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Abstract

We investigate the general characters of fully entangled fraction for quantum states. The fully

entangled fraction of Isotropic states and Werner states are analytically computed.
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I. INTRODUCTION

Entanglement is a vital resource for some practical applications in quantum information

processing such as quantum cryptography, quantum teleportation and quantum computa-

tion [1, 2]. One way to characterize the nonclassical property of quantum entanglement

is to quantify the entanglement in terms of some measures, for example, entanglement of

formation [3], concurrence [4], negativity [5] and geometric measure [6, 7]. However, in fact

it is the fully entangled fraction (FEF) that is tightly related to many quantum information

processing such as dense coding [8], teleportation [9], entanglement swapping [10], and quan-

tum cryptography (Bell inequalities) [11]. For instance the fidelity of optimal teleportation

is given by FEF [12–14]. Additionally, the FEF in two-qubit system acts as an index to

characterize the nonlocal correlation [15] and one can never determine whether a state is

entangled or not through the Dür-Cirac method [16], which is a simple and effective method

for examining multiqubit entanglement, if the FEF is less than or equal to 1
2
. FEF also plays

a significant role in deriving two bounds on the damping rates of the dissipative channel

[17]. Since FEF has a clear experimental meaning, an analytic formula for FEF is of great

importance. In [18] an elegant formula for FEF in two-qubit system is derived analytically

by using the method of Lagrange multiplier. For high dimensional quantum states the an-

alytical computation of FEF remains formidable and less results have been known. In [19]

the upper bound of FEF has been estimated.

In this paper, we first present some properties of FEF and its relations with negativity,

concurrence and geometric measure. Then we analytically solve the FEF for some classes of

quantum states such as Isotropic states and Werner states.

II. PROPERTIES OF FEF

The FEF of a density matrix ρ in d⊗ d Hilbert space is defined by [13, 14]

F(ρ) = max
U

〈ψ+|U † ⊗ IρU ⊗ I|ψ+〉, (1)

where U (resp. I) is a unitary (resp. identity) matrix, |ψ+〉 = 1√
d

∑d

k=1 |kk〉 is the maximally

entangled pure state.
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Any d⊗ d pure state |ψ〉 =
∑d

i,j=1 aij|ij〉 can be written in the standard Schmidt form,

|ψ〉 =
∑

i

λi|ii〉, (2)

where the Schmidt coefficients λi, i = 1, · · · , d, satisfy 0 ≤ λd ≤ · · · ≤ λ2 ≤ λ1 ≤ 1 and
∑

i λ
2
i = 1. The FEF of |ψ〉 has been given in [21],

F(|ψ〉) =
1

d
(
∑

i

λi)
2. (3)

From Eq. (3) it can be seen that |ψ〉 is separable if and only if F(|ψ〉) = 1
d
.

For pure states the FEF has direct relations with some entanglement measures. For

instance, due to ‖(|ψ〉〈ψ|)T1‖ = (
∑

i λi)
2, the negativity [5], N (ρ) = ‖ρT1‖−1

2
can be expressed

as N (|ψ〉) = dF(|ψ〉)−1
2

, where T1 stands for partial transposition with respect to the first

space. The geometric measure [7] is defined by E(|ψ〉) = 1− Λ2
max(|ψ〉), where Λ2

max(|ψ〉) =

sup|φ〉∈S |〈ψ|φ〉|
2 and S denotes the set of product states. For pure state |ψ〉 in Eq. (2), we

have Λ2
max(|ψ〉) = λ21 and E(|ψ〉) = 1 − λ21. From Eq. (3), we can get the relation between

FEF and geometric measure: dΛ2
max ≥ F and F ≤ d(1− E).

For d⊗ d mixed states ρ =
∑

i pi|ψi〉〈ψi|, F(ρ) has no general analytical formula. It can

be shown that

F(ρ) ≤
∑

i

piF(|ψi〉), (4)

since

F(ρ) ≤
∑

i

pimax
Ui

〈ψ+|U †
i ⊗ I|ψi〉〈ψi|Ui ⊗ I|ψ+〉 =

∑

i

piF(|ψi〉).

