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Abstract: The non-fragile dynamic output feedback H
∞
 controller design problem is investigated. The 

controller to be designed is assumed to be with additive gain variations. A two-step procedure is pro-

posed to develop sufficient conditions for the non-fragile H
∞ 

controller design by employing the struc-

tured vertex separator. A comparison between the proposed and the existing controller design methods 

is provided, and a numerical example is carried out to support the theoretical findings. 
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1. INTRODUCTION 

 

In the usual design process, an assumption is often 

made that the controller can be implemented exactly. 

However, there will inevitably be some amount of 

uncertainty in the controller digital complement. In the 

course of controller implementation based on different 

design algorithms, it turns out that the controllers can be 

sensitive with respect to errors in the controller 

coefficients [1,2]. This brings a new issue at the stage of 

designing controllers: how to design a controller for a 

given plant such that the controller is insensitive to some 

amount of error with respect to its gains. This issue has 

received some attention from the control systems 

community, and some relevant results have appeared in 

the last decade to tackle the problem of designing 

controllers which are capable of tolerating some level of 

its gain variations [1,3,4]. 

All the above mentioned works are concerned with the 

non-fragile problem with the norm-bounded type of 

controller uncertainty. However, this kind of uncertainty 

cannot describe exactly the uncertain information, while 

the interval type of parameter uncertainty [5] can 

describe more exactly the uncertain information than the 

norm-bounded type. But, due to the fact that the vertices 

of the set of uncertain parameters grow exponentially 

with the number of uncertain parameters, which may 

result in numerical computational problem for systems 

with high dimensions, up to present, there are only our 

works [6] and [7] studied the non-fragile filters design 

problem with the consideration of the interval type of 

parameter uncertainty. However, there is no work on the 

non-fragile controller design problem with taking 

interval gain uncertainty into account. Moreover, similar 

to the case that the problem of designing a output-

feedback controller for polytopic uncertain systems is 

known to be a non-convex optimization problem [8], the 

problem of designing full-order non-fragile dynamic 

output feedback H
∞
 controllers with interval type of gain 

uncertainty is also a non-convex one. These problems 

motivate the work in this paper. 

This paper is concerned with the problem of non-

fragile dynamic output feedback H
∞ 

controller design for 

linear discrete-time systems with FWL consideration. 

The controller to be designed is assumed to be with 

interval additive gain variations which are due to the 

FWL effects when the controller is implemented. A two-

step procedure is adopted to solve this non-convex 

problem. It will be very difficult to apply the result to 

systems with high dimensions. To overcome the 

difficulty, a notion of structured vertex separator is 

employed and is exploited to develop sufficient 

conditions for the non-fragile H
∞
 controller design in 

terms of solutions to a set of LMIs. The structured vertex 

separator-based method can significantly reduce the 

number of the LMI constraints involved in the design 

conditions. It can be proved that the worst case of our 

proposed method is less conservativeness than the 

conventional method given in [2] in theory, which can be 

illustrated in Section 3. 

 

2. PROBLEM STATEMENT 

 

Consider a linear time-invariant (LTI) discrete-time 

system as  
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where ( ) n
x k R∈ is the state, ( ) q

u k R∈  is the control 

input, ( ) r

k Rω ∈ is the disturbance input, ( ) py k R∈ is 

the measured output and ( ) m

z k R∈ is the regulated 

output, respectively, and A,
1
,B

2
,B

1
,C

2
,C

12
D  and D21 

are known constant matrices of appropriate dimensions. 

To formulate the control problem, we consider a 

controller with gain variations of the following form: 

( 1) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

k k k k

k k

k A A k B B y k

u k C C k

ξ ξ

ξ

+ = + ∆ + + ∆

= + ∆

 (2) 

where ( ) n

k Rξ ∈ is the controller state, Ak, ∆Bk and Ck 

are controller gain matrices of appropriate dimensions to 

be designed. ∆Ak, ∆Bk and ∆Ck represent the additive 

gain variations of the following interval type: 
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Let ,

n

k
e R∈

p
kh R∈  and q

kg R∈ denote the column 

vectors in which the kth element equals 1 and the others 

equal 0. Then the gain variations of the form (3) can be 

described as : 
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Applying controller (2) to system (1), this yields: 
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( ) ( ),
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e e
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e
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This paper addresses the following problem: 

Non-fragile H∞ control problem with controller gain 

variations: Given a positive constant γ, find a dynamic 

output feedback controller of the form (2) with the gain 

variations (3) such that the resulting closed-loop system 

(4) is asymptotically stable and the H∞ norm of the 

closed-loop transfer function from disturbance to the 

controlled output is strictly less than a prescribed 

positive scalar γ. 

