Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A one-dimensional $A B X_{3}$-type coordination polymer: catena-poly[benzyltrimethylammonium [tri- μ-chloridocadmium(II)]]

De-Hong Wu* and Lei Jin
College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
Correspondence e-mail: wudehong@seu.edu.cn

Received 8 January 2013
Accepted 5 April 2013

The crystal structure of the title novel one-dimensional $A B X_{3}{ }^{-}$ type organic-inorganic hybrid complex $\left\{\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}\right)\left[\mathrm{CdCl}_{3}\right]\right\}_{n}$, (I), consists of benzyltrimethylammonium $\left(\mathrm{Me}_{3} \mathrm{BzN}^{+}\right)$cations and one-dimensional anionic $\left\{\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{3}\right]^{-}\right\}_{\infty}$ chains. Each $\mathrm{Cd}^{\mathrm{II}}$ centre is hexacoordinated by bridging chloride ligands, giving a slightly distorted octahedral $\mathrm{Cd}(\mu-\mathrm{Cl})_{6}$ arrangement. The octahedra are linked by two opposite shared faces, giving rise to an almost perfectly linear anionic $\left\{\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{3}\right]^{-}\right\}_{\infty}$ chain in the a-axis direction. $\mathrm{Me}_{3} \mathrm{BzN}^{+}$cations located in the inter-chain spaces balance the charge. Noncovalent static attracting forces (Coulombic and van der Waals forces) and nonclassical $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bond interactions stabilize the crystal structure.

Comment

The understanding of $A B X_{3}$-type perovskites remains one of the most challenging topics at the boundary between solidstate physics and solid-state chemistry. Perovskite materials exhibit many interesting and intriguing properties, from both the theoretical and application points of view. These compounds are used as sensors and catalyst electrodes in certain types of fuel cells and are candidates for memory devices and spintronics applications (Coey et al., 1999). It should be noted that a columnar arrangement is found frequently in $A B X_{3}$-type compounds, which have been extensively studied because numerous crystal structures containing the methylammonium cation exhibit phase transitions related to the dynamics of the organic cations and inorganic anions (Doudin \& Chapuis, 1992; Morosin, 1972; Puget et al., 1991; Waśkowska et al., 1990). Layered $A_{2} M X_{4}$ perovskites have attracted sustained interest because of their magnetic, electronic and other physical properties and the possibility of tuning both geometries and properties by variation of the organic cations (Gillon et al., 1999). Although perovskites have been known for a long time, new and intri-
guing physical effects are periodically discovered and their understanding remains an internationally highly competitive area. With these considerations in mind, we have used the benzyltrimethylammonium $\left(\mathrm{Me}_{3} \mathrm{BzN}^{+}\right)$cation to replace the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}{ }^{+}$cation and have synthesized the title new onedimensional $A B X_{3}$-type organic-inorganic coordination polymer, (I).

The asymmetric unit of (I) consists of a trichloridocadmate(II) anion and a $\mathrm{Me}_{3} \mathrm{BzN}^{+}$cation, as shown in Fig. 1. The other three chloride ligands $\left(\mathrm{Cl1}^{\mathrm{i}}, \mathrm{Cl} 2^{i}\right.$ and Cl^{i}) are produced by the corresponding chloride ligands through the $\left(x+\frac{1}{2},-y+\frac{1}{2}, z\right) a$-glide plane operation (Fig. 2). The $\mathrm{Cd}^{\mathrm{II}}$ centres are hexacoordinated by chloride ligands, giving a slightly distorted octahedral $\mathrm{Cd}(\mu-\mathrm{Cl})_{6}$ arrangement. The $\mathrm{Cd}-\mathrm{Cl}$ bond lengths are in the range 2.6271 (12)2.6685 (13) \AA and the $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ angles are in the ranges 82.72 (4)-100.45 (4) and $174.25(5)-175.25(7)^{\circ}$, deviating slightly from ideal octahedral angle values (90 and 180°). The octahedra are linked by two opposite shared faces, giving rise to infinite $\left\{\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{3}\right]^{-}\right\}_{\infty}$ chains parallel to the a axis, with a $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1^{\mathrm{i}}$ distance of 3.3769 (7) \AA and a Cd1 ${ }^{\mathrm{i}} \cdots \mathrm{Cd} 1 \cdots \mathrm{Cd} 1^{\text {ii }}$ angle of $179.436(13)^{\circ}$ [symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $\left.x-\frac{1}{2},-y+\frac{1}{2}, z\right]$, indicating that the polymer chain is perfectly linear (Fig. 2). Thus, all chloride ligands act as bridges between two consecutive Cd atoms, and each pair of consecutive Cd atoms is linked by three corner-shared bridging chloride ligands. It should be noted that this columnar arrangement is found frequently in $A B X_{3}$ compounds (Corradi et al., 1997; Costin-Hogan et al., 2008; Jian et al., 2006; López-Garzón et al.,

