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Abstract
This paper studies the global asymptotic stability of neural networks of neutral
type with mixed delays. The mixed delays include constant delay in the
leakage term (i.e. ‘leakage delay’), time-varying delays and continuously
distributed delays. Based on the topological degree theory, Lyapunov method
and linear matrix inequality (LMI) approach, some sufficient conditions are
derived ensuring the existence, uniqueness and global asymptotic stability of
the equilibrium point, which are dependent on both the discrete and distributed
time delays. These conditions are expressed in terms of LMI and can be easily
checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the
obtained results are less restrictive than some recent works. It can be applied to
neural networks of neutral type with activation functions without assuming their
boundedness, monotonicity or differentiability. Moreover, the differentiability
of the time-varying delay in the non-neutral term is removed. Finally, two
numerical examples are given to show the effectiveness of the proposed method.

Mathematics Subject Classification: 92B20, 34D23

1. Introduction

For two decades, dynamic behaviours of delayed neural networks have been investigated widely
due to their potential applications in many fields such as pattern recognition, image processing,
fixed-point computation and synchronization problem [1–4]. Many interesting results have
been obtained; see [5–16], where [5–8] discussed the case of constant delays, [9–13] studied
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the case of time-varying delays and [14–16] considered the case of continuously distributed
delays.

Recently, Gopalsamy [17] initially investigated the bidirectional associative memory
(BAM) neural networks with constant delays in the leakage terms as follows:

dxi(t)

dt
= −aixi(t − τ

(1)
i ) +

n∑
j=1

aijfj (yj (t − σ
(2)
j )) + Ii

dyi(t)

dt
= −biyi(t − τ

(2)
i ) +

n∑
j=1

bijgj (xj (t − σ
(1)
j )) + Ji




, t > 0, i = 1, 2, . . . , n,

(I)

where the first terms on the right-hand side of model (I) are variously known as forgetting
or leakage terms, and time delays τ

(1)
i and τ

(2)
i are called leakage delays or forgetting

delays, see [17–19]. Such time delays in the leakage terms are difficult to handle and have
been rarely considered in the literature. The author presented several sufficient conditions
to guarantee the existence-uniqueness, global asymptotic stability and global exponential
stability of equilibrium point for model (I) via the Lyapunov–Kravsovskii functionals, M-
matrices method and some analysis techniques, see [17] for detailed information. Inspired
by this work, Peng [20] further investigated the BAM neural networks with continuously
distributed delays in the leakage terms, and obtained some conditions for the existence and
global attractiveness of periodic solutions via Lyapunov functional and analysis theory. As we
know, linear matrix inequality (LMI) techniques have been successfully used to tackle various
dynamical behaviours of delayed neural networks [6, 21, 28]. Such type of results not only
can be easily verified via the MATLAB LMI toolbox but also reflect the neuron’s inhibitory
and excitatory effects on neural networks. However, hardly any work has been done so far
on the stability of neural networks with leak delays via the LMI approach, which remains an
interesting research topic.

On the other hand, a type of time delay, namely neutral-type time delays, has recently
drawn much research attention [22–27, 36–38]. In fact, many practical delay systems can
be modelled as differential systems of neutral type, whose differential expression includes
not only the derivative term of the current state but also the derivative term of the past state,
such as partial element equivalent circuits and transmission lines in electrical engineering,
controlled constrained manipulators in mechanical engineering and population dynamics,
see [37, 38]. Moreover, it has been shown that the existing neural network models in many cases
cannot characterize the properties of a neural reaction process precisely due to the complicated
dynamic properties of the neural cells in the real world, and it is natural and necessary that
systems will contain some information about the derivative of the past state to further describe
and model the dynamics for such complex neural reactions [26, 39]. To date, there have been
many results on dynamical analysis of neural networks of neutral type by using the Lyapunov–
Krasovskii functional and LMI; see [22–30, 34, 35] and references therein. For instance, Park
and Kwon [25] studied the global asymptotic stability of delayed cellular neural networks
of neutral type with interval time-varying delays. In [30], Zhu et al investigated the robust
stability of Hopfield neural networks of neutral type with time-varying delays. However, it is
worth pointing out that the given criteria in [22–30, 34, 35] have been based on the following
assumptions: (i) the activation functions are bounded, monotonic or differentiable; (ii) the time
delays are constant delays or time-varying delays which are continuously differentiable and
their derivatives are bounded. Such undesirable assumptions restrict the application of those
results to real problems. Hence, there is still enough room to develop novel stability conditions
for improvement.
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Inspired by the above discussion, in this paper, we consider a class of neural networks of
neutral type with mixed delays. The mixed delays include leakage delay, time-varying delays
and continuously distributed delays. By constructing a proper Lyapunov–Krasovskii functional
and employing topological degree theory and LMI techniques, some delay-dependent sufficient
conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium
point are derived, which are expressed in terms of LMI and can be easily checked by the
MATLAB LMI toolbox. The obtained results require neither the differentiability of time-
varying delays in the non-neutral term nor the boundedness, monotonicity or differentiability
of the activation functions, and are dependent on the leakage delay, time-varying delays and
continuously distributed delays. Moreover, even if there is no leakage delay, the obtained
results are less restrictive than some recent works [22–30, 34, 35]. Finally, two numerical
examples are given to show the effectiveness of the proposed method.

