Available online at www.sciencedirect.com .

) . MATHEMATICAL
ScienceDirect ANALYSIS AND

APPLICATIONS

ELSEVIER J. Math. Anal. Appl. 339 (2008) 9961002
www.elsevier.com/locate/jmaa

Strong convergence of the composite Halpern iteration

Xiaolong Qin***, Yongfu Su?, Meijuan Shang **

& Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China
b Department of Mathematics, Gyeongsang National University, Chinju 660-701, Republic of Korea
¢ Department of Mathematics, Shijiazhuang University, Shijiazhuang 050035, China

Received 16 November 2005
Available online 1 August 2007
Submitted by D. Khavinson

Abstract

Let C be a closed convex subset of a uniformly smooth Banach space E and let T : C — C be a nonexpansive mapping with
a nonempty fixed points set. Given a point u € C, the initial guess xg € C is chosen arbitrarily and given sequences {an}zozo,
{/3’1};10 and {Vn}gio in (0, 1), the following conditions are satisfied:

@ Z,?io p = 00;
(i) ay > 0,8, > 0and 0 < a < yy, for some a € (0, 1);
(i) Y02 lapr1 —anl <00, D02 0 1But1— Bul <ooand Y02 [¥n41 — ¥al < 00. Let {x, }52 | be a composite iteration process
defined by

Zn = YnXn + (1 — yn) T xp,
Yn = Bnxn + (1 = B)Tzn,
Xp41 =apu + (1 —an)yn,

then {xn}ff’: | converges strongly to a fixed point of T'.
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1. Introduction and preliminaries
Let E be a real Banach space, C a nonempty closed convex subset of E, and T : C — C a mapping. Recall that T’
is nonexpansive if

ITx =Tyl <|lx—yl, foralx,yeC.
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A point x € C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T'; thatis F(T) =
{x € C: Tx = x}. Itis assumed throughout that T is a nonexpansive mapping such that F(T") # @.

One classical way to study nonexpansive mappings is to use contractions to approximate a nonexpansive mapping
[3,11]. More precisely, take ¢ € (0, 1) and define a contraction 7; : C — C by

Tix=tu+(1—-t)Tx, xeC,

where u € C is a arbitrary (but fixed) point. Banach’s Contraction Mapping Principle guarantees that 7; has a unique
fixed point x; in C. It is unclear, in general, what is the behavior of {x;} as ¢t — 0, even if T has a fixed point. However,
in the case of T having a fixed point, Browder [3] proved that, if E is a uniformly smooth Banach space, then {x;}
converges strongly to a fixed point of 7 and the limit defines the (unique) sunny nonexpansive retraction from C
onto F(T).

In 1967, Halpern [6] first introduced the following iteration scheme:

(1.1)

{ xo=x € C, chosen arbitrarily,
Xp1 =0apu + (1 — )T xp,

see also Browder [2]. He pointed out that the conditions lim,_, o, &, = 0 and Z;’;l o, = 00 are necessary in the sense
that, if the iteration scheme (1.1) converges to a fixed point of T, then these conditions must be satisfied. Ten years
later, Lions [8] investigated the general case in Hilbert space under the conditions
0 2
lim «, =0, Zan =00 and lim M =0
n—oo n—oo Oyl
n=1
on the parameters. However, Lions’ conditions on the parameters were more restrictive and did not include the natural
candidate {o,,} = :—l In 1980, Reich [11] gave the iteration scheme (1.1) in the case when E is uniformly smooth and
{0} =n"% with0 <8 < 1.
In 1992, Wittmann [12] studied the iteration scheme (1.1) in the case when E is a Hilbert space and {«,,} satisfies

o o
lim o, =0, E oy, =00 and Z lotn41 — ot < 00.
n—oo 1 1

n= n=

In 1994, Reich [10] obtained a strong convergence of the iterates (1.1) with two necessary and decreasing conditions
on parameters for convergence in the case when E is uniformly smooth with a weakly continuous duality mapping.

