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We study theoretically the detachment of H− by a linearly polarized few-cycle laser pulse. We show that the
angularly resolved distribution of the electrons is very sensitive to the carrier envelope phase �CEP� and the
duration of the short laser pulse. This in turn provides an additional means to measure the CEP of a laser pulse
at lower laser intensities.
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The rapid development of modern laser technology has
made it possible to generate few-cycle pulses both in the
infrared �1� and in the xuv region �2�. A very important fea-
ture of these few-cycle pulses is that the carrier envelope
phase �CEP� plays a crucial role in the nonlinear interaction
with matter, which provides an additional laser parameter to
control the relevant physical and chemical processes �3�. In
particular, experiments have demonstrated striking CEP de-
pendence in high-order harmonic generation �HHG� �4�,
multiphoton ionization �5�, and multiphoton excitation �6�.
Strong CEP dependence has also been found in the nonse-
quential double ionization of Ar �7� and in the electron lo-
calization of dissociating D2

+ �8�. These phenomena can in
turn be used to measure the CEP of the pulse. An accuracy of
measurement better than � /10 has recently been achieved by
a stereo detection of the spatial distribution of electrons �9�.
More recently, Peng et al. �10,11� have investigated the CEP
effects of an attosecond pulse on the momentum and energy
distributions of the ionized electrons for H and He atoms.
They have also studied the influences of an additional short
infrared laser pulse on the ionizing dynamics.

There have been recent experiments for H− in intense la-
ser fields �12,13�. The angular distribution of the detached
electron has been shown to be sensitive to the laser intensity
and wavelength. Various theories have also shown similar
phenomena near the detachment threshold �see e.g., Refs.
�14,15��. However, these experiments have been carried out
with rather long pulses of duration around a few hundred
femtoseconds and most theories are done for a monochro-
matic laser. Very recently, theoretical calculations have found
strong CEP dependence and pulse length dependence of
above-threshold detachment of F− by a circularly polarized
few-cycle laser pulse �16�.

In the present work, we provide angularly resolved elec-
tron spectra of H− detached by few-cycle infrared laser
pulses of frequencies near the two-photon detachment
threshold. We show that the spatial distribution of the elec-
tron is strongly dependent on the CEP of the pulse. Because
of the low binding energy of negative ions, the low laser
intensity needed for detachment allows a robust and conve-
nient determination of the CEP �9�.

The fact that there is only one bound state for H− allows
an accurate theoretical treatment of photodetachment by

short laser pulses �17�. We assume the ir laser, with a fre-
quency � and a pulse duration �, is polarized along the z
axis, whose vector potential is given by

A�t� � A�t�ẑ = A0 sin2��

�
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�

2
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where � is the CEP. The peak value of the vector potential is
related to the peak laser intensity I0 by A0=E0 /�
=
I0 / Ia.u. /�. The period of the laser TL is given by 2� /�.
According to Eq. �22� of Ref. �17�, after the interaction of the
ir laser pulse, the S-matrix transition amplitude from an ini-
tial state with bound energy Eb to a final state with energy
E=k2 /2 is given by

Sk = i�
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where E�t�=− �
�tA�t� is the electric field strength. For H−, the

dipole transition operator from the ground state to the con-
tinuum state in momentum space is given by �17�

d�k + A�t�� =
4Ci


2�
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��k + A�t��2 + 2Eb�2 , �3�

where Ci=0.315 52 and Eb=0.027 751 a.u.
Because of the symmetry in kx and ky, we can consider the

representative case where ky =0. Thus Eq. �2� can be rewrit-
ten as

Skxkz
= i

4Ci


2�
�

−�

+�

dtei�E+Eb�texp�− i�
t

+�

dt��kzA�t��

+
1

2
A2�t��	� E�t��kz + A�t��

�kx
2 + �kz + A�t��2 + 2Eb�3 . �4�

The transition probability to the final state �kx ,ky =0,kz� is
calculated by
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P�kx,kz� = �Skxkz
�2, �5�

which gives the corresponding energy distribution

P�E,�� = P�kx,kz� , �6�

where � is the angle between the observation direction and
the laser polarization ẑ. The two distributions are normalized
such that �−�

� �−�
� P�kx ,kz�dkxdkz��0

��0
2�P�E ,��dEd�.

For a laser pulse with the vector potential of Eq. �1�, we
can carry out the integration over t� in Eq. �4� analytically.
The overall integration over t is carried out numerically us-
ing the Gauss-Kronrod-Patterson method with a precision of
10−14. In order to compare with other theoretical results for
the monochromatic laser case, we calculate the electron an-
gular distribution for a rather long pulse of duration �
=50TL at various wavelengths and intensities. In Fig. 1, our
results are compared with those of �15�, in which a nonper-
turbative quantum electrodynamics scattering theory is used.
In each plot of Fig. 1, the angular distribution is shown at the
electron energy E=2�−Up−Eb, where Up is the ponderomo-
tive energy, Up=E0

2 /4�. One notices that both calculations
are almost identical except for the case in �d� where a very
small difference around 90° appears.