2. Preliminaries

Notation. Let R (R+) denote the set of (positive) real numbers, Z+ denote the set of positive
integers and R

n denote the n-dimensional real spaces equipped with the Euclidean norm
|| · ||, A > 0 or A < 0 denote that the matrix A is a symmetric and positive definite
or negative definite matrix. The notation A T and A −1 mean the transpose of A and the
inverse of a square matrix. λmax(A ) or λmin(A ) denotes the maximum eigenvalue or the
minimum eigenvalue of matrix A . I denotes the identity matrix with appropriate dimensions
and � = {1, 2, . . . , n}. [·]∗ denotes the integer function. For any interval J ⊆ R, set
V ⊆ R

k(1 � k � n), C(J, V ) = {φ : J → V is continuous} and C1
b (J, V ) = {φ :

J → V is continuously differentiable bounded}. For any x = (x1, x2, . . . , xn) ∈ R
n, [x]+ =

(|x1|, |x2|, . . . , |xn|)T and for any Q = (qij )n×n ∈ Z
n×n, [Q]+ = (|qij |)n×n. In addition, the

notation � always denotes the symmetric block in one symmetric matrix.
Consider the following neural networks model:


ẋ(t) = −Cx(t − σ) + Af (x(t − τ(t)))

+ B

∫ t

−∞
K(t − s)f (x(s)) ds + Dẋ(t − h(t)) + J, t > 0,

x(s) = ϕ(s), s ∈ (−∞, 0],

(1)

where x(t) = (x1(t), . . . , xn(t))
T is the neuron state vector of the neural networks and ẋ

denotes the time derivative of the neuron state; C = diag(c1, . . . , cn) is a diagonal matrix
with ci > 0, i ∈ �; A, B and D are the interconnection matrices representing the weight
coefficients of the neurons; J is an external input; f (x(·)) = (f1(x1(·)), . . . , fn(xn(·)))T is
the neuron activation function; K(·) = diag(k1(·), . . . , kn(·)) is the delay kernel; σ � 0
is a constant which denotes the leakage delay; τ(t) and h(t) are time-varying transmission
delays and satisfy 0 � τ(t) � τ, 0 � h(t) � h, ḣ(t) � h∗ < 1; initial condition
ϕ(·) ∈ C1

b ((−∞, 0], R
n), the norm is defined by

‖ϕ‖h = max

{
sup
s�0

‖ϕ(s)‖, sup
−h�s�0

‖ϕ̇(s)‖
}
.

In this paper, we give the following assumptions:

(H1) The neurons activation functions fj , j ∈ �, are continuous on R and satisfy

l−j � fj (u) − fj (v)

u − v
� l+

j , for any u, v ∈ R, u �= v, j ∈ �,

where l−j and l+
j are some real constants and they may be positive, zero or negative.
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(H2) The delay kernels kj , j ∈ �, are some real value non-negative continuous functions
defined in [0, ∞) and satisfy∫ ∞

0
kj (s) ds = κj ,

∫ ∞

0
skj (s) ds < ∞, j ∈ �,

where κj , j ∈ � are some positive constants.

Definition 2.1 ([32]). Assume that 	 ∈ R
n is a bounded and open set, F (u) : 	 → R

n is a
continuous and differentiable function. If p ∈F (∂	) and JF (u) �= 0 for any u ∈ F−1(p),

where JF denotes the Jacobian determinant relative to F , then the topological degree relative
to 	 and p is defined by

deg(F , 	, p) =




∑
u∈F−1(p)

sgnJF (u), F−1(p) �= ∅,

0, F−1(p) = ∅.

Remark 2.1. Generally speaking, the topological degree of F (u) relative to 	 and p can be
regarded as the algebraic number of solution of F (u) = p in 	 if F (∂	) �= 0. For instance,
deg(F , 	, 0) = ±1 implies that F (u) = 0 has at least one solution in 	.

Lemma 2.1 ([33]). Given any real matrix M = MT > 0 of appropriate dimension, and a
vector function ω(·) : [a, b] → R

n, such that the integrations concerned are well defined, then[∫ b

a

ω(s) ds

]T

M

[∫ b

a

ω(s) ds

]
� (b − a)

∫ b

a

ωT(s)Mω(s) ds.

3. Main results

First, we present a sufficient condition to guarantee the existence of equilibrium point for
model (1).

Theorem 3.1. Assume that assumptions (H1) and (H2) hold. Then model (1) has at least
one equilibrium point if C − [A + BK]+L is an M-matrix, where L = diag(l1, . . . , ln), lj =
max{|l−j |, |l+

j |}, K = diag(k1, . . . , kn).

Proof. The equilibrium point of model (1) is defined by the constant vector x∗ ∈ R
n, where

x∗ satisfies

−Cx∗ + Af (x∗) + BKf (x∗) + J = 0,

which is equal to

x∗ − C−1(A + BK)f (x∗) − C−1J = 0, (2)

in view of C > 0. Clearly, now we only need to show that system (2) has at least one solution.
For convenience, it can be rewritten as

h(x) = x − Wf (x) − J ′ = 0,

where W = C−1(A + BK), J ′ = C−1J.