From Eq. (4) and the main result in [20], we can obtain a relation between FEF and

concurrence for mixed states, C(ρ) ≥ max{
√

2
d(d−1)

(dF(ρ) − 1), 0}. For two-qubit states,

using the relation between the entanglement of formation and the concurrence, one gets the

relation between the entanglement of formation and FEF presented in [12].

Most of the entanglement measures for a mixed state ρ are defined in terms of all

possible pure state decompositions of ρ by convex roof, e.g. for concurrence C, C(ρ) ≡

min{pi,|ψi〉}
∑

i piC(|ψi〉). A question one may ask is whether the FEF of a mixed state

also has such property: F(ρ) ≡ min{pi,|ψi〉}
∑

i piF(|ψi〉). The answer is no. As a counter-

example one may consider 2 ⊗ 2 state ρ = 1
2
(|00〉〈00|+ |11〉〈11|). By direct calculation one

has F(ρ) = 1
2
. While for any other decompositions {pi, |ψi〉} with |ψi〉 = αi|00〉 + βi|11〉,

where αi, βi ∈ C and |αi|2 + |βi|2 = 1,
∑

i piF(|ψi〉) =
1
2
+
∑

i pi|αiβi| > F(ρ). Here we give

a condition such that the equality holds in Eq. (4).
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Theorem 1 For any d ⊗ d mixed state ρ =
∑n

t=1 pt|ψt〉〈ψt|, n > 1, F(ρ) =
∑

t ptF(|ψt〉)

if and only if there exist unitary transformations U
(t)
1 and U

(t)
2 such that U

(t)
1 ⊗ U

(t)
2 |ψt〉 =

∑

j a
(t)
j |jj〉 with a

(t)
j ≥ 0 and U

(s)†
1 U

(s)∗
2 = eiθstU

(t)†
1 U

(t)∗
2 , 1 ≤ s, t ≤ n, 0 ≤ θst ≤ 2π. For

such state, F(ρ) = 1
d

∑

t pt(
∑

j a
(t)
j )2.

Proof. We only need to prove the case n = 2. The cases n ≥ 3 can be similarly proved.

Assume ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2|. By Schmidt decomposition, there exist unitary

matrices U
(1)
1 , U

(1)
2 , U

(2)
1 , U

(2)
2 such that |ψ̃i〉 = U

(i)
1 ⊗ U

(i)
2 |ψi〉 =

∑

j a
(i)
j |jj〉 with a

(i)
j ≥ 0,

i = 1, 2. We have

F(ρ) = max
V

(p1〈ψ
+|V †U

(1)†
1 ⊗ U

(1)†
2 |ψ̃1〉〈ψ̃1|U

(1)
1 V ⊗ U

(1)
2 |ψ+〉

+p2〈ψ
+|V †U

(2)†
1 ⊗ U

(1)†
2 |ψ̃2〉〈ψ̃2|U

(2)
1 V ⊗ U

(2)
2 |ψ+〉).

Therefore F(ρ) = p1F(|ψ1〉) + p2F(|ψ2〉) if and only if there exists unitary matrix V such

that

F(|ψ1〉) = F(|ψ̃1〉)

= 〈ψ+|V †U
(1)†
1 ⊗ U

(1)†
2 |ψ̃1〉〈ψ̃1|U

(1)
1 V ⊗ U

(1)
2 |ψ+〉

= tr(V †U
(1)†
1 ⊗ U

(1)†
2 |ψ̃1〉〈ψ̃1|U

(1)
1 V ⊗ U

(1)
2 P+)

= tr(U
(1)∗
2 V †U

(1)†
1 ⊗ I|ψ̃1〉〈ψ̃1|U

(1)
1 V U

(1)T
2 ⊗ IP+)

= |〈ψ̃1|U
(1)
1 V U

(1)T
2 ⊗ I|ψ+〉|2,

where P+ = |ψ+〉〈ψ+| and A ⊗ IP+ = I ⊗ ATP+. Furthermore, F(|ψ2〉) = F(|ψ̃2〉) =

|〈ψ̃2|U
(2)
1 V U

(2)T
2 ⊗ I|ψ+〉|2. On the other hand, F(|ψ̃1〉) = 1

d
(
∑

j a
(1)
j )2 and F(|ψ̃2〉) =

1
d
(
∑

j a
(2)
j )2. F(|ψ1〉) reaches maximum when U

(1)
1 V U

(1)T
2 = eiθ1I, i.e. U

(1)†
1 U

(1)∗
2 = e−iθ1V .

