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Abstract. One machine sequencing situation is introduced and cooperative games theory is used to 

allocate cost savings when agents cooperate and gain some cost savings. One machine games is 

proved to be balanced and have a nonempty core. A new cost allocation, the proportion gain 

allocation approach, is proposed and proved to give a core allocation for one sequencing games. The 

results in examples show that the proportion gain allocation approach are fair and reasonable for one 

machine games. 

Introduction 

In one machine sequencing situation, a finite number of agents, each having one job, are queued in 

front of a machine waiting for their jobs to be processed, every agent has due date and penalty for 

lateness. Agents have linear cost functions associated with the completion time of his job and each 

group of agents (coalition) is allowed to obtain cost savings by reordering position of agents. There is 

an initial schedule on agents before the processing of the machine starts, and an optimal schedule of a 

coalition is an admissible arrangement that maximizes the cost savings of this coalition. By assuming 

an initial schedule of all agents, two problems need to be solved, the first one is how to find an optimal 

schedule of all jobs, and the second is that of allocate these cost savings among the parties in a fair 

way. 

To cost allocation problem, cooperative games theory has turned out to be a useful tool for the 

study of cooperation in sequencing situations. Tijs [1] researches games theory and cost allocation 

problem, Sharply value method and cost gap allocation method are used to solve cost allocation. 

Curiel [2,3] proposes sequencing games theory and gives equal gain splitting rule for one machine 

sequencing situation and provides an axiomatical characterization. Following studies have extended 

original model by considering ready times [4], due dates [5], precedence relations [6] and controllable 

processing times [7]. In these papers, the convexity or balancedness of corresponding class of games 

is established. In [8] proportionate flow shop games are researched, associated games have nonempty 

core and are convex if initial schedule is in decreasing urgency indices. Calleja [9] considers a class of 

sequencing situation with two parallel machines in which each agent owns two jobs to be processed, 

one on each machine, associated games are balanced on some conditions. Zhou [10] concerns a class 

of flow shop scheduling problem with processing time associated with work stage, corresponding 

games are proved be balanced, and a cost allocation method is put forward and proved to lead a core 

allocation. Curiel [11] uses dynamics cooperative games to solve multi-stage sequencing situation 

and MEGS rule is defined to yield stable allocations. 

EGS approach [2] can give a core allocation, which allocated gain obtained by switching 

neighboring two jobs to associated two agents averagely, sometimes, it is unfair. This paper put 

forward a new cost allocation approach, the proportion gain allocation approach, to allocating cost 

savings, which is proved to provide core allocation for one machine sequencing games. 
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One machine sequencing situation 

The set of agents is denoted by },,2,1{ n�====N , by a bijection },,2,1{: n�→→→→Nσ , the position of agents 

in the queue can be described, e.g., ji =)(σ  means that player i is in position j, 
0σ is an initial 

schedule to be processed. The processing times of jobs on machine are denoted by },,,{ 21 nppp �====p .  

For a scheduleσ , the completion time )(iCσ  of the job of agent i is equal to
ipit +)(σ , where )(itσ  

is the starting time of the job of agent i, and 
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where ),( iP σ  is the set of predecessors of i with respect to the schedule σ . 

The cost of agent i are defined as  

)()( iCic i σσ α ⋅=                                                                                                                         (2) 

where
iα is cost coefficient and 0>iα , the set of cost coefficient is denoted by },,,{ 21 nααα �====α .  

Then one machine sequencing situation can be described as a 4-tuple ),,,( ασ pN . 

The total costs of agents are defined as  

∑
∈

=
Ni

N icc )()( σσ                                                                                                                          (3) 

Let )(NΠ  be the set of all schedules of the agents, σ̂ is an optimal schedule that minimizes the total 

costs, so 
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It follows from Smith rule [12] that an optimal schedule is arranged according to decreasing 

urgency indices in one sequencing situation, and urgency indices are defined as 1−
ii pα . 

