

Available online at www.sciencedirect.com

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 339 (2008) 996-1002

www.elsevier.com/locate/jmaa

Strong convergence of the composite Halpern iteration

Xiaolong Qin^{a,b,*}, Yongfu Su^a, Meijuan Shang^{b,c}

^a Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China

^b Department of Mathematics, Gyeongsang National University, Chinju 660-701, Republic of Korea

^c Department of Mathematics, Shijiazhuang University, Shijiazhuang 050035, China

Received 16 November 2005 Available online 1 August 2007 Submitted by D. Khavinson

Abstract

Let C be a closed convex subset of a uniformly smooth Banach space E and let $T: C \to C$ be a nonexpansive mapping with a nonempty fixed points set. Given a point $u \in C$, the initial guess $x_0 \in C$ is chosen arbitrarily and given sequences $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ in (0, 1), the following conditions are satisfied:

(i) $\sum_{n=0}^{\infty} \alpha_n = \infty;$

- (ii) $\alpha_n \to 0$, $\beta_n \to 0$ and $0 < a \le \gamma_n$, for some $a \in (0, 1)$; (iii) $\sum_{n=0}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$, $\sum_{n=0}^{\infty} |\beta_{n+1} \beta_n| < \infty$ and $\sum_{n=0}^{\infty} |\gamma_{n+1} \gamma_n| < \infty$. Let $\{x_n\}_{n=1}^{\infty}$ be a composite iteration process defined by

 $\begin{cases} z_n = \gamma_n x_n + (1 - \gamma_n) T x_n, \\ y_n = \beta_n x_n + (1 - \beta_n) T z_n, \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n, \end{cases}$

then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a fixed point of T.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Iteration scheme; Sunny and nonexpansive retraction; Nonexpansive mapping; Banach space

1. Introduction and preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E, and $T: C \to C$ a mapping. Recall that T is nonexpansive if

 $||Tx - Ty|| \leq ||x - y||$, for all $x, y \in C$.

Corresponding author at: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Republic of Korea. E-mail address: qxlxajh@163.com (X. Qin).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.07.062

A point $x \in C$ is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T; that is $F(T) = \{x \in C: Tx = x\}$. It is assumed throughout that T is a nonexpansive mapping such that $F(T) \neq \emptyset$.

One classical way to study nonexpansive mappings is to use contractions to approximate a nonexpansive mapping [3,11]. More precisely, take $t \in (0, 1)$ and define a contraction $T_t : C \to C$ by

$$T_t x = t u + (1 - t) T x, \quad x \in C,$$

where $u \in C$ is a arbitrary (but fixed) point. Banach's Contraction Mapping Principle guarantees that T_t has a unique fixed point x_t in C. It is unclear, in general, what is the behavior of $\{x_t\}$ as $t \to 0$, even if T has a fixed point. However, in the case of T having a fixed point, Browder [3] proved that, if E is a uniformly smooth Banach space, then $\{x_t\}$ converges strongly to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from C onto F(T).

In 1967, Halpern [6] first introduced the following iteration scheme:

$$\begin{cases} x_0 = x \in C, & \text{chosen arbitrarily,} \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n, \end{cases}$$
(1.1)

see also Browder [2]. He pointed out that the conditions $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$ are necessary in the sense that, if the iteration scheme (1.1) converges to a fixed point of *T*, then these conditions must be satisfied. Ten years later, Lions [8] investigated the general case in Hilbert space under the conditions

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{(\alpha_n - \alpha_{n+1})^2}{\alpha_{n+1}^2} = 0$$

on the parameters. However, Lions' conditions on the parameters were more restrictive and did not include the natural candidate $\{\alpha_n\} = \frac{1}{n}$. In 1980, Reich [11] gave the iteration scheme (1.1) in the case when *E* is uniformly smooth and $\{\alpha_n\} = n^{-\delta}$ with $0 < \delta < 1$.

In 1992, Wittmann [12] studied the iteration scheme (1.1) in the case when E is a Hilbert space and $\{\alpha_n\}$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$$

In 1994, Reich [10] obtained a strong convergence of the iterates (1.1) with two necessary and decreasing conditions on parameters for convergence in the case when *E* is uniformly smooth with a weakly continuous duality mapping.