Similarly, we have U
(2)†
1 U

(2)∗
2 = e−iθ2V and U

(1)†
1 U

(1)∗
2 = ei(θ2−θ1)U

(2)†
1 U

(2)∗
2 . The value of FEF

can be obtained from Eq. (3). �

Theorem 1 gives the condition that FEF fulfills the convex roof measure. Besides if one

interprets FEF of a state ρ as the distance between ρ and maximally entangled states, then

the larger FEF is, the closer they are. Although there are infinite maximally entangled

states, the one U ⊗ I|ψ+〉 which reaches the maximum of Eq. (1) is the closest maximally

entangled state to ρ. The theorem 1 also tells us when the closest maximally entangled

state to two different pure states are the same. As an example, we consider mixed state

ρ =
∑d

i=1 pi|i, σ(i)〉〈i, σ(i)|, where σ denotes the permutation of (1, 2, · · · , d). For this state,

theorem applies and we have F(ρ) =
∑d

i=1 piF(|ψi〉) =
1
d
with |ψi〉 = |i, σ(i)〉. The distance
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between |ψi〉 and maximally entangled states is 1
d
. The closest maximally entangled state

to |ψi〉 is |ψ0〉 =
1√
d

∑d

i=1 |i, σ(i)〉: |〈ψi|ψ0〉|2 =
1
d
, i = 1, · · · , d.

From Eq. (3) and Eq. (4) one can obtain that for any d⊗d mixed state ρ, if ρ is separable,

then F(ρ) ≤ 1
d
. Moreover

Theorem 2 For any d ⊗ d mixed state ρ, 1
d2

≤ F(ρ) ≤ 1. F(ρ) = 1 if and only if ρ is a

maximally entangled pure state. F(ρ) = 1
d2

if and only if ρ is the maximally mixed state,

i.e. ρ = 1
d2
I.

Proof. For any d ⊗ d mixed state ρ, we assume ρ =
∑d2

i=1 λi|φi〉〈φi| is the spectrum

decomposition such that
∑d2

i=1 λi = 1, 0 ≤ λi ≤ 1 and {|φi〉}d
2

i=1 are normalized orthog-

onal eigenvectors in d ⊗ d Hilbert space. Then F(ρ) = max
U

〈ψ+|U † ⊗ IρU ⊗ I|ψ+〉 =

max
U

∑

i λi〈ψ
+|U † ⊗ I|φi〉〈φi|U ⊗ I|ψ+〉. Set ai = 〈ψ+|U † ⊗ I|φi〉〈φi|U ⊗ I|ψ+〉, which sat-

isfies 0 ≤ ai ≤ 1 and
∑d2

i=1 ai = 1 due to the completeness of the eigenvectors {|φi〉}.
∑d2

i=1 λiai ≤
∑d2

i=1 λi = 1 becomes an equality if and only if there are only one nonzero

coefficient, say, ai = 1 and one nonzero coefficient λi = 1. Therefore F(ρ) = 1 if and only if

ρ is maximally entangled pure state.

On the other hand, the minimum of the function g(λi, ai) =
∑d2

i=1 λiai is
1
d2

by Lagrange

multiplier. It reaches its minimum if and only if λi = ai =
1
d2

for i = 1, · · · , d2. This gives

rise to ρ = 1
d2
I. �

Similar to the proof above, here one can also obtain the range of geometric measure for

mixed states.

Corollary 3 For any d⊗ d mixed state ρ, it satisfies 0 ≤ E(ρ) ≤ d−1
d
. E(ρ) = 0 if and only

if ρ is a separable state. E(ρ) = d−1
d

if and only if ρ is a maximally entangled pure state.

We have studied some properties related to the FEF. Before we compute analytically the

FEF for Isotropic states and Werner states, we investigate another property that similarly

studied for entanglement of formation, negativity, concurrence, geometric measure and q-

squashed entanglement [22].