Recently Chang [4] studied the iteration scheme (1.1) in the case when E is a uniformly smooth Banach space and
{a,} satisfies

o
lim «, =0, E ap=00 and ||[Tx, —x,||— 0,
n—oo 1

n=

then {x,} converges strongly to a fixed point of T'.
This paper introduces the composite iteration scheme as follows:
Zn = YnXn + (1 = yu) T xp,
Yn = Bnxn + A = B)Tzp, (1.2)
Xp1 =apu + (1 —ap)yn,
where u € C is an arbitrary (but fixed) element in C, and {«,}, {8,} and {y,} are sequences in [0, 1]. We prove, under
certain appropriate assumptions on the sequences {«y,}, {8,} and {y,,}, that {x, } defined by (1.2) converges strongly to
a fixed point of T'.
If {8,} =0and {y,} = 1 in (1.2) then we have the usual Halpern iterative sequence {x,} defined by (1.1).
On the other hand, the composite iterations this paper introduced is a modified Ishikawa iteration. If {y,} =1
in (1.2) then (1.2) can be viewed as a modified Mann iteration
{ Yn = Buxn + (1 = B)T xy,
Xn+1 = apu + (1 —an)yu,

which was considered by Kim and Xu [7].

(1.3)
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It is our purpose in this paper to introduce this composite iteration scheme for approximating a fixed point of
nonexpansive mappings in the framework of uniformly smooth Banach spaces. We establish strong convergence of the
composite iteration scheme {x,} defined by (1.2). The results improve and extend results of Chang [4], Wittmann [12],
Kim and Xu [7] and many others.

Let E be a real Banach space and let J denote the normalized duality mapping from E into 2£" given by

Jx)={feE* (x, ) =IxI*=IfI*}, xeE,

where E* denotes the dual space of E and (-,-) denotes the generalized duality pairing. The norm of E is said to be
Gateaux differentiable (and FE is said to be smooth) if
t —_

lim llx 4yl — x|l (1.4)

t—0 t
exists for each x, y in its unit sphere U = {x € E: ||x|| = 1}. A Banach space E whose norm is uniformly Gateaux
differentiable; then the duality map J is single-valued and norm-to-weak™ uniformly continuous on bounded sets
of E. It is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (1.4) is
attained uniformly for (x,y) e U x U.

We need the following lemmas for the proof of our main results.

Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality map J is single-valued and norm-to-norm
uniformly continuous on bounded sets of E.

In our convergence results in the next sections, we need to estimate the square-norm ||x,+1 — p||* in terms of the
square-norm ||x, — p||%, where x; is the ith iterate for i > 1, and p is a fixed point of the mapping 7'. To do this, we
need the following well-known (subdifferential) inequality:

Lemma 1.2. In a Banach space E, there holds the inequality
e+ 317 <Ix? 42y, jx + ), xy€eE,
where j(x +y) € J(x + y).
Recall that if C and D are nonempty subsets of a Banach space E such that C is nonempty, closed, convex
and D C C,thenamap Q : C — D is sunny [1,9] provided Q(x +t(x — Q(x))) = Q(x) forallx e Cand t >0
whenever x +7(x — Q(x)) € C. A sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive.

Sunny nonexpansive retractions play an important role in our argument. They are characterized as follows [1,5,9]: if E
is a smooth Banach space, then Q : C — D is a sunny nonexpansive retraction if and only if there holds the inequality

<x —0Ox,J(y— Qx))éO, forallx e C, ye D.
Reich [11] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C

into itself, then there is a sunny nonexpansive retraction from C onto D and it can be constructed as follows:

Lemma 1.3. (See Reich [11].) Let E be a uniformly smooth Banach space and let T : C — C be a nonexpansive
mapping with a fixed point x; € C of the contraction C 3 x + tu + (1 — t)tx. Then {x;} converges strongly as t — 0
to a fixed point of T. Define Q : C — F(T) by Qu = lim;_.0x;. Then Q is the unique sunny nonexpansive retract
from C onto F(T); that is, Q satisfies the property

(u—Qu,J(z— Qu)<0, ueC, zeF(T).

Lemma 1.4. (See Xu [13,14].) Let {a,}72 , be a sequence of nonnegative real numbers satisfying the property
ant1 < (= yay + o, n=0,

where {y}7°, C (0, 1) and {o'}72 , are such that
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(1) limy— o0 Y =0and Y ;2 o yn = 00,
(ii) either limsup,_, o 0, <0 or Y 02 |ynon| < 00.

Then {oen}zo o converges to zero.