Recently Chang [4] studied the iteration scheme (1.1) in the case when E is a uniformly smooth Banach space and $\{\alpha_n\}$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty \quad \text{and} \quad \|Tx_n - x_n\| \to 0,$$

then $\{x_n\}$ converges strongly to a fixed point of T.

This paper introduces the composite iteration scheme as follows:

$$\begin{cases} z_n = \gamma_n x_n + (1 - \gamma_n) T x_n, \\ y_n = \beta_n x_n + (1 - \beta_n) T z_n, \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n, \end{cases}$$
(1.2)

where $u \in C$ is an arbitrary (but fixed) element in *C*, and $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are sequences in [0, 1]. We prove, under certain appropriate assumptions on the sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$, that $\{x_n\}$ defined by (1.2) converges strongly to a fixed point of *T*.

If $\{\beta_n\} = 0$ and $\{\gamma_n\} = 1$ in (1.2) then we have the usual Halpern iterative sequence $\{x_n\}$ defined by (1.1).

On the other hand, the composite iterations this paper introduced is a modified Ishikawa iteration. If $\{\gamma_n\} = 1$ in (1.2) then (1.2) can be viewed as a modified Mann iteration

$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) T x_n, \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n, \end{cases}$$
(1.3)

which was considered by Kim and Xu [7].

It is our purpose in this paper to introduce this composite iteration scheme for approximating a fixed point of nonexpansive mappings in the framework of uniformly smooth Banach spaces. We establish strong convergence of the composite iteration scheme $\{x_n\}$ defined by (1.2). The results improve and extend results of Chang [4], Wittmann [12], Kim and Xu [7] and many others.

Let E be a real Banach space and let J denote the normalized duality mapping from E into 2^{E^*} given by

$$J(x) = \left\{ f \in E^* \colon \langle x, f \rangle = \|x\|^2 = \|f\|^2 \right\}, \quad x \in E,$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{1.4}$$

exists for each x, y in its unit sphere $U = \{x \in E : ||x|| = 1\}$. A Banach space E whose norm is uniformly Gâteaux differentiable; then the duality map J is single-valued and norm-to-weak* uniformly continuous on bounded sets of E. It is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (1.4) is attained uniformly for $(x, y) \in U \times U$.

We need the following lemmas for the proof of our main results.

Lemma 1.1. A Banach space *E* is uniformly smooth if and only if the duality map *J* is single-valued and norm-to-norm uniformly continuous on bounded sets of *E*.

In our convergence results in the next sections, we need to estimate the square-norm $||x_{n+1} - p||^2$ in terms of the square-norm $||x_n - p||^2$, where x_i is the *i*th iterate for $i \ge 1$, and *p* is a fixed point of the mapping *T*. To do this, we need the following well-known (subdifferential) inequality:

Lemma 1.2. In a Banach space E, there holds the inequality

$$||x + y||^2 \le ||x||^2 + 2\langle y, j(x + y) \rangle, \quad x, y \in E,$$

where $j(x + y) \in J(x + y)$.

Recall that if *C* and *D* are nonempty subsets of a Banach space *E* such that *C* is nonempty, closed, convex and $D \subset C$, then a map $Q : C \to D$ is sunny [1,9] provided Q(x + t(x - Q(x))) = Q(x) for all $x \in C$ and $t \ge 0$ whenever $x + t(x - Q(x)) \in C$. A sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions play an important role in our argument. They are characterized as follows [1,5,9]: if *E* is a smooth Banach space, then $Q : C \to D$ is a sunny nonexpansive retraction if and only if there holds the inequality

 $\langle x - Qx, J(y - Qx) \rangle \leq 0$, for all $x \in C$, $y \in D$.