Consider the following homotopic mapping:

H(x, λ) = λh(x) + (1 − λ)x, λ ∈ [0, 1].
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Note that C − [A + BK]+L is an M-matrix; it can be deduced that I − [W ]+L is also an
M-matrix. This implies that (I − [W ]+L)−1 � 0 and there exists a positive vector X0 ∈ R

n

such that (I − [W ]+L)X0 > 0. It then follows that

[H(x, λ)]+ = [λh(x) + (1 − λ)x]+ = [x − λWf (x) − λJ ′]+

� [x]+ − λ[Wf (x)]+ − λ[J ′]+

� [x]+ − λ[W ]+[f (x)]+ − λ[J ′]+

� [x]+ − λ[W ]+L[x]+ − λ[J ′]+

� (1 − λ)[x]+ + λ{(I − [W ]+L)[x]+ − [J ′]+}
� (1 − λ)[x]+ + λ(I − [W ]+L){[x]+ − (I − [W ]+L)−1[J ′]+}.

Let

	 = {x | [x]+ � (I − [W ]+L)−1[J ′]+ + X0},
then the set 	 is not empty and for any x ∈ ∂	, we have

[H(x, λ)]+ � (1 − λ)[x]+ + λ(I − [W ]+L)X0 > 0, λ ∈ [0, 1],

which implies that H(x, λ) �= 0 for all x ∈ ∂	 and λ ∈ [0, 1]. By topological degree invariance
theory, we obtain

deg(h(x), 	, 0) = deg(H(x, λ), 	, 0) = deg(H(x, 0), 	, 0) = 1.

Therefore, from remark 2.1, we know that system (2) has at least one solution in 	. This
completes the proof. �
Remark 3.1. It should be noted that theorem 3.1 can guarantee the existence of the equilibrium
point but not the uniqueness. In the following work, we shall derive some sufficient conditions
to guarantee not only the global asymptotic stability but also the uniqueness of the equilibrium
point.

Assume that x∗ is an equilibrium point of model (1), then we can shift the equilibrium
point x∗ to the origin by a simple transformation y(t) = x(t) − x∗. Thus, model (1) can be
rewritten as


ẏ(t) = −Cy(t − σ) + Ag(y(t − τ(t)))

+ B

∫ t

−∞
K(t − s)g(y(s)) ds + Dẏ(t − h(t)), t > 0,

y(s) = ϕ(s) − x∗, s ∈ [−ρ, 0],

(3)

where g(y(·)) = f (y(·) + x∗) − f (x∗). Moreover, it has an equivalent form as follows:


d

dt

[
y(t) − C

∫ t

t−σ

y(u) du

]
= −Cy(t) + Ag(y(t − τ(t)))

+ B

∫ t

−∞
K(t − s)g(y(s)) ds + Dẏ(t − h(t)), t > 0,

y(s) = ϕ(s) − x∗, s ∈ [−ρ, 0].

(4)

Then we have the following global asymptotical stability result.

Theorem 3.2. Under the conditions in theorem 3.1, model (1) has a unique equilibrium
point which is globally asymptotically stable if there exist two n × n inverse matrices



1714 X Li and J Cao

Q1, Q2, three n × n matrices P > 0, Q3 > 0, Q4 > 0, four n × n diagonal matrices
U1 > 0, U2 > 0, Q5 > 0, Q6 > 0 and a 2n × 2n matrix

(
T11 T12
� T22

)
> 0 such that




11 0 PD T T
12 0 CPC U1�2 PA PB

� 
22 Q1D + QT
2 D 0 −Q1C 0 0 Q1A Q1B

� � 
33 0 DTQ2C −DTPC 0 −DTQ2A −DTQ2B

� � � 
44 0 0 0 U2�2 0
� � � � −Q3 0 0 0 0
� � � � � −Q4 0 −CPA −CPB

� � � � � � Q5K − U1 0 0
� � � � � � � −U2 0
� � � � � � � 0 −Q5




< 0,

(5)

where


11 = −PC − CP + Q3 + σ 2Q4 − U1�1,


22 = τT22 + Q6 − Q1 − QT
1 ,


33 = −Q6(1 − h∗) − DTQ2D − DTQT
2 D,


44 = τT11 − T12 − T T
12 − U2�1,

K = diag(κ2
1 , κ2

2 , . . . , κ2
n),

�1 = diag(l−1 l+
1 , . . . , l−n l+

n ),

�2 = diag

(
l−1 + l+

1

2
, . . . ,

l−n + l+
n

2

)
.