Theorem 4 For two given pure states |φ1〉 and |φ2〉, the FEF of their superposition |ψ〉 =

1
γ
(α|φ1〉+ β|φ2〉) satisfies:

max{||α|F
1

2 (|φ1〉)− |β|F
1

2 (|φ2〉)|,
1

d2
} ≤ |γ|F

1

2 (|ψ〉) ≤ min{|α|F
1

2 (|φ1〉) + |β|F
1

2 (|φ2〉), 1}.(5)
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Proof. By the definition of FEF we have

F(|ψ〉) =
1

γ2
max
U

〈ψ+|U † ⊗ I(α|φ1〉+ β|φ2〉)(α
∗〈φ1|+ β∗〈φ2|)U ⊗ I|ψ+〉

≤
1

γ2
(|α|2F(|φ1〉) + |β|2F(|φ2〉) + 2|αβ|

√

F(|φ1〉)F(|φ2〉))

=
1

γ2
(|α|F

1

2 (|φ1〉) + |β|F
1

2 (|φ2〉))
2,

which gives the right hand side of Eq. (5).

Similarly, taking into account of |φ1〉 =
γ

α
|ψ〉 − β

α
|φ2〉 and |φ2〉 =

γ

β
|ψ〉 − α

β
|φ1〉, one gets

the left hand side of Eq. (5). �

For example, let |φ1〉 = |00〉, |φ2〉 = |11〉 and |ψ〉 = 1√
2
(|00〉 + |11〉), then FEF of

|ψ〉 reaches the upper bound of Eq. (5). If we take |φ1〉 = 1√
2
(|00〉 − |11〉), |φ2〉 = |11〉

and |ψ〉 = |00〉, then FEF of |ψ〉 reaches the lower bound of Eq. (5). Eq. (5) can also

be generalized to the case of superposition with more than two components: for |ψ〉 =

1
γ
(α1|φ1〉+· · ·+αm|φm〉), we have maxi{|αi|F

1

2 (|φi〉)−
∑

j 6=i |αj|F
1

2 (|φj〉),
1
d2
} ≤ |γ|F

1

2 (|ψ〉) ≤

min{
∑

i |αi|F
1

2 (|φi〉), 1}.

III. FEF FOR SOME CLASSES OF MIXED STATES

Generally for mixed states it is rather difficult to get analytical formulae for entangle-

ment measures and FEF. Nevertheless for some special quantum states, elegant results have

been derived. For instance, for the Isotropic state, entanglement of formation [23], concur-

rence [24] and geometric measure [7] have been calculated explicitly. For the Werner state,

concurrence [25] and geometric measure [7] have been investigated also. Now we calculate

analytically FEF for such well-known mixed states.

Isotropic state Isotropic states [21] are a class of U ⊗ U∗ invariant mixed states in d⊗ d

Hilbert space:

ρiso(f) =
1− f

d2 − 1
I +

d2f − 1

d2 − 1
|ψ+〉〈ψ+|, (6)

with f = 〈ψ+|ρiso(f)|ψ+〉 satisfying 0 ≤ f ≤ 1. These states are shown to be separable if

and only if they are PPT, i.e. f ≤ 1
d
. They can be distilled if they are entangled, which

means f > 1
d
[21].

By definition, the FEF is given by

F(ρiso(f)) =
1− f

d2 − 1
+ max

U

d2f − 1

d2 − 1
|〈ψ+|U ⊗ I|ψ+〉|2 =

1− f

d2 − 1
+ max

U

d2f − 1

d2 − 1
|
1

d
trU |2.

6



If d2f−1
d2−1

> 0, i.e. f > 1
d2
, we have F(ρiso(f)) =

1−f
d2−1

+ d2f−1
d2−1

= f . The maximum is attained

by choosing U = I. If d
2f−1
d2−1

< 0, i.e. f < 1
d2
, we get F(ρiso(f)) =

1−f
d2−1

+ d2f−1
d2−1

min
U

|
1

d
trU |2 ≤

1−f
d2−1

. In fact, if we choose U =
∑

i 6=j |i〉〈j|, then the inequality becomes an equality. If

d2f−1
d2−1

= 0, i.e. f = 1
d2
, we have F(ρiso(f)) = 1

d2
. Therefore we get the FEF for Isotropic

states:

F(ρiso(f)) =







f, 1
d2

≤ f ≤ 1;
1− f

d2 − 1
, 0 ≤ f < 1

d2
.