Reich [11] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into itself, then there is a sunny nonexpansive retraction from C onto D and it can be constructed as follows:

Lemma 1.3. (See Reich [11].) Let E be a uniformly smooth Banach space and let $T : C \to C$ be a nonexpansive mapping with a fixed point $x_t \in C$ of the contraction $C \ni x \mapsto tu + (1 - t)tx$. Then $\{x_t\}$ converges strongly as $t \to 0$ to a fixed point of T. Define $Q : C \to F(T)$ by $Qu = \lim_{t\to 0} x_t$. Then Q is the unique sunny nonexpansive retract from C onto F(T); that is, Q satisfies the property

$$\langle u - Qu, J(z - Qu) \rangle \leq 0, \quad u \in C, \ z \in F(T).$$

Lemma 1.4. (See Xu [13,14].) Let $\{\alpha_n\}_{n=0}^{\infty}$ be a sequence of nonnegative real numbers satisfying the property

$$\alpha_{n+1} \leqslant (1-\gamma_n)\alpha_n + \gamma_n \sigma_n, \quad n \ge 0,$$

where $\{\gamma\}_{n=0}^{\infty} \subset (0, 1)$ and $\{\sigma\}_{n=0}^{\infty}$ are such that

(i) $\lim_{n\to\infty} \gamma_n = 0$ and $\sum_{n=0}^{\infty} \gamma_n = \infty$, (ii) either $\limsup_{n\to\infty} \sigma_n \leq 0$ or $\sum_{n=0}^{\infty} |\gamma_n \sigma_n| < \infty$.

Then $\{\alpha_n\}_{n=0}^{\infty}$ converges to zero.

2. Main results

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth Banach space E and let $T: C \to C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Given a point $u \in C$, the initial guess $x_0 \in C$ is chosen arbitrarily and given sequences $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ in [0, 1], the following conditions are satisfied:

- (i) $\sum_{n=0}^{\infty} \alpha_n = \infty;$
- (ii) $\alpha_n \to 0$, $\beta_n \to 0$ and $0 < a \le \gamma_n$, for some $a \in (0, 1)$; (iii) $\sum_{n=0}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$, $\sum_{n=0}^{\infty} |\beta_{n+1} \beta_n| < \infty$ and $\sum_{n=0}^{\infty} |\gamma_{n+1} \gamma_n| < \infty$. Let $\{x_n\}_{n=1}^{\infty}$ be composite process defined by (1.2), then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a fixed point of T.

Proof. First we observe that $\{x_n\}_{n=0}^{\infty}$ is bounded. Indeed, if we take a fixed point p of T, noting that

$$||z_n - p|| \leq \gamma_n ||x_n - p|| + (1 - \gamma_n) ||Tx_n - p|| \leq ||x_n - p||.$$
(2.1)

It follows from (1.2) and (2.1) that

$$||y_n - p|| \leq \beta_n ||x_n - p|| + (1 - \beta_n) ||Tz_n - p||$$

$$\leq \beta_n ||x_n - p|| + (1 - \beta_n) ||z_n - p||$$

$$\leq ||x_n - p||,$$

which yields that

$$||x_{n+1} - p|| \leq \alpha_n ||u - p|| + (1 - \alpha_n) ||y_n - p||$$

$$\leq \alpha_n ||u - p|| + (1 - \alpha_n) ||x_n - p||$$

$$\leq \max\{||u - p||, ||x_n - p||\}.$$

Now, by simple induction yields

$$\|x_n - p\| \le \max\{\|u - p\|, \|x_0 - p\|\}, \quad n \ge 0.$$
(2.2)

This implies that $\{x_n\}$ is bounded and so are $\{y_n\}$ and $\{z_n\}$.