2. Main results

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth Banach space E and let T : C — C be a

nonexpansive mapping such that F(T) # (. Given a point u € C, the initial guess xo € C is chosen arbitrarily and

given sequences {0, )72, {Bulne and {yn}oe in [0, 1], the following conditions are satisfied:

(i) 35Zgom = 00;
(1) an =0, By = 0and 0 < a < yy, for some a € (0, 1);
(i) Yp2glont1 —anl <00, Y0 |But1 — Bul <00 and Y72 |¥nt1 — vul < 00. Let {x,}52. | be composite process
defined by (1.2), then {x,},2 | converges strongly to a fixed point of T.

Proof. First we observe that {x,,},‘:o=0 is bounded. Indeed, if we take a fixed point p of 7', noting that

Izn — Pl < Vallxn — Pl + (L = v) 1T X0 — pll < X0 — pII. 2.1
It follows from (1.2) and (2.1) that

lyn =PIl < BallXn — pll + (L = B Tz0 — pli
< Bullxn = pll 4+ = Bo)llza — Pl
< lxn = plls

which yields that
¥nt1 = pll < @nllu = pll + A = an)llyn — Pl
Sopllu — pll + (1 —an)llx, — pll
<max{llu — pll, lx. — pl}.
Now, by simple induction yields
%2 — pll <max{llu— pl. lxo — pll}, n=>0. 22

This implies that {x, } is bounded and so are {y,} and {z,}.
Next, we claim that

X041 — xall — 0. (2.3)
In order to prove (2.3) from (1.2), after some manipulations we have
Xl —Xn = (I = o)A = Bp)(Tzn — Tzp—1) + (1 — atp) Bu (o — Xp—1)
+[ B = Bu-D (1 = &tn) = (@ — @n—1)Bu—1](tn—1 = Tzn—1)
+ (otn —ap—1)(u — T'zp—1).
It follows that
IxXn4+1 = X0 ll < (1= Bu)(A — ) ITzn — Tzp—11l + (L — otn) B llXn — X1l
+ (B = Bom1) (1 = &) — (@t = &tn—1)Bu—1|l1Xn—1 — Tzp1l
+lan —an—1lllu — Tzp—1]l. (24
That is
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[Xn4+1 = Xl < (1= Bu) (X —an)llzn — zn—1ll + (1 — ) B llxn — xp—1l
+[(Bn = Ba—1)(A = ) = (@ — an—1) Bu—1|lIXn—1 — Tzp—1]
+lon —an—1lllu — Tzp—1ll. (2.5)
Since
Zn—2n—1 =0 = Y)(Txn = Txn—1) + ¥u(xXn — xXn—1) + V-1 — Yu) (Txn—1 — Xn—1),
we have
zn = Zn—1ll < X0 — X1l + [Yn—1 = Valll TXp—1 — Xp—1l. (2.6)
Substituting (2.6) into (2.5), we get
[IXn41 =Xl < (1 =) llxn — xn—1ll + (L — ) (1 = BV — Va1 11T Xn—1 — xn—1l
+ |(Br = Bu—1)(1 = @) = (@tn = etu—1)Ba—1|ll¥a—1 = Tzn—1]
+lan —an—1lllu — Tzp—1ll, 2.7
which implies that
Xn4+1 = Xnll < (1 —an) X0 — Xp—1l
+ Mi(1Yn = Va1l + 1Bn — Bu1l + 2lotn — 1), (2.8)
where M is a constant such that
My = max{llu — Tzp—1ll, Ixn—1 = Txa—1l, IXn—1 — Tzn—1l}

for all n. By assumptions (i)—(iii), we have that

o0
lim oy =0, E o, = 00,
n—oo 1

n=

and

o]

> (180 = Bl + 2le — ctn1 |+ [yn — Ya11) < o0

n=1
Hence, Lemma 1.4 is applicable to (2.8) and we obtain

|Xp+1 — x21l >0 asn— oo. 2.9)
On the other hand, from condition (ii), we have

X041 = yull = dnllu —yIl = 0 asn — oo, (2.10)
and

|yn — Tzull = Bullxn — Tzoll >0 asn — oo. (2.11)
Again, it follows from (1.2) and the fact that T is nonexpansive that

T xn — xull <X — Xp1 | + 1xnt1 — Yull F1yn — Tzall + 11 T2 — Txy ||

< 1xn = Xng1ll + X041 = Yull + lyn — Tznll + (A = v I T X0 — X - (2.12)