Example 1 Let ),,,( ασ pN  be one sequencing situation with }7,6,5,4,3,2,1{====N , 
0σ = (1 2 3 4 5 6 

7), }60,50,40,70,40,50,30{=p , }3.0,8.0,6.0,9.0,5.0,4.0,7.0{====α . 

In initial schedule
0σ , the completion time can be calculated, 30)1(

0
=σC , 80)2(

0
=σC , 120)3(

0
=σC , 

190)4(
0

=σC , 230)5(
0

=σC , 280)6(
0

=σC , 340)7(
0

=σC , the total costs of agents are 748. 

According to Smith rule, optimal scheduleσ̂ = (1 6 5 4 3 2 7), jobs are reordered according to 

decreasing 1−⋅ ii pα coefficient. The completion time can be calculated, 30)1(ˆ =σC , 280)2(ˆ =σC , 

230)3(ˆ =σC , 190)4(ˆ =σC , 120)5(ˆ =σC , 80)6(ˆ =σC , 340)7(ˆ =σC , the total costs of agents are 657, total 

saving costs are 91 in optimal scheduleσ̂ . 

One machine sequencing games 

A cooperative games is a pair (N, v) where N is a finite set (of agents) and v R
N →2:  is a mapping 

with v (φ ) = 0. The mapping v assigns to each coalition NS ⊂  the worth of the coalition v(S).  A 

cooperative games (N, v) is called super-additive if for all coalitions NTS ⊂,  

)()()( TSvTvSv ∪≤+    Whenever φ⊂∩TS                                                                                 (5) 

The precondition of cooperative games is the formation of coalition, and how to divide the total 

profit v(N) among the agents is very important. An allocation of the amount v(N) can be described by 

a vector NRx∈  with ∑
∈

==
Ni

NvixNx )()()( . The quantity xi is the amount allocated to agent i. The core 

C(v) of a cooperative game (N, v) is defined as the set of efficient allocations for which no coalition 

has an incentive to split off from the grand coalition, i.e., for all NS ⊂  
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the core of cooperative games can be empty, games with nonempty core are called balanced. The 

Sharply value [13] is one of the famous solution concepts in cooperation games theory. 
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A coalition S is called connected with respect to σ if for all Sji ∈, and Nk ∈ such that 

)()()( jki σσσ << it holds that Sk ∈ . For a coalition S, σ\S is the set of all maximally connected 

components of S with respect toσ . Notice that σ\S is a partition of S. A cooperative game (N, v) is 

called 
0σ -component additive if it satisfies the following three conditions: (a) v(i) = 0 for all Ni∈ ; (b) 

(N, v) is super-additive;  (c) ∑
∈

=
σ\

)()(
ST

TvSv . Le Breton [14] showed that 
0σ -component additive 

games are balanced. 

 Let ),,,( ασ pN  be one sequencing situation, 
0σ is an initial schedule, )(SA  is the set of admissible 

schedules for coalition S, one machine sequencing games are defined by         

( )
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Agents rearrange in )(SA , and at last, the value of coalition S equals maximal cost savings that the 

coalition can obtain in admissible rearrangements. 

Theorem 1 One sequencing games are
0σ -component additive games, and hence balanced. 

Proof: Let ),,,( ασ pN  be one sequencing situation and (N, v) be the associated one sequencing 

games.    

Obviously, a coalition including only a player can not save cost. So v(i) = 0 for all Ni∈ . 

Let NTS ⊂, and φ⊂∩TS , assume 
0σ is an initial schedule, optimal schedules are 

Sσ and 
Tσ  with 

respect to coalition S and T, then  
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Note that )( TSA ∪  is the set of admissible schedules for coalition TS ∪ and 
)( TS∪σ is a schedule 

which satisfies 








=∪

ifi

ifi

ifi

i T

S

TS

)(

)(

)(

)(

0

)(

σ

σ
σ

σ
Ni

Ti

Si

∈

∈

∈

)(\ TS ∪

 

So one sequencing games (N, v) are super-additive. 