Proof. Construct a Lyapunov–Krasovskii functional in the form of

V (t, y(t)) = V1(t, y(t)) + V2(t, y(t)) + V3(t, y(t)) + V4(t, y(t)) + V5(t, y(t)) + V6(t, y(t)),

(6)

where

V1(t, y(t)) =
[
y(t) − C

∫ t

t−σ

y(u) du

]T

P

[
y(t) − C

∫ t

t−σ

y(u) du

]
,

V2(t, y(t)) =
∫ t

0

∫ u

u−τ(u)

[
y(u − τ(u))

ẏ(s)

]T [
T11 T12

� T22

][
y(u − τ(u))

ẏ(s)

]
ds du,

V3(t, y(t)) =
∫ 0

−τ

∫ t

t+u

ẏT(s)T22ẏ(s) ds du,

V4(t, y(t)) =
∫ t

t−σ

yT(s)Q3y(s) ds +
∫ t

t−h(t)

ẏT(s)Q6ẏ(s) ds,

V5(t, y(t)) = σ

∫ t

t−σ

∫ t

s

yT(u)Q4y(u) du ds,

V6(t, y(t)) =
n∑

j=1

q
(5)
j κj

∫ ∞

0
kj (u)

∫ t

t−u

g2
j (yj (s)) ds du,

where Q5 = diag(q
(5)
1 , q

(5)
2 , . . . , q(5)

n ) > 0.
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For the sake of brevity, we denote V (t) = V (t, y(t)) and Vi(t) = Vi(t, y(t)), i =
1, . . . , 6. Then calculating the time derivative of V along the solution of (3) or (4), we have

V̇1(t) = 2

[
y(t) − C

∫ t

t−σ

y(u) du

]T

P

[
− Cy(t) + Ag(y(t − τ(t)))

+ B

∫ t

−∞
K(t − s)g(y(s)) ds + Dẏ(t − h(t))

]

= −2yT(t)PCy(t) + 2yT(t)PAg(y(t − τ(t)))

+ 2yT(t)PB

∫ t

−∞
K(t − s)g(y(s)) ds

+ 2yT(t)PDẏ(t − h(t)) + 2yT(t)CPC

∫ t

t−σ

y(u) du

− 2

[ ∫ t

t−σ

y(u) du

]T

CPAg(y(t − τ(t)))

− 2

[ ∫ t

t−σ

y(u) du

]T

CPB

∫ t

−∞
K(t − s)g(y(s)) ds

− 2

[ ∫ t

t−σ

y(u) du

]T

CPDẏ(t − h(t)), (7)

V̇2(t) =
∫ t

t−τ(t)

[
y(t − τ(t))

ẏ(s)

]T [
T11 T12

� T22

][
y(t − τ(t))

ẏ(s)

]
ds

= τ(t)yT(t − τ(t))T11y(t − τ(t)) + 2yT(t)T T
12y(t − τ(t))

− 2yT(t − τ(t))T T
12y(t − τ(t)) +

∫ t

t−τ(t)

ẏT(s)T22ẏ(s) ds

� yT(t − τ(t))[τT11 − 2T T
12]y(t − τ(t)) + 2yT(t)T T

12y(t − τ(t))

+
∫ t

t−τ

ẏT(s)T22ẏ(s) ds, (8)

V̇3(t) = τ ẏT(t)T22ẏ(t) −
∫ 0

−τ

ẏT(t + u)T22ẏ(t + u) du

= τ ẏT(t)T22ẏ(t) −
∫ t

t−τ

ẏT(s)T22ẏ(s) ds, (9)

V̇4(t) = yT(t)Q3y(t) − yT(t − σ)Q3y(t − σ) + ẏT(t)Q6ẏ(t)

− ẏT(t − h(t))Q6ẏ(t − h(t))(1 − ḣ(t))

� yT(t)Q3y(t) − yT(t − σ)Q3y(t − σ) + ẏT(t)Q6ẏ(t)

− ẏT(t − h(t))Q6ẏ(t − h(t))(1 − h∗). (10)
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It follows from lemma 2.1 that

V̇5(t) = σ 2yT(t)Q4y(t) − σ

∫ t

t−σ

yT(u)Q4y(u) du

� σ 2yT(t)Q4y(t) −
[∫ t

t−σ

y(u) du

]T

Q4

[∫ t

t−σ

y(u) du

]
. (11)

By the well-known Cauchy–Schwarz inequality, we know

V̇6(t) =
n∑

j=1

q
(5)
j κj

∫ ∞

0
kj (u)g2

j (yj (t)) du −
n∑

j=1

q
(5)
j κj

∫ ∞

0
kj (u)g2

j (yj (t − u)) du

� gT(y(t))Q5Kg(y(t)) −
n∑

j=1

q
(5)
j

∫ ∞

0
kj (u) du

∫ ∞

0
kj (u)g2

j (yj (t − u)) du

� gT(y(t))Q5Kg(y(t)) −
n∑

j=1

q
(5)
j

(∫ ∞

0
kj (u)gj (yj (t − u)) du

)2

= gT(y(t))Q5Kg(y(t))

−
(∫ t

−∞
K(t − s)g(y(s)) ds

)T

Q5

(∫ t

−∞
K(t − s)g(y(s)) ds

)
. (12)

In addition, we note that

0 = 2ẏT(t)Q1{−ẏT(t) + ẏT(t)}

= 2ẏT(t)Q1

{
− ẏT(t) − Cy(t − σ) + Ag(y(t − τ(t))) + B

∫ t

−∞
K(t − s)g(y(s)) ds

+ Dẏ(t − h(t))

}

= −2ẏT(t)Q1ẏ
T(t) − 2ẏT(t)Q1Cy(t − σ) + 2ẏT(t)Q1Ag(y(t − τ(t)))