It follows that

Yall Txp — xpll < X0 — X1l + 1xnp1 — Yull + 11yn — T zall-
From condition (ii) and (2.9)—(2.11) we have

lim [|Tx; — x|l = 0. (2.13)
n—0o0
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Next, we claim that
limsup(u — g, J (x, — ¢)) <0, (2.14)
n—>oo
where ¢ = Qu = lim;_,¢ z; with z; being the fixed point of the contraction z > tu + (1 — ¢)T'z. First, z; solves the
fixed point equation
z=tu+ (1 —1)Tz.
Therefore, we have
lze = xull = (A =) (T2 — x0) + 1 — x) .
It follows from Lemma 1.2, the nonexpansive property of 7', and the definition of J that

lze — xnll> < (1= 21Tz — xa 1> + 2t (0 — X0, T (20 — x0))

(1 =21+ 1)z — xall®> + fu(0) +26(t — 24, T (20 — %)) + 2t |20 — X1, (2.15)
where
fa(®) = (2||z, — Xpll + llxn — Txn||)||x,, —Txu]l >0 asn—0. (2.16)
It follows that
t 1
(2 —u, J(z — x)) < 5||z,—xn||2+2—tfn(r>. (2.17)

Letting n — oo in (2.17) and noting (2.16) yields

t
limsup(z; — u, J(z; — X)) < = M>, (2.18)
n—od 2
where M> > 0 is a constant such that M > ||z, — x,,||> forall # € (0, 1) and n > 1. Letting t — O from (2.18), we have
limsuplimsup(z; — u, J (z; — x,)) < 0.

t—0 n—o0

So, for any € > 0, there exists a positive number 81, when ¢ € (0, §1) we get

timsup(z, — u, J (2 — %)) < % (2.19)

n—oo

On the other hand, z; — ¢ as t — 0, from Lemma 1.1, 35, > 0, such that when ¢ € (0, §,) we have
e =g, J en = @) = (2 = u, I (20 = x0))|
<Nu—q, JCn =) —{u—q, Ten —z20))| + [ — q. T Cen — 20)) — (20 — u, I (20 — x)))|
< fur=q. I G = ) = I 0w = 20|+ {21 = 9. T — 2] < 5
Choosing § = min{d1, 82}; Vt € (0, §), we have
(u—q,JCn— @) <lzr —u, J (@ — xn))+ %
which yields that

limsup<u —q,J(x, — q)) < lim (Zr —u, J(z —Xn))+ E-
n—0oo 2

n—o0

It follows from (2.19) that
lim sup(u —q,J(x, — q)) <e.

n— o0

Since € is chosen arbitrarily, we have

limsup(u — g, J (x, — ¢)) <O0. (2.20)
n—oo
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Finally, we show that x;,, — ¢ strongly and this concludes the proof. Indeed, using Lemma 1.2 again we obtain

st — gl = (1 = @) — @)+ en (e — ) [*
<A —an)llyn = ql” +2anfu — g, J (1 — @)
<A —a)llxn = gl* +2anfu — g, J (ar1 — 9)-
Now we use (2.20) and apply Lemma 4 to see that ||x, —¢|| — 0. O

As a corollary of Theorem 2.1, we have the following immediately:

Corollary 2.2. (See Kim and Xu [7].) Let C be a closed convex subset of a uniformly smooth Banach space E and let
T : C — C be a nonexpansive mapping such that F(T) # ). Given a point u € C and given sequences {a,},2 , and
{,Bn}zozo in [0, 1], the following conditions are satisfied:

(1) Dol gon=00and Yy o2 By = 00;
@Gi) o —> 0, B, — 0;
(i) 3020 lotnt1 — anl < 00 and 3 o2 o 1But1 — Bl < 0.

Let {x,}7° | be a composite process defined by (1.3), then {x,},> | converges strongly to a fixed point of T.

Remark. Kim and Xu [7] proved the sequence defined by iteration scheme (1.3) converges to fixed point of 7', under
the conditions

(1) Yol gop=00and Y oo By = 00;
(11) a, — 0, ,Bn — 05
(iil) Y _poglotnt1 — ol <ooand Y o2 |Ba+1 — Bl < 00 on the parameters.

Actually, the condition Zzio B, = oo can be removed, and the condition g8, — 0 also can be relaxed to 0 < 8, <
a < 1, for some a € (0, 1).
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