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The one-dimensional triple-stranded $\left\{\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{3}\right]^{-}\right\}_{\infty}$ chain, viewed along the a axis, showing the hydrogen-bond interactions with the cations as dashed lines. [Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z$; (iii) $x, y, z-1$.]

1995; Ma et al., 2006; Maldonado et al., 2008). For example, the $\left\{\left[\mathrm{Cd}_{3} \mathrm{Cl}_{9}\right]^{3-}\right\}_{\infty}$ anion reported by Jian et al. (2006) was also a one-dimensional inorganic chain, in which each $\mathrm{Cd}^{\text {II }}$ cation is octahedrally surrounded by six bridging Cl atoms, giving rise to polymeric chains. In the $\left[\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CdCl}_{3}$ (TrMCd) compound reported by Chapuis \& Zuniga (1980), the Cd atoms are located at the centres of face-sharing CdCl_{6} octahedra, forming infinite one-dimensional chains perpendicular to a hexagonal or nearly hexagonal net. The interchain distances are determined by the size of the organic cation which occupies the space between the octahedra, with a hydrogen bond between the alkylammonium cation and a chloride ligand.

There are thus three features in the structure of (I). Firstly, all the $\mathrm{Cd}^{\mathrm{II}}$ cations are collinear. Secondly, the $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1$ distance is much shorter than those reported in other onedimensional cadmium polymers bridged by Cl atoms (average ca $4.14 \AA$) (Huang et al., 1998; Hu et al., 2003; Laskar et al., 2002). Although the $\mathrm{Cd} \cdots$ Cd distance in complex (I) is larger than the interatomic distance in bulk $\mathrm{Cd}(2.98 \AA$ A Stuhlmann et al., 1998), it is still shorter than 115% of the total sum of two Cd metal radii (3.427 Å; Bender et al., 1985). There seems to be no good theoretically supported argument for the existence of a Cd-Cd metal bond in (I) (Bender et al., 1985). Finally, the $\mathrm{Me}_{3} \mathrm{BzN}^{+}$cations on each side of the inorganic chain are arranged in a zigzag configuration. The charges of the cations are balanced by the anionic $\left\{\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{3}\right]^{-}\right\}_{\infty}$ polymer chain. The $\mathrm{Me}_{3} \mathrm{BzN}^{+}$cations are located in the inter-chain space, with noncovalent static attracting forces (Coulombic and van der Waals forces) and nonclassical $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bond interactions with the anionic chains to stabilize the crystal structure (Table 1 and Fig. 2). The bond lengths and angles of the $\mathrm{Me}_{3} \mathrm{BzN}^{+}$cations are in agreement with those reported in the literature (Müller et al., 1994; Hauge \& Maroy, 1996).

Our interest in one-dimensional $A B X_{3}$-type organic-inorganic hybrid complexes is based mainly on their potential uses in molecular dielectrics and ferroelectrics. The variabletemperature dielectric response, especially in the relatively high-frequency range, is very useful in the search for phase transitions (Wu et al., 2011; Wu \& Jin, 2012). However, we were unable to detect any dielectric anomalies within the temperature range $93-460 \mathrm{~K}$ when we measured the variation of the dielectric properties of (I) with temperature, implying that there are no structural phase transitions within that temperature range and that (I) may not have ferroelectric properties (Ye et al., 2009; Fu et al., 2007). Further $A B X_{3}$-type ferroelectrics still need to be sought and studied.