 

3. NON-FRAGILE H
∞
 CONTROLLER DESIGN 

 

In this section we will present a two-step procedure 

which can be used for solving the non-fragile H∞ control 

problem, and a comparison is made between the new 

proposed method and the existing method. 

3.1. Non-fragile H∞ control with known gain Ck 

In this subsection, we will give non-fragile H∞ 

controller design methods under the assumption that the 

controller gain Ck is known, where the gain Ck will be 

designed in the next subsection. To facilitate the 

presentation, we denote 

0
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Then the following theorem presents a sufficient 

condition for the problem of non-fragile H∞ control. 

Theorem 1: Consider system (1). Let scalar γ > 0, 

δa > 0 and gain matrix Ck be given. If there exist matrices 

FA, FB, S, N, 
12
P  and 

11
0,P >

22
0,P >  such that the 

following LMIs hold: 

{ }0
( , , ) 0, , , , ,

, 1, , ; 1, , ; 1, , ,

k k k aij bik clj a aM A B C

i j n k p l q

δ δ δ δ δ∆ ∆ ∆ < ∈ −

= = =� � �

 (5) 

then controller (2) with additive uncertainty (3), Ck and 

1 1( ) , ( )T T

k A k B
A N F B N F

− −

= =  (6) 

solves the non-fragile H∞ control problem for system (1). 

Proof: Due to the limit of space, the proof is omitted. 

The reader who is interested in the proof can connect 

with the authors. 

For the non-fragile H∞ controller design method, it 

should be noted that the number of LMIs involved in (5) 

is
2

2 ,
n np nq+ +  which results in the difficulty of 

implementing the LMI constraints in computation. For 

example, when n = 6 and p = q = 1, the number of LMIs 

involved in (5) is 248, which already exceeds the capacity 

of the current LMI solver in Matlab. To overcome the 

difficulty the following method is developed. 

Denote 

1 11 12 1
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a
a a a a l
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[ ] ,

a

T T T T

a a a a l
F f f f= �  



Non-fragile Dynamic Output Feedback H
∞
 Control for Discrete-Time Systems with FWL Consideration 

 

995

where 2
,

a
l n np nq= + +  and 
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represents zero matrix of i  rows and j  columns. 

Let 
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k k k�  be integers satisfying 
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Theorem 2: Consider system (1). Let scalar 0,γ >  

δa >0 and gain matrix Ck be given. If there exist matrices 

FA, FB, S, N, 
12
,P
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0,P >  and symmetric matrix 

Θ  with the structure described by (8) such that the 
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1 2 3
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Then controller (2) with additive uncertainty (3) and 

the controller gain parameters given by (6) solves the 

non-fragile H∞ control problem for system (1). 

Proof: It is similar to the proof of Theorem 7 in [6] 

and is omitted here. 

 

3.2. Comparison with the existing design method 

In this part, the result of a non-fragile H∞ controller 

design with norm-bounded gain variations is introduced, 

and the comparison with our result is made. 

Similar to [2] for non-fragile problem with norm-

bounded uncertainty, the norm-bounded type of gain 

variations ∆Ak, ∆Bk and ∆Ck can be overbounded by the 

following norm-bounded uncertainty: 
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uncertain parameters, here δa is the same as before. 

Noting that the problem of non-fragile dynamic output 

feedback H∞ controller design with norm-bounded gain 

variations is also a non-convex problem, and similar to 

Theorem 2, when the controller gain Ck is known, it can 

be converted to a convex one. 

To facilitate the presentation, we denote 
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Assume that Ck is known, by using the method in [2], 

the non-fragile H∞ controller design with norm-bounded 

gain variations is reduced to solve the following LMI: 
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Lemma 1: Consider system (1), if condition (12) is 

feasible, then the controllers design condition given in 

Theorem 2 is feasible. 

Proof: Due to the limit of space, the proof is omitted. 

Remark 1: It needs be pointed out the existing non-

fragile H∞ controller design method with the norm-

bounded gain variations is more conservative than the 

one given by Theorem 2 even for the worst case of the 

new proposed method, i.e., Sa=la.  