+ 2ẏT(t)Q1B

∫ t

−∞
K(t − s)g(y(s)) ds + 2ẏT(t)Q1Dẏ(t − h(t)) (13)

and

0 = 2ẏT(t − h(t))DTQ2{−DẏT(t − h(t)) + DẏT(t − h(t))}

= 2ẏT(t − h(t))DTQ2

{
− DẏT(t − h(t)) + ẏ(t) + Cy(t − σ) − Ag(y(t − τ(t)))

− B

∫ t

−∞
K(t − s)g(y(s)) ds

}

= −2ẏT(t − h(t))DTQ2DẏT(t − h(t)) + 2ẏT(t)QT
2 Dẏ(t − h(t))

+ 2ẏT(t − h(t))DTQ2Cy(t − σ) − 2ẏT(t − h(t))DTQ2Ag(y(t − τ(t)))

− 2ẏT(t − h(t))DTQ2B

∫ t

−∞
K(t − s)g(y(s)) ds. (14)
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Moreover, for any n × n diagonal matrices U1 > 0, U2 > 0, the following inequality holds by
the methods in [31]:

0 �
{[

y(t)

g(y(t))

]T [−U1�1 U1�2

� −U1

][
y(t)

g(y(t))

]

+

[
y(t − τ(t))

g(y(t − τ(t)))

]T [−U2�1 U2�2

� −U2

]
·
[

y(t − τ(t))

g(y(t − τ(t)))

]}
. (15)

Utilizing relations (7)–(15), we get

V̇ (t) � yT(t)[−2PC + Q3 + σ 2Q4 − U1�1]y(t) + 2yT(t)PDẏ(t − h(t))

+ 2yT(t)T T
12y(t − τ(t))

+ 2yT(t)U1�2g(y(t)) + 2yT(t)PAg(y(t − τ(t))) + 2yT(t)CPC

∫ t

t−σ

y(u) du

+ 2yT(t)PB

∫ t

−∞
K(t − s)g(y(s)) ds + ẏT(t)[τT22 + Q6 − 2Q1]ẏ(t)

+ 2ẏT(t)[Q1D + QT
2 D]ẏ(t − h(t)) − 2ẏT(t)Q1Cy(t − σ)

+ 2ẏT(t)Q1Ag(y(t − τ(t))) + 2ẏT(t)Q1B

∫ t

−∞
K(t − s)g(y(s)) ds

× ẏT(t − h(t))[−Q6(1 − h∗) − 2DTQ2D]ẏ(t − h(t))

+ 2ẏT(t − h(t))DTQ2Cy(t − σ) − 2ẏT(t − h(t))DTPC

∫ t

t−σ

y(u) du

+ 2ẏT(t − h(t))DTQ2Cy(t − σ) − 2ẏT(t − h(t))DTQ2Ag(y(t − τ(t)))

− 2ẏT(t − h(t))DTQ2B

∫ t

−∞
K(t − s)g(y(s)) ds

+ yT(t − τ(t))[τT11 − 2T T
12 − U2�1]y(t − τ(t)) + yT(t − τ(t))U2�2g(y(t − τ(t)))

− yT(t − σ)Q3y(t − σ) −
[ ∫ t

t−σ

y(u) du

]T

Q4

[∫ t

t−σ

y(u) du

]

− 2

[∫ t

t−σ

y(u) du

]T

CPAg(y(t − τ(t)))

− 2

[∫ t

t−σ

y(u) du

]T

CPB

∫ t

−∞
K(t − s)g(y(s)) ds

+ gT(y(t))[Q5K − U1]g(y(t)) − gT(y(t − τ(t)))U2g(y(t − τ(t)))

−
(∫ t

−∞
K(t − s)g(y(s)) ds

)T

Q5

(∫ t

−∞
K(t − s)g(y(s)) ds

)

= ξT(t)�ξ(t),
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where

� =





11 0 PD T T
12 0 CPC U1�2 PA PB

� 
22 Q1D + QT
2 D 0 −Q1C 0 0 Q1A Q1B

� � 
33 0 DTQ2C −DTPC 0 −DTQ2A −DTQ2B

� � � 
44 0 0 0 U2�2 0

� � � � −Q3 0 0 0 0

� � � � � −Q4 0 −CPA −CPB

� � � � � � Q5K − U1 0 0

� � � � � � � −U2 0

� � � � � � � 0 −Q5




,

ξ(t) =
(

y(t), ẏ(t), ẏ(t − h(t)), y(t − τ(t)), y(t − σ),

∫ t

t−σ

y(s) ds, g(y(t)),

g(y(t − τ(t))),

∫ t

−∞
K(t − s)g(y(s)) ds

)T

. (16)

By (5), it yields

V̇ (t) � −ξT(t)�∗ξ(t), t > 0,

where �∗ = −� > 0.

Thus, it can be deduced that

V (t) +
∫ t

0
ξT(u)�∗ξ(u) du � V (0) < ∞, t � 0, (17)

where

V (0) �
[
y(0) − C

∫ 0

−σ

y(u) du

]T

P

[
y(0) − C

∫ 0

−σ

y(u) du

]

+
∫ 0

−τ

∫ 0

u

ẏT(s)T22ẏ(s) ds du +
∫ 0

−σ

yT(s)Q3y(s) ds +
∫ 0

−h

ẏT(s)Q6ẏ(s) ds

+ σ

∫ 0

−σ

∫ 0

s

yT(u)Q4y(u) du ds +
n∑

j=1

q
(5)
j κj

∫ ∞

0
kj (u)

∫ 0

−u

g2
j (yj (s)) ds du

�
{

2λmax(P )(1 + σ 2 max
i∈�

ci) + τ 2λmax(T22) + σλmax(Q3)

+ hλmax(Q6) + σ 3λmax(Q4) +
n∑

j=1

q
(5)
j κj max

j∈�
l2
j

∫ ∞

0
ukj (u) du

}
‖ϕ‖2

h < ∞.