Experimental

Benzyltrimethylammonium chloride (97%, Alfa Aesar) and $\mathrm{CdCl}_{2} \cdot-$ $2.5 \mathrm{H}_{2} \mathrm{O}$ (Sinopharm) were used as commercial products without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker Biospin AG Magnet System 300 MHz NMR instrument in $\mathrm{D}_{2} \mathrm{O}$ solution with trimethylsulfoxane as internal standard. IR spectra ($4000-400 \mathrm{~cm}^{-1}$) were recorded on a Shimadzu IR Prestige21 spectrophotometer with KBr pellets. The melting point was determined using an uncorrected X-4 melting-point apparatus (Beijing Kaifu Company).

Compound (I) was prepared by dissolving equimolar amounts of benzyltrimethylammonium chloride and $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ in a mixture of water and methanol $(1: 1 \mathrm{v} / \mathrm{v})$ to afford a colourless solution. This solution was left to evaporate at room temperature in air for two weeks to afford colourless plate-like crystals of (I) suitable for singlecrystal X-ray diffraction (yield 90%; m.p. $471-472 \mathrm{~K}$ with decomposition). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 2.91\left(s, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 4.30\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $7.20-7.37$ (5 H in phenyl ring); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 52.43\left(\mathrm{CH}_{3}\right), 69.57$ $\left(\mathrm{CH}_{2}\right), 127.38,129.21,130.85,132.85(\mathrm{C}$ in phenyl ring); IR $(\mathrm{KBr}$ pellet, $v, \mathrm{~cm}^{-1}$): 3022, 2986, 2955. 1498, 1471, 1450, 973.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}\right)\left[\mathrm{CdCl}_{3}\right]$	$V=1382.7(5) \AA^{3}$
$M_{r}=368.99$	$Z=4$
Orthorhombic, Pna2 ${ }_{1}$	Mo $K \alpha$ radiation
$a=6.7538(14) \AA \AA$	$\mu=2.13 \mathrm{~mm}^{-1}$
$b=22.852(5) \AA$	$T=291 \mathrm{~K}$
$c=8.9590(18) \AA$	$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection
Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\text {min }}=0.590, T_{\text {max }}=0.650$
$V=1382.7(5) \AA^{3}$
$Z=4$
Ko
$T=291 \mathrm{~K}$
$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

13516 measured reflections 3167 independent reflections 2743 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA_{\AA^{-3}}$
$w R\left(F^{2}\right)=0.056$
$S=1.06$
3167 reflections
140 parameters
1 restraint

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 3^{\text {iii }}$	0.96	2.74	$3.600(6)$	149
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 1^{\text {iv }}$	0.96	2.83	$3.586(7)$	137
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 3$	0.97	2.68	$3.645(5)$	171

Symmetry codes: (iii) $x, y, z+1$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z+1$.

Chapuis, G. \& Zuniga, F. J. (1980). Acta Cryst. B36, 807-812.
Coey, J. M. D., Viret, M. \& Von-Molnár, S. (1999). Adv. Phys. 48, 167-293.
Corradi, A. B., Cramarossa, M. R. \& Saladini, M. (1997). Inorg. Chim. Acta, 257, 19-26.
Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. \& Beatty, A. M. (2008). CrystEngComm, 10, 1910-1915.

Doudin, B. \& Chapuis, G. (1992). Acta Cryst. C48, 1218-1220.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. \& Huang, S.-P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.
Gillon, A. L., Orpen, A. G., Starbuck, J., Wang, X.-M., Rodríguez-Martín, Y. \& Ruiz-Pérez, C. (1999). Chem. Commun. pp. 2287-2288.
Hauge, S. \& Maroy, K. (1996). Acta Chem. Scand. 50, 1095-1101.
Hu, C., Li, Q. \& Englert, U. (2003). CrystEngComm, 5, 519-529.
Huang, C.-F., Wei, H.-H., Lee, G.-H. \& Wang, Y. (1998). Inorg. Chim. Acta, 279, 233-237.
Jian, F.-F., Zhao, P.-S., Wang, Q.-X. \& Li, Y. (2006). Inorg. Chim. Acta, 359, 1473-1477.
Laskar, I. R., Mostafa, G., Maji, T. K., Das, D., Welch, A. J. \& Chaudhuri, N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 1066-1071.

López-Garzón, R., Godino-Salido, M. L., Gutiérrez-Valero, M. D., Moreno, J. M. \& Odedra, R. (1995). Inorg. Chim. Acta, 232, 139-144.