Now let us consider the short pulse case where the dura-
tion �=3TL. In Fig. 2, we present angle-resolved electron
spectra of H− detached by a laser of wavelengths 1800 nm
and 2400 nm for three different values of the CEP � �0,
0.5�, and 1.5��. The peak laser intensity I0 is taken to be
4�1011 W /cm2 for all plots in Fig. 2. The general feature
for both wavelengths is that the momentum distribution
P�kx ,kz� is symmetric about kx=0. When the CEP �=0, it is
symmetric about kz=0 as well. For other values of �, the
symmetry about the kz=0 axis is broken while the symmetry
about the kx=0 axis remains. For �=1800 nm and I0
=4�1011 W /cm2, the maximum value of kz for two- and

three-photon detachment is estimated to be 0.192 and 0.296
a.u. by assuming kx=0 and kz=
2�n�−Up−Eb�, where n is
the number of photons absorbed. Indeed, one observes that
the detachment probability P�kx ,kz� peaks at these two val-
ues in Fig. 2�a� along the kx=0 axis. Similarly in Fig. 2�d�,
the detachment probability peaks at the predicted kz values
for two- �0.068 a.u.�, three- �0.206 a.u.�, and four-photon
�0.284 a.u.� detachment for �=2400 nm and I0=4
�1011 W /cm2.

Besides these expected peaks, one observes additional
peaks. In Fig. 2�a�, an obvious peak appears around kz
=0.056 a.u. While in Fig. 2�d�, an additional peak occurs at
around kz=0.131 a.u. Actually, this can be understood as a
feature of few-cycle laser pulses: The bandwidth is so broad
that one-photon detachment becomes possible. For a short
pulse of �=NTL, the value of the vector potential A�t� in Eq.
�1� can be rewritten as �3�
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from which one observes that there exist three different fre-
quency components, i.e., �0=�, �1= �1+ 1

N ��, and �2

= �1− 1
N ��.

In the calculations in Fig. 2, the number of cycles N=3.
For �=1800 nm and I0=4�1011 W /cm2, one-photon de-
tachment with �1 becomes possible, which gives the addi-
tional peak around kz=0.056 a.u. However, for �
=2400 nm and I0=4�1011 W /cm2, one-photon detach-
ment with �1 is still not possible. But we find that the peak
around kz=0.131 a.u. originates from two-photon detach-
ment with the combination of �0 and �1. Also the other
lower frequency combination �0+�2=5� /3�0.0316 a.u.
will also be available and generate electrons with momentum
around 0.088 a.u.
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FIG. 1. �Color online� Angular distributions of two-photon de-
tachment by a long pulse of 50TL �solid curves�, compared with the
results of Ref. �15� �dotted curves�, for laser intensity of I0=1
�1010 W /cm2 �left-hand column� and I0=2�1011 W /cm2 �right-
hand column� at different wavelengths: 1800 nm �first row�; 2400
nm �second row�; 2700 nm �third row�. The probability in each plot
is normalized to unity at its maximum.

FIG. 2. �Color online� Angularly resolved electron distributions
by short laser pulses of �=3TL and I0=4�1011 at �=1800 nm
�upper row� and 2400 nm �lower row�. The CEP � is taken to be 0
�left-hand column�; 0.5� �middle column�; 1.5� �right-hand
column�.
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In order to see the effects of these new frequency compo-
nents due to the short pulse duration, we show in Fig. 3 the
momentum distributions along kz	0 and kx=0 �i.e., �=0�
for a short laser pulse of wavelength �=1800 nm, and peak
intensity I0=4�1011 W /cm2, and CEP �=0 at different
pulse durations �=NTL. One can immediately note that the
two-photon �2�0� peak near 0.2 a.u. and the three-photon
�3�0� peak near 0.3 a.u. does not shift when the number of
cycles N of the short laser pulse is varied. However, as the
pulse length is gradually increased from N=2 to N=10, one
clearly observes that momentum peaks lower than 0.2 a.u.
are shifted to lower electron energy. These observations in-
dicate that these lower momentum peaks indeed come from
the one photon �1�1� process and the pair of two photon
processes �0+�1,2 discussed in the previous paragraph.

In Fig. 4, for the case �=1800 nm, we provide energy
distributions P�E ,�� along �=0 and � as a function of the
CEP � for different laser pulse lengths �. Obviously, the
energy distribution has perfect symmetry between the for-
ward ��=0� and backward ��=�� direction: The distribution
in the forward direction for � is exactly the same as that in
the backward direction for 2�−�. This symmetry can also
be seen in Fig. 2 for �b� and �c�, and for �e� and �f�. As

expected, the variation of the energy distribution against the
change of � is most noticeable for shorter pulse lengths. As
the pulse length � is increased to 7TL, the dependence on �
almost disappears although the bandwidth effects are still
shown as the broad distribution of two- �0.501 eV� and three-
photon �0.296 eV� detachment. The one-photon peak by �1
is also barely observable in Figs. 4�e� and 4�f� at the energy
0.05 eV.

In summary, we have provided angularly resolved elec-
tron spectra resulting from photodetachment of H− by few-
cycle laser pulses near the two-photon threshold. The distri-
butions exhibit sensitive dependence on the CEP and the
pulse duration. This sensitivity provides another means to
determine the CEP of a laser pulse.
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FIG. 3. �Color online� Momentum distributions along kz	0 and
kx=0 �i.e., �=0� for wavelength �=1800 nm, peak intensity I0=4
�1011 W /cm2, and CEP �=0 for different pulse durations �
=NTL, where the number of cycles N is indicated in each plot.
Dotted lines indicate the evolution of particular features with
changing pulse length.

FIG. 4. �Color online� Energy distribution of the detached elec-
tron as a function of the CEP � for �=1800 nm and I0=4�1011.
The pulse duration � is 3TL �first row�; 5TL �second row�; 7TL �third
row�. The observation angle � is 0 �left-hand column�, � �right-
hand column�.
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