From the definition of V4(t) and lemma 2.1, we know∥∥∥∥
∫ t

t−σ

y(s) ds

∥∥∥∥
2

=
[∫ t

t−σ

y(s) ds

]T [∫ t

t−σ

y(s) ds

]
� σ

∫ t

t−σ

yT(s)y(s) ds

� σ

λmin(Q3)

∫ t

t−σ

yT(s)Q3y(s) ds

� σ

λmin(Q3)
V (t) � σ

λmin(Q3)
V (0),
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which together with the definition of V1(t) yields

‖y(t)‖ �
∥∥∥∥C

∫ t

t−σ

y(s) ds

∥∥∥∥ +

√
V1(t)

λmin(P )
�
∥∥∥∥C

∫ t

t−σ

y(s) ds

∥∥∥∥ +

√
V (0)

λmin(P )

�



√√√√ n∑

i=1

ci

σ

λmin(Q3)
+

√
1

λmin(P )



√

V (0).

This implies that the equilibrium point of model (1) is locally stable. Next we shall prove that
‖y(t)‖ → 0 as t → ∞.

First, for any constant θ ∈ [0, 1], it follows from (16), (17) and lemma 2.1 that

‖y(t + θ) − y(t)‖2 =
[∫ t+θ

t

ẏ(s) ds

]T [∫ t+θ

t

ẏ(s) ds

]

� θ

∫ t+θ

t

ẏT(s)ẏ(s) ds

�
∫ t+1

t

ẏT(s)ẏ(s) ds

� 1

λmin(�∗)

∫ t+1

t

ξT(s)�∗ξ(s) ds → 0 as t → ∞,

which implies that for any ε > 0, there exists a T1 = T1(ε) > 0 such that

‖y(t + θ) − y(t)‖ <
ε

2
, t > T1, θ ∈ [0, 1]. (18)

On the other hand, from (17) we get∥∥∥∥
∫ t+1

t

y(s) ds

∥∥∥∥
2

=
[∫ t+1

t

y(s) ds

]T [∫ t+1

t

y(s) ds

]

�
∫ t+1

t

yT(s)y(s) ds

� 1

λmin(�∗)

∫ t+1

t

ξT(s)�∗ξ(s) ds → 0 as t → ∞,

which implies that for any ε > 0, there exists a T2 = T2(ε) > 0 such that∥∥∥∥
∫ t+1

t

y(s) ds

∥∥∥∥ <
ε

2
, t > T2.

Note that y(s) is continuous on [t, t + 1], t > 0. Applying the integral mean value theorem,
we know there exists a vector ζt = (ζt1, . . . , ζtn)

T ∈ R
n, ζtj ∈ [t, t + 1], such that

‖y(ζt )‖ =
∥∥∥∥
∫ t+1

t

y(s) ds

∥∥∥∥ <
ε

2
, t > T2. (19)

By (18) and (19), we obtain that for any ε > 0, there exists a T = max{T1, T2} > 0 such that
t > T implies

‖y(t)‖ � ‖y(t) − y(ζt )‖ + ‖y(ζt )‖ � ε

2
+

ε

2
= ε.

Therefore, we can conclude that model (1) has a unique equilibrium point which is globally
asymptotically stable. This completes the proof. �
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Remark 3.2. The LMI criterion given in theorem 3.2 is dependent on the leakage delay, time-
varying delays and continuously distributed delays. It is well known that the delay-dependent
criterion is less conservative than the delay-independent criterion when the delay is small. In
particular when σ = 0, model (1) becomes the well-known case which has been directly or
indirectly investigated by many authors, for instance, see [22–30, 34, 35]. However, it always
assumes that the activation functions are bounded, monotonic or differentiable and the time
delays are constant delays or time-varying delays which are differentiable and their derivatives
are bounded. By theorem 3.2, we have the following result which removes those undesirable
restrictions.

Corollary 3.1. Under the conditions in theorem 3.1, model (1) with σ = 0 has a unique
equilibrium point which is globally asymptotically stable if there exist two n×n inverse matrices
Q1, Q2, an n×n matrix P > 0, four n×n diagonal matrices U1 > 0, U2 > 0, Q5 > 0, Q6 > 0

and a 2n × 2n matrix
(

T11 T12
� T22

)
> 0 such that





11 0 PD T T
12 U1�2 PA PB

� 
22 Q1D + QT
2 D 0 0 Q1A Q1B

� � 
33 0 0 −DTQ2A −DTQ2B

� � � 
44 0 U2�2 0

� � � � Q5K − U1 0 0

� � � � � −U2 0

� � � � � 0 −Q5




< 0,

where


11 = −PC − CP + Q3 − U1�1,


22 = τT22 + Q6 − Q1 − QT
1 ,


33 = −Q6(1 − h∗) − DTQ2D − DTQT
2 D,


44 = τT11 − T12 − T T
12 − U2�1,

K = diag(κ2
1 , κ2

2 , . . . , κ2
n),

�1 = diag(l−1 l+
1 , . . . , l−n l+

n ),

�2 = diag

(
l−1 + l+

1

2
, . . . ,

l−n + l+
n

2

)
.