Ma, K.-R., Xu, J.-N., Zhang, P., Wang, Y., Wang, L., Fan, Y. \& Song, T.-Y. (2006). Solid State Sci. 8, 1473-1476.

Maldonado, C. R., Quirós, M. \& Salas, J. M. (2008). J. Mol. Struct. 882, 30-34.
Morosin, B. (1972). Acta Cryst. B28, 2303-2305.
Müller, U., Sens, I., Wollert, R. \& Dehnicke, K. (1994). Acta Cryst. C50, 493496.

Puget, R., Jannin, M., de Brauer, C. \& Perret, R. (1991). Acta Cryst. C47, 18031805.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stuhlmann, C., Park, Z., Bach, C. \& Wandelt, K. (1998). Electrochim. Acta, 44, 993-998.
Waśkowska, A., Lis, T., Krzewska, U. \& Czapla, Z. (1990). Acta Cryst. C46, 1768-1770.
Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. \& Xiong, R.-G. (2011). CrystEngComm, 13, 319-324.
Wu, D.-H. \& Jin, L. (2012). Inorg. Chem. Commun. 23, 98-102.
Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. \& Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.

supplementary materials

A one-dimensional $A B X_{3}$-type coordination polymer: catena-poly[benzyltrimethylammonium [tri- μ-chlorido-cadmium(II)]]

De-Hong Wu and Lei Jin

catena-Poly[benzyltrimethylammonium [tri- μ-chlorido-cadmium(II)]]

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}\right)$ [CdCl $\left.{ }_{3}\right]$
$M_{r}=368.99$
Orthorhombic, $\mathrm{Pna2}_{1}$
Hall symbol: P 2c - 2 n
$a=6.7538$ (14) \AA
$b=22.852(5) \AA$
$c=8.9590(18) \AA$
$V=1382.7(5) \AA^{3}$
$Z=4$
$F(000)=728$

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 13.6612 pixels mm^{-1}
CCD profile fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\min }=0.590, T_{\text {max }}=0.650$
$D_{\mathrm{x}}=1.773 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=471-472 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12682 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Plate, colourless
$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

13516 measured reflections
3167 independent reflections
2743 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-8 \rightarrow 8$
$k=-29 \rightarrow 29$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.056$
$S=1.06$
3167 reflections
140 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0132 P)^{2}+0.2094 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.26$ e \AA^{-3}
$\Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0246 (5)
Absolute structure: Flack (1983), with 1482
Bijvoet Pairs
Flack parameter: -0.07 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$0.4914(11)$	$0.1034(3)$	$0.8740(5)$	$0.092(2)$
H1A	0.4935	0.1313	0.9540	0.137^{*}
H1B	0.6216	0.0874	0.8606	0.137^{*}
H1C	0.4005	0.0725	0.8979	0.137^{*}
C2	$0.5601(6)$	$0.18467(17)$	$0.7107(7)$	$0.0743(13)$
H2A	0.5121	0.2076	0.6285	0.111^{*}
H2B	0.6919	0.1713	0.6893	0.111^{*}
H2C	0.5615	0.2081	0.7995	0.111^{*}
C3	$0.2256(5)$	$0.1557(2)$	$0.7500(12)$	$0.116(3)$
H3A	0.2067	0.1879	0.6828	0.174^{*}
H3B	0.2062	0.1688	0.8508	0.174^{*}
H3C	0.1320	0.1254	0.7274	0.174^{*}
C4	$0.4414(8)$	$0.0915(2)$	$0.6028(5)$	$0.0588(13)$
H4A	0.4182	0.1135	0.5119	0.071^{*}
H4B	0.5756	0.0764	0.5983	0.071^{*}
C5	$0.3023(7)$	$0.04091(17)$	$0.6056(4)$	$0.0487(10)$
C6	$0.3486(5)$	$-0.01128(18)$	$0.6770(4)$	$0.0517(11)$
H6	0.4710	-0.0155	0.7233	0.062^{*}
C7	$0.2155(6)$	$-0.05671(16)$	$0.6798(5)$	$0.0625(13)$
H7	0.2488	-0.0916	0.7272	0.075^{*}
C8	$0.0355(7)$	$-0.0510(2)$	$0.6138(6)$	$0.0732(14)$
H8	-0.0556	-0.0815	0.6183	0.088^{*}
C9	$-0.0116(10)$	$-0.0001(3)$	$0.5405(7)$	$0.100(2)$
H9	-0.1341	0.0036	0.4941	0.120^{*}
C10	$0.1216(7)$	$0.0453(2)$	$0.5354(5)$	$0.0750(16)$
H10	0.0893	0.0794	0.4841	0.090^{*}
Cd1	$0.63883(2)$	$0.249637(8)$	$0.22732(13)$	$0.03124(8)$
C11	$0.38657(14)$	$0.28920(5)$	$0.02411(8)$	$0.0366(3)$
C12	$0.39437(15)$	$0.29886(5)$	$0.41788(9)$	$0.0390(3)$
C13	$0.38566(8)$	$0.16118(3)$	$0.23929(13)$	$0.0364(2)$
N1	$0.4268(3)$	$0.13288(10)$	$0.7335(5)$	$0.0368(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.146(6)$	$0.087(4)$	$0.042(3)$	$-0.036(4)$	$-0.024(3)$	$0.016(3)$
C2	$0.096(3)$	$0.067(3)$	$0.060(3)$	$-0.043(2)$	$0.012(3)$	$-0.008(3)$

