configuration

0102O10101".
0103010101...
Og 01020g02-"
02030g 020' ".
0301030303...
030'030303...
AOSABAB. ..
AOgABAB. ..
A07 ABAB...
05A05 0505...
050g 050505...
0507050505...
Og AOg Og Og. ~ .
0605060606"
Og0706060g. ..
07A070707. ..
0705070707 "
070g 070707...
Og AOgOgOg. ..

01pAO1p 01p 01p...
011AO11011011"

X2(0, 2), and M(2, 2), from Eq. (3.6) we have Vp2(I') g
0, V24(I') j 0, and Vp2, V24 for Xi, X2, M points are all
equal to zero. Then the condition Eq. (3.1) is fulfilled for
Xi, X2, and M, the ordered structures can be deduced
by solving Eq. (2.7). According to Sec. IIIA, we only
consider the degenerate case for Xi, X2, M points.

When Xi ( 2, 0) and X2 (0, 2 ) are degenerate, we have
the following.

(i) If Xi satisfies relation Eq. (3.3), Vpp(X'i)
V44(Xi), &z(Xi) = Voo —IVo41 v2 = (1,0, +1), and.
X2 satisfies relation Eq. (3.2), Ai(X2) = V22(X2), vi ——

(0, 1, 0). Equation (2.10) gives
p(0, R) = x + qi2pi2 cos vrx for the first layer 0,
p(2, R) = x + rjiipii cos vry for the second layer 2,
p(4, R) = x 6 qi2pi2 cos 7rx for the third layer 4.
We get x = 1/2, pii ——piq ——1/2. The corresponding

ordered structure of the first layer and the third layer is
denoted by Oi [shown in Fig. 5(a)], and the structure
of the second plane by 02 [shown in Fig. 5(b)]. Then
we have determined the ordered structure of the three-
top-layers unit as Oq020i, which is consistent with the
result of Osorio et al. According to the model shown
in Sec. IIIA, we can stack the layers, and obtain the
whole ordered structure configuration: Oq020qOqOq. ..,
where the deep layers have the same ordered structure
OgOiOg. " .

(ii) If Xi satisfies Eq. (3.2) and X2 satisfies Eq. (3.3),
we can similarly get the ordered structure of the unit
as 020' 02, and the whole ordered configuration as
020g02O202. .. .

Using the same process, we can obtain the ordered
structure of the other cases which are degenerate between

Xi( i, 0) and M( —,—), or X'2(0, —) and M(2, 2).
results are listed in Table I, where Oq, 02, 03 are the
planar ordered structures shown in Figs. 5(a), (b), and
(c).

If we assume that the deep layer structures of the alloy
determine the long-range ordered structure, we can get
the following.

Deep layers structure OqOiOq. .. corresponds to the
ordered structure 2 [111]Lli, 2 [ill]L li, and 2 [110];
structure 030303... corresponds to the ordered struc-
ture [010]Llp, [100]Llp, and z [021]Eli, and 2[111]Lli,
2 [111]Lli,and 2 [110] are deduced by deep layers struc-
ture 020202. .. .

The results of (110) and (111) substrates growth can
be obtained by the same method. For brevity, we only
list the results in Table I, where 05, 06, 07 and Og, Oyo,
Oii denote the planar ordered structures (Fig. 6, Fig.
7).

4L 4L HL ~ 4E
Rr

4E ~ 4LkJ qr

4E 4E 41 4E l'5 4E 4E /5 JE

(s) O5 (b) o6 (c) 07

FIG. 6. Two-dimensional planar ordered structures of
(110) plane. (a) Oq, (b) Og, (c) Oq.
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FIG. 7. Two-dimensional planar ordered
structures of (111) plane. (a) 09, (b) Oio,
(c) 011~

(a) 09 (b) o10

IV. CONCLUSION AND DISCUSSION

Prom the arguments given above, we arrive at the fol-
lowing conclusions &om the proposed model of epitaxial
growth.

(i) The surface layers in the alloy are considered as
changeable, while the stable structures of deep layers
determine the long-range ordered structures of the al-
loy. Then, we obtain the three-dimensional bulk ordered
structures. If the surface thermodynamics is considered,
according to Zunger and co-workers, ' surface effects
could lead to long-range ordering and the ordering is
determined by the ordered phases of surface layers de-
pending on atomic mobilities. Accordingly, the top layer
couples to the layer 4 to select the three-dimensional or-
dered structures. It does not contradict our results. The
results in Sec. III show that the planar structure of top
layer 0 and layer 4 are the same through coupling, and
are also the same as the deep layers structure. There-
fore, the results both of the surface thermodynamics and
deep layers stacking are consistent with each other. For
instance, in Table I, the configuration O»O20»O»O»O». ..
leads to the CuPt structure according to both the surface
structures ' ' and the deep layers structures.

(ii) From the calculation in Sec. III, we have Vo2

V24 ——0. Therefore, the coupling between first-neighbor
layers can be omitted, which is in agreement with the re-
sults of Ref. 13. Accordingly, many possibilities appear
during the stacking process of deep layers. Consequently,
one ordered configuration of the deep layers lead to sev-
eral kinds of ordered structures, such as the coexistence
of [100]Llo, [010]Llo, and —[021]Elj according to the
configuration of deep layers Oq0303. .. . This result is
consistent with other works ' and experiments.

(iii) The intralayer interactions and interlayer interac-
tions in the alloy are the main factor of the appearance

of ordered structures; different ordered structures appear
because of the different interaction conditions.

(iv) If we want to determine the most stable ordered
structures in the epitaxial growth of the actual alloy, the
interaction relations, such as relations Eqs. (3.2), (3.3),
and (3.4), should be used.

We have determined the possible most stable ordered
structures of III-V ternary alloys for degenerate case,
which are listed in Table I. The present results can ex-
plain some experimental phenomena in epitaxial growth.
In (001) substrate growth, the coexistence of Llo and
El» structures, and especially the appearance of only two
of three variants of L10 structure, can be explained by
the configuration 030303... of deep layers in Table I. The
planar ordered structure 0» of deep layers leads to the ap-
pearance of two variants of Llq structure, 2 [111]Llq,and

2 [111]Llq, and the other two variants appear because of
the planar structure 02. Prom Sec. III, we can see that
there are two different nearest-neighbor intralayer inter-
action parameters W» and TV2 due to the V atoms under
the (001) plane, then the energies of Oq and 02 structures
are different. Several previous calculations have shown
that the 0» structure is selected to meet the minimum
energy of the alloy.

The results about the (110) substrate growth in Table I
are more complex, and the appearance of [001]Llo struc-
ture can be predicted. The other structures have not
been found by the experiment. The ordered structure
in (111) substrate growth has not been reported. Our
results about it are just theoretical predictions, and the
possible ordered structures are given in Table I. It may
be noticed that to determine the possibility of the exis-
tence of these structures, the interaction relations [Eqs.
(3.2), (3.3), and (3.4)] of each ordered structure should
be used and be applied to the specific ternary III-V semi-
conductor alloys.
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