When D = 0, model (1) becomes


ẋ(t) = −Cx(t − σ) + Af (x(t − τ(t)))

+ B

∫ t

−∞
K(t − s)f (x(s)) ds + J, t > 0,

x(s) = ϕ(s), s ∈ (−∞, 0],

(20)

Then we have the following result.

Corollary 3.2. Under the conditions in theorem 3.1, model (20) has a unique equilibrium point
which is globally asymptotically stable if there exist an n × n inverse matrix Q1, three n × n
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matrices P > 0, Q3 > 0, Q4 > 0, three n × n diagonal matrices U1 > 0, U2 > 0, Q5 > 0

and a 2n × 2n matrix
(

T11 T12
� T22

)
> 0 such that




11 0 T T
12 0 CPC U1�2 PA PB

� 
22 0 −Q1C 0 0 Q1A Q1B

� � 
44 0 0 0 U2�2 0

� � � −Q3 0 0 0 0

� � � � −Q4 0 −CPA −CPB

� � � � � Q5K − U1 0 0

� � � � � � −U2 0

� � � � � � 0 −Q5




< 0,

where


11 = −PC − CP + Q3 + σ 2Q4 − U1�1,


22 = τT22 − Q1 − QT
1 ,


44 = τT11 − T12 − T T
12 − U2�1,

K = diag(κ2
1 , κ2

2 , . . . , κ2
n),

�1 = diag(l−1 l+
1 , . . . , l−n l+

n ),

�2 = diag

(
l−1 + l+

1

2
, . . . ,

l−n + l+
n

2

)
.

Remark 3.3. In this paper, the differentiability of time-varying delay τ(t) is removed
successfully, which improves the results in [22, 25–30, 34, 35]. Unfortunately, it still requires
the time-varying delay h(t) in the neutral term is differentiable and its derivative is bounded.
In the future, we will carry out some studies to overcome the shortage.

4. Numerical examples

In this section, we present two numerical examples to demonstrate the effectiveness of the
proposed method.

Example 4.1. Consider a two-neuron neural networks model of neutral type with leakage
delay:


ẋ(t) = −Cx(t − σ) + Af (x(t − τ(t)))

+ B

∫ t

−∞
K(t − s)f (x(s)) ds + Dẋ(t − h(t)) + J, t > 0,

x(s) = ϕ(s), s ∈ (−∞, 0],

(21)

where f1(s) = f2(s) = tanh(s), k1(s) = k2(s) = e−s , τ (t) = 0.2 − 0.1 cos t, σ = h(t) =
0.1, J = (1, 2)T and parameters C, A, B and D are given as follows:

C =
(

4 0

0 4

)
, A =

(
0.6 0.3

−0.5 −0.8

)
, B =

(
0.7 −0.2

−0.2 0.5

)
,

D =
(

0.1 0

0 0.1

)
.
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Table 1. The maximal allowable upper bounds of τ with different values of h∗ and σ .

σ

h∗ 0 0.05 0.1 0.15 0.2

0 0.3527 0.3422 0.3075 0.2370 0.0894
0.5 0.2850 0.2744 0.2399 0.1692 0.0203
0.8 0.1509 0.1404 0.1057 0.0343 —

It is easy to see that τ = 0.3, h∗ = 0, l−j = 0, l+
j = 1, κj = 1, j = 1, 2. Note that

C − [A + BK]+L =
(

2.7 −0.1

−0.7 3.7

)
is an M-matrix.

By theorem 3.1, we know that system (21) has a equilibrium point. Then via the MATLAB
LMI toolbox, one can see that the LMI given in theorem 3.2 is feasible with the following
solutions:

P =
(

548.7279 122.1073

122.1073 339.5536

)
, Q1 =

(
44.7214 18.9438

18.9844 32.0665

)
,

Q2 =
(

75.8819 16.7414

13.6274 38.1192

)
, Q3 =

(
998.1184 370.3787

370.3787 668.6616

)
,

Q4 = 104 ×
(

3.2432 0.8399

0.8399 2.7603

)
, Q5 =

(
391.8827 0

0 391.8827

)
,

Q6 =
(

10.4651 3.3773

3.3773 7.3038

)
, U1 =

(
812.8138 0

0 812.8138

)
,

U2 =
(

261.4367 0

0 261.4367

)
, T11 = 103 ×

(
486.8372 299.6064

299.6064 503.9215

)
,

T12 =
(

197.5417 116.8963

95.0797 172.4107

)
, T22 =

(
87.1718 44.8965

44.8965 67.8071

)
.

Hence, from theorem 3.2, system (21) has a unique equilibrium point which is globally
asymptotically stable.

Remark 4.1. In fact, when σ = h = 0.1 (i.e. h∗ = 0), by the MATLAB LMI toolbox, the
maximum allowable upper bounds of τ in example 4.1 satisfying the LMI in theorem 3.2 can
be calculated as τ < 0.3075. Moreover, one can obtain the maximum allowable upper bounds
of τ with different values of h∗ and σ, which are shown in table 1.