According to [13], the fidelity fmax of optimal teleportation via state ρ attainable by

means of trace-preserving local quantum operations and classical communication (LOCC)

is equal to fmax(ρ) =
F(ρ)d+1
d+1

. If F(ρ) > 1
d
, then state ρ is said to be useful for teleportation.

Hence all entangled Isotropic states are useful in quantum teleportation.

Werner state Werner states [26] are a class of U ⊗ U invariant mixed states in d ⊗ d

Hilbert space:

ρwer(f) =
d− f

d3 − d
I +

df − 1

d3 − d
V, (7)

where V =
∑d

i,j=1 |ij〉〈ji| and f = 〈ψ+|ρwer(f)|ψ+〉, −1 ≤ f ≤ 1. These states are shown

to be separable if and only if they are PPT (f ≥ 0).

The FEF of Werner state is given by

F(ρwer(f)) =
d− f

d3 − d
+max

U

df − 1

d3 − d
|〈ψ+|U † ⊗ IV U ⊗ I|ψ+〉|

=
d− f

d3 − d
+max

U

df − 1

d4 − d2

∑

kl

〈k|U †|l〉〈k|U |l〉

=
d− f

d3 − d
+max

U

df − 1

d4 − d2
tr(UU∗).

i) If df − 1 > 0, since UU∗ is unitary,

F(ρwer(f)) =
d− f

d3 − d
+
df − 1

d3 − d
=

f + 1

d(d+ 1)
,

which corresponds to the case U = I.

ii) If df − 1 < 0 and d is even, we get

F(ρwer(f)) =
d− f

d3 − d
−
df − 1

d3 − d
=

1− f

d(d− 1)
,

which can be attained by choosing U = A2×2 ⊗ I d

2
× d

2

with A2×2 =





0 1

−1 0



.

7



iii) For the case of df − 1 < 0 and d is odd, one has

F(ρwer(f)) =
d− f

d3 − d
+
df − 1

d3 − d
×

−d+ 2

d
=
d2 − d2f + df + d− 2

d2(d2 − 1)
.

vi) If df − 1 = 0, i.e. f = 1
d
, F(ρwer(f)) =

1
d2
.

Therefore we get the FEF for Werner states:

F(ρwer(f)) =











f + 1

d(d+ 1)
, 1

d
≤ f ≤ 1;

1− f

d(d− 1)
, −1 ≤ f < 1

d
.

if d is even; and

F(ρwer(f)) =















f + 1

d(d+ 1)
, 1

d
≤ f ≤ 1;

d2 − d2f + df + d− 2

d2(d2 − 1)
, −1 ≤ f < 1

d
.

if d is odd. Hence this formula tells us there exist entangled Werner states which are not

useful for teleportation.

IV. CONCLUSIONS

We have explored some characters of FEF and analytically computed the FEF of several

well-known classes of quantum mixed states. These results complement previous ones in

this subject and may give rise to new application to the quantum information processing.
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[9] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev.

Lett. 70, 1895; Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1997

Nature (London) 390, 575; Boschi D, Branca S, Martini F D, Hardy L and Popescu S 1998

Phys. Rev. Lett. 80, 1121

[10] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71, 4287; Pan J

W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80, 3891

[11] Ekert A K 1991 Phys. Rev. Lett. 67, 661; Jennewein T, Simon C, Weihs G, Weinfurter H and

Zeilinger A 2000 Phys. Rev. Lett. 84, 4729; Naik D S, Perterson C G, White A G, Berglund A

J and Kwiat P G 2000 Phys. Rev. Lett. 84, 4733; Tittel W, Brendel J, Zbinden H and Gisin

N 2000 Phys. Rev. Lett. 84, 4737

[12] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54, 3824

[13] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60, 1888

[14] Albeverio S, Fei S M and Yang W L 2002 Phys. Rev. A 66, 012301

[15] Zhou Z W and Guo G C 2000 Phys. Rev. A 61, 032108

[16] Ota Y, Yoshida M and Ohba I arxiv: 0704.1375
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