supplementary materials

C3	$0.051(2)$	$0.077(3)$	$0.220(8)$	$0.013(2)$	$0.018(5)$	$-0.058(6)$
C4	$0.097(4)$	$0.048(3)$	$0.031(2)$	$-0.007(3)$	$0.015(2)$	$-0.001(2)$
C5	$0.073(3)$	$0.035(2)$	$0.037(2)$	$-0.003(2)$	$-0.002(2)$	$-0.0065(17)$
C6	$0.061(2)$	$0.040(2)$	$0.054(3)$	$0.0121(19)$	$0.0014(17)$	$-0.0043(18)$
C7	$0.080(3)$	$0.027(2)$	$0.080(4)$	$0.008(2)$	$0.011(2)$	$0.0008(19)$
C8	$0.077(3)$	$0.043(3)$	$0.099(4)$	$-0.013(2)$	$0.002(3)$	$-0.015(3)$
C9	$0.094(4)$	$0.059(3)$	$0.148(6)$	$-0.012(3)$	$-0.059(5)$	$-0.009(5)$
C10	$0.107(4)$	$0.045(3)$	$0.074(3)$	$-0.010(3)$	$-0.050(3)$	$0.007(2)$
Cd1	$0.01888(11)$	$0.04055(14)$	$0.03429(13)$	$-0.00048(8)$	$0.0028(3)$	$-0.00021(14)$
C11	$0.0284(5)$	$0.0486(7)$	$0.0328(5)$	$0.0003(4)$	$0.0029(5)$	$0.0073(5)$
C12	$0.0300(6)$	$0.0498(7)$	$0.0372(6)$	$-0.0024(4)$	$0.0063(5)$	$-0.0122(5)$
C13	$0.0291(3)$	$0.0340(4)$	$0.0461(5)$	$0.0009(3)$	$0.0050(6)$	$0.0031(6)$
N1	$0.0426(12)$	$0.0387(14)$	$0.0291(13)$	$-0.0064(11)$	$0.007(2)$	$-0.006(2)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	1.493 (6)	C6-H6	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600	C7-C8	1.358 (6)
C1-H1B	0.9600	C7-H7	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600	C8-C9	1.373 (7)
C2-N1	1.501 (4)	C8-H8	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600	C9-C10	1.374 (7)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600	C9-H9	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600	C10-H10	0.9300
C3-N1	1.463 (4)	$\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	2.6271 (12)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600	Cd1-Cl2	2.6279 (13)
С3-H3B	0.9600	$\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	2.6351 (8)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600	Cd1-Cl3	2.6497 (8)
C4-C5	1.489 (6)	Cd1-Cl1	2.6523 (13)
C4-N1	1.509 (5)	$\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	2.6685 (13)
C4-H4A	0.9700	Cd1-Cd1 ${ }^{\text {i }}$	3.3769 (7)
C4-H4B	0.9700	$\mathrm{Cl} 1-\mathrm{Cd} 1^{\text {ii }}$	2.6271 (12)
C5-C10	1.377 (6)	$\mathrm{Cl} 2-\mathrm{Cd} 1{ }^{\text {ii }}$	2.6686 (13)
C5-C6	1.389 (5)	$\mathrm{Cl} 3-\mathrm{Cd} 1{ }^{\text {ii }}$	2.6351 (8)
C6-C7	1.373 (5)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C9-C10-H10	119.7
N1-C1-H1B	109.5	C5-C10-H10	119.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl} 2$	174.25 (5)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	83.49 (4)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl3}^{\text {i }}$	92.29 (4)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H1C}$	109.5	$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl} 3$	100.45 (4)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 3$	83.96 (4)
N1-C2-H2B	109.5	$\mathrm{Cl3}-\mathrm{Cd} 1-\mathrm{Cl} 3$	175.25 (7)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl1}$	92.79 (5)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1$	84.05 (3)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{Cl3}-\mathrm{Cd} 1-\mathrm{Cl1}$	99.83 (4)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{Cl} 3-\mathrm{Cd} 1-\mathrm{Cl} 1$	82.72 (4)
N1-C3-H3A	109.5	$\mathrm{Cl1}-\mathrm{Cd1}-\mathrm{Cl}^{\text {i }}$	83.75 (3)
N1-C3-H3B	109.5	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl2}{ }^{\text {i }}$	99.70 (6)