Example 4.2. Consider a three-neuron neural networks model of neutral type with leakage
delay:


ẋ(t) = −Cx(t − σ) + Af (x(t − τ(t)))

+ B

∫ t

−∞
K(t − s)f (x(s)) ds + Dẋ(t − h(t)) + J, t > 0,

x(s) = ϕ(s), s ∈ (−∞, 0],

(22)
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where fj (s) = |s|, kj (s) = e−s , j = 1, 2, 3, τ (t) = 0.09 − 0.01[cos t]∗, σ = 0.05, h(t) =
0.2 − 0.1 sin t, J = (−1, 1, 3)T and parameters C, A, B and D are given as follows:

C =




5 0 0

0 4 0

0 0 3


 , A =




0.3 0.2 −0.1

−0.2 0.1 0

0.4 0.7 0.2


 ,

B =




−0.1 −0.32 0.4

0.1 0.1 0.1

0.55 0.8 0.34


 , D =




0.08 0.1 −0.02

−0.1 0.02 0.1

0.2 0.08 0.02


 .

It is easy to see that τ = 0.1, h∗ = 0.1, l−j = −1, l+
j = 1, κj = 1, j = 1, 2. Note that

C − [A + BK]+L =




4.8 −0.12 −0.3

−0.1 3.8 −0.1

−0.95 −1.5 2.46


 is an M-matrix.

By theorem 3.1, we know that system (22) has a equilibrium point. Then via the MATLAB
LMI toolbox, one can see that the LMI given in theorem 3.2 is feasible with the following
solutions:

P =




30.1311 3.7443 0.1663

3.7443 32.1185 −0.0306

0.1663 −0.0306 22.8015


 , Q1 =




3.0422 0.7996 −0.0821

0.7847 3.8467 −0.0986

−0.0887 −0.0992 1.0720


 ,

Q2 =




3.3722 0.8465 0.1215

0.7695 3.9364 0.0723

0.4983 0.3989 3.0136


 , Q3 =




82.2154 16.9686 0.6060

16.9686 63.0709 −0.1288

0.6060 −0.1288 13.0611


 ,

Q4 = 103 ×




3.8018 0.3561 0.0152

0.3561 2.1439 −0.0040

0.0152 −0.0040 0.7286


 , Q5 =




26.5064 0 0

0 26.5064 0

0 0 26.5064


 ,

Q6 =




2.1599 0.8117 −0.0411

0.8117 1.5563 0.0128

−0.0411 0.0128 0.2637


 , U1 =




29.0933 0 0

0 29.0933 0

0 0 29.0933


 ,

U2 =




15.4283 0 0

0 15.4283 0

0 0 15.4283


 , T11 =




100.0042 −0.6855 −1.9765

−0.6855 124.2743 −4.7513

−1.9765 −4.7513 62.8956


 ,

T12 =




22.3245 −0.1488 −1.3364

−0.2034 27.4341 −1.3801

−1.2899 −1.1650 16.7021


 , T22 =




7.7892 −0.0598 −1.3016

−0.0598 12.4886 −1.1067

−1.3016 −1.1067 5.1436


 .

Hence, from theorem 3.2, system (22) has a unique equilibrium point which is globally
asymptotically stable.
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Table 2. The maximal allowable upper bounds of τ with different values of h∗ and σ .

σ

h∗ 0 0.05 0.1 0.15

0 0.1821 0.1731 0.1474 0.0939
0.3 0.1601 0.1505 0.1229 0.0649
0.6 0.1058 0.0947 0.0630 —

Remark 4.2. Note that σ = 0.05, h∗ = 0.1 in example 4.2, by the MATLAB LMI toolbox,
the maximum allowable upper bounds of τ satisfying the LMI in theorem 3.2 can be calculated
as τ < 0.1672. Moreover, the maximum allowable upper bounds of τ with different values of
h∗ and σ can also be obtained, which are shown in table 2.

Remark 4.3. It is obvious that the results in [22–30, 34, 35] are ineffective for system (22)
even with σ = 0, since the activation functions are unbounded and the time-varying delay
τ(t) is a piecewise function, which shows the advantage of the proposed method in this paper.
However, from tables 1 and 2, one may observe that the maximum allowable upper bounds of
τ are small with different values of h∗ and σ, which shows the limited adaptive ranges of the
development results in this paper. So there is still some room for us to develop and explore.
In the future, we will do some further studies on this problem.

5. Conclusions

In this paper, we have dealt with the global asymptotic stability of neural networks of neutral
type with mixed delays. The mixed delays include leakage constant delay, time-varying delays
and continuously distributed delays. Based on the topological degree theory, Lyapunov method
and LMI approach, some LMI-based conditions ensuring the existence, uniqueness and global
asymptotic stability of the equilibrium point have been presented, which are dependent on
both the discrete and distributed time delays and can be easily checked by MATLAB LMI
toolbox. Even there is no leakage delay, the obtained results are also less restrictive than
some recent works since the assumptions on boundedness, monotonicity or differentiability
of the activation functions are removed. Two numerical examples have been illustrated to
demonstrate the usefulness of the proposed method.
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