Let 
0\σST ∈ and { }sTTTT �,, 11= , then  
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One sequencing games (N, v) satisfy condition (a)-(c) of 
0σ -component additive games given in 

previous section, so one sequencing games are 
0σ -component additive, and hence balanced.      

Cost allocation approach 

According to Smith rule, optimal schedule can be obtained by reordering jobs according to decreasing 

urgency indices. EGS approach [2] allocate cost savings obtained by switching neighboring two jobs 

to associated two agents averagely, sometimes, it is unfair. We propose a cost allocation approach, the 

proportion gain allocation (PGA) approach, and show that it gives a core allocation for one 

sequencing games.  

Let i and j be two neighbors with i standing in front of j, the cost saving obtained by switching i and 

j is denoted by gij, and 

),0max( ijjiij ppg αα −=                                                                                                              (8) 
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If ),( 0 iF σ  is defined as the set of followers of i with respect to the schedule
0σ , then the total cost 

savings are 
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Let ),,,( ασ pN  be one sequencing situation, and (N, v) be the associated one sequencing games, 

0σ is an initial schedule, PGA approach is defined by   
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Theorem 2 The PGA approach gives a core allocation of one sequencing game. 

Proof: Let ),,,( ασ pN  be one sequencing situation, and (N, v) be the associated one sequencing 

games, 
0σ is an initial schedule, and σ̂ is optimal schedule. 

According to prior definition:      

)()(
),( 0

NvgvPGA
Ni iFj

ij

Ni

i ======== ∑∑∑∑ ∑∑∑∑∑∑∑∑
∈∈∈∈ ∈∈∈∈∈∈∈∈ σ

 

  Let NS 2∈ , then  

∑∑∑∑ ∑∑∑∑∑∑∑∑∑∑∑∑
∈∈∈∈ ∈∈∈∈∈∈∈∈∈∈∈∈











⋅⋅⋅⋅

++++
++++⋅⋅⋅⋅

++++
====

Si iFj

ij

iPk

ki

Si

i g
jcic

ic
g

kcic

ic
vPGA

),(),( 0 00

0

0 00

0

)()(

)(

)()(

)(
)(

σ σσ

σ

σ σσ

σ  

)(
)()(

)(

)()(

)(

),,(),,( 0 00

0

0 00

0 Svg
jcic

ic
g

kcic

ic

Si SjiFj

ij

SkiPk

ki =









⋅

+
+⋅

+
≥∑ ∑∑

∈ ∈∈∈∈ σ σσ

σ

σ σσ

σ  

The PGA approach satisfies conditions of core allocation (Eq.6 in previous section) for one 

sequencing games, so it gives a core allocation.   

Example 2 Using PGA approach find core allocation for one sequencing games in Example 1. 

In initial schedule, cost of all agents c = (21,32,60,171,138,224,102), total cost of all agents is 748. 

We have found optimal schedule σ̂ = (1 6 5 4 3 2 7) and saving total costs are 91 in optimal 

scheduleσ̂ . We can calculate the gain obtained by switching neighboring two jobs 

0,0,0,0,0,0 171615141312 ====== gggggg , 0,20,14,17,9 2726252423 ==================== ggggg  

0,7,4,1 37363534 ================ gggg , 0,11,6 474645 ============ ggg , 0,0,2 675756 ============ ggg  

Gains allocated to agents are 
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Conclusions  

In this paper one machine sequencing situation and one machine games are discussed. We prove that 

one machine games are balanced. We propose the proportion gain allocation approach to allocate cost 

savings and prove that it can give core allocation for one sequencing games. Some research results 

can be extended to others sequencing situation where cost savings can be obtained by cooperation and 

associated cost allocation problem. 
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