supplementary materials

H3A-C3-H3B	109.5	$\mathrm{Cl3}{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cl}^{2}$	83.45 (4)
N1-C3-H3C	109.5	$\mathrm{Cl} 3-\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	94.28 (4)
H3A-C3-H3C	109.5	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	174.96 (5)
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\mathrm{i}}$	50.56 (3)
C5-C4-N1	115.6 (3)	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {i }}$	128.77 (3)
C5-C4-H4A	108.4	$\mathrm{Cl} 3-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\text {i }}$	50.474 (17)
N1-C4-H4A	108.4	$\mathrm{Cl} 3-\mathrm{Cd} 1-\mathrm{Cd}^{1}{ }^{\mathrm{i}}$	130.470 (19)
C5-C4-H4B	108.4	$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cd1}^{\text {i }}$	129.84 (3)
N1-C4-H4B	108.4	$\mathrm{Cl} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {i }}$	49.86 (3)
H4A-C4-H4B	107.4	$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {ii }}$	129.68 (3)
C10-C5-C6	118.2 (4)	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {ii }}$	50.92 (3)
C10-C5-C4	119.6 (4)	$\mathrm{Cl} 3-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {ii }}$	128.963 (19)
C6-C5-C4	122.2 (4)	$\mathrm{Cl} 3-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\text {ii }}$	50.092 (17)
C7-C6-C5	120.7 (4)	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\text {ii }}$	49.91 (3)
C7-C6-H6	119.6	$\mathrm{Cl} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {ii }}$	130.45 (3)
C5-C6-H6	119.6	$\mathrm{Cd} 1{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {ii }}$	179.436 (13)
C8-C7-C6	120.3 (4)	Cd 1 - $\mathrm{Cl} 1-\mathrm{Cd} 1$	79.53 (4)
C8-C7-H7	119.8	$\mathrm{Cd} 1-\mathrm{Cl} 2-\mathrm{Cd} 1{ }^{\text {ii }}$	79.22 (4)
C6-C7-H7	119.8	Cd1ii-Cl3-Cd1	79.43 (3)
C7-C8-C9	119.8 (5)	C3-N1-C1	110.3 (5)
C7-C8-H8	120.1	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	106.8 (3)
C9-C8-H8	120.1	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	107.2 (4)
C8-C9-C10	120.2 (5)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	111.3 (5)
C8-C9-H9	119.9	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	110.6 (3)
C10-C9-H9	119.9	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	110.5 (4)
C9-C10-C5	120.7 (5)		

Symmetry codes: (i) $x+1 / 2,-y+1 / 2, z$; (ii) $x-1 / 2,-y+1 / 2, z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 3 \mathrm{iii}$	0.96	2.74	$3.600(6)$	149
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl1} 1^{\text {iv }}$	0.96	2.83	$3.586(7)$	137
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 3$	0.97	2.68	$3.645(5)$	171

Symmetry codes: (iii) $x, y, z+1$; (iv) $x-1 / 2,-y+1 / 2, z+1$.