 

3.3. Design an initial controller gain Ck 

Consider the controller (2) with ∆Ak =0 and ∆Bk =0, 
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and Ce is the same as the one in (4). 

Then the following theorem gives a design method of 

the initial controller gain Ck. 

Theorem 3: Consider system (1), γ > 0, and δa > 0 are 
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Then controller (13) with 

1 1 1

2 2

1 1 1

ˆ ˆˆ( ) ( ) ,

ˆ( ) ,

k

k k

A X Y A YAX BC X YB C X

B X Y B C CX

− − −

− − −

= − − − −

= − =

 

solves the non-fragile H∞ control problem for system (1). 

Proof: Due to the limit of space, the proof is omitted. 

Remark 2: Theorem 3 shows that the non-fragile 

controller design problem with ∆Ak =0, ∆Bk =0 and ∆Ck 

in the norm-bounded form defined by (11) can be 

converted into a convex one depending a single 

parameter εc > 0. 

Combining the results in Subsection 3.1 and Theorem 

3, a two-step procedure is summarized as follows: 

Step 1: Minimize γ subject to X > 0; Y > 0 and LMI 

(15). Denote the optimal solutions as X=Xopt and Ĉ = 

ˆ .optC  Then, 1ˆ .kopt opt optC C X
−

=  

Step 2: Let Ck=Ckopt, minimize γ subject to FA, AB, N, 

S, 
12
,P

11
0,P >

22
0,P >  and LMIs (9), (10). Denote the 

optimal solutions as N= Nopt, FA= FAopt, and FB=FBopt. 

Then according to (6), we obtain Ak=(NT)–1FAopt, Bk= 

(NT)–1FBopt. 

The resulting Ak, Bk and Ck will form the non-fragile 

dynamic output feedback H∞ controller gains.  

 

4. EXAMPLE 

 

In the following, an example is given to illustrate the 

effectiveness of the proposed method. 

Example: Consider a linear system of form (1) with 
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Table 1. The performance index by design with δa=0.006.  

 Conventional 
Proposed 

(sa=15) 

Proposed

(sa=5) 

γ 2.8645 2.5204 2.5099 

Degradation 

compared with γopt1 
32.48 % 16.57% 16.08 %

 

By the standard H∞ controller design method, we 

obtain the optimal H∞ performance index for the system 

as γopt=2.1622. On the other hand, assume that the 

designed controller is with form (13). Let Sa=0.05, by 

Theorem 3 with εc=155.9999, we obtain [0.2573
kini

C =  

0.2351 0.3380].−  

Firstly, we design an H∞ controller by the 

conventional method (condition (12)) with Ck =Ckini. 

Assume that the designed controller is with norm-

bounded additive uncertainties described by (11), by 

applying condition (12) with δa=0.006 to design a non-

fragile controller, the obtained H∞ performance index of 

the obtained non-fragile controller is 2.8645. 

Then, we design an H
∞ controller by the proposed 

method Theorem 2 with Ck =Ckini. Assume that the 

designed controller is with the additive uncertainties 

described by (3). By applying Theorem 2 with δa=0.006 

and ki=i, i=1,� ,15, i.e., Sa=15 as well as ki=3i, i=1,� ,5 

i.e., Sa=5 to design a non-fragile H∞ controller, and the 

H∞ performance indexes of the obtained non-fragile 

controllers are γ =2.5204 (Sa=15) and γ =2.5099 (Sa=5), 

respectively. 

In the following, Table 1 shows the H∞ performance 

indices achieved by the designs of the existing method 

(Condition (12)) and the proposed method (Theorem 2). 

The above table shows that the worst case (Sa=15) of the 

proposed method also is more effective than the 

conventional non-fragile H∞ controller design method 

condition (12). 

 

5. CONCLUSIONS 

 

The problem of non-fragile dynamic output feed-back 

H∞ controller design for linear discrete-time systems is 

studied. The controller to be designed is assumed to be 

with additive gain variations of interval type. The 

structured vertex separator is exploited to develop 

sufficient conditions for the non-fragile H∞ controller 

design via a two-step procedure. A comparison between 

our method and the existing method for non-fragile H∞ 

controller design is presented, and a numerical example 

is given to illustrate the design methods. 
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