Next, we claim that

$$\|x_{n+1} - x_n\| \to 0. \tag{2.3}$$

In order to prove (2.3) from (1.2), after some manipulations we have

$$\begin{aligned} x_{n+1} - x_n &= (1 - \alpha_n)(1 - \beta_n)(Tz_n - Tz_{n-1}) + (1 - \alpha_n)\beta_n(x_n - x_{n-1}) \\ &+ \left[(\beta_n - \beta_{n-1})(1 - \alpha_n) - (\alpha_n - \alpha_{n-1})\beta_{n-1} \right] (x_{n-1} - Tz_{n-1}) \\ &+ (\alpha_n - \alpha_{n-1})(u - Tz_{n-1}). \end{aligned}$$

It follows that

$$\|x_{n+1} - x_n\| \leq (1 - \beta_n)(1 - \alpha_n) \|Tz_n - Tz_{n-1}\| + (1 - \alpha_n)\beta_n \|x_n - x_{n-1}\| + |(\beta_n - \beta_{n-1})(1 - \alpha_n) - (\alpha_n - \alpha_{n-1})\beta_{n-1}| \|x_{n-1} - Tz_{n-1}\| + |\alpha_n - \alpha_{n-1}| \|u - Tz_{n-1}\|.$$
(2.4)

That is

$$\|x_{n+1} - x_n\| \leq (1 - \beta_n)(1 - \alpha_n) \|z_n - z_{n-1}\| + (1 - \alpha_n)\beta_n \|x_n - x_{n-1}\| + |(\beta_n - \beta_{n-1})(1 - \alpha_n) - (\alpha_n - \alpha_{n-1})\beta_{n-1}| \|x_{n-1} - Tz_{n-1}\| + |\alpha_n - \alpha_{n-1}| \|u - Tz_{n-1}\|.$$
(2.5)

Since

$$z_n - z_{n-1} = (1 - \gamma_n)(Tx_n - Tx_{n-1}) + \gamma_n(x_n - x_{n-1}) + (\gamma_{n-1} - \gamma_n)(Tx_{n-1} - x_{n-1}),$$

we have

$$||z_n - z_{n-1}|| \le ||x_n - x_{n-1}|| + |\gamma_{n-1} - \gamma_n| ||Tx_{n-1} - x_{n-1}||.$$
(2.6)

Substituting (2.6) into (2.5), we get

$$\|x_{n+1} - x_n\| \leq (1 - \alpha_n) \|x_n - x_{n-1}\| + (1 - \alpha_n)(1 - \beta_n) |\gamma_n - \gamma_{n-1}| \|Tx_{n-1} - x_{n-1}\| + |(\beta_n - \beta_{n-1})(1 - \alpha_n) - (\alpha_n - \alpha_{n-1})\beta_{n-1}| \|x_{n-1} - Tz_{n-1}\| + |\alpha_n - \alpha_{n-1}| \|u - Tz_{n-1}\|,$$
(2.7)

which implies that

$$\|x_{n+1} - x_n\| \leq (1 - \alpha_n) \|x_n - x_{n-1}\| + M_1 (|\gamma_n - \gamma_{n-1}| + |\beta_n - \beta_{n-1}| + 2|\alpha_n - \alpha_{n-1}|),$$
(2.8)

where M_1 is a constant such that

$$M_1 \ge \max\{\|u - Tz_{n-1}\|, \|x_{n-1} - Tx_{n-1}\|, \|x_{n-1} - Tz_{n-1}\|\}$$

for all n. By assumptions (i)–(iii), we have that

$$\lim_{n\to\infty}\alpha_n=0,\qquad \sum_{n=1}^\infty\alpha_n=\infty,$$

and

$$\sum_{n=1}^{\infty} \left(|\beta_n - \beta_{n-1}| + 2|\alpha_n - \alpha_{n-1}| + |\gamma_n - \gamma_{n-1}| \right) < \infty.$$

Hence, Lemma 1.4 is applicable to (2.8) and we obtain

$$\|x_{n+1} - x_n\| \to 0 \quad \text{as } n \to \infty.$$
(2.9)

On the other hand, from condition (ii), we have

$$||x_{n+1} - y_n|| = \alpha_n ||u - y|| \to 0 \text{ as } n \to \infty,$$
 (2.10)

and

$$\|y_n - Tz_n\| = \beta_n \|x_n - Tz_n\| \to 0 \quad \text{as } n \to \infty.$$

$$(2.11)$$

Again, it follows from (1.2) and the fact that T is nonexpansive that

$$\|Tx_n - x_n\| \leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n\| + \|y_n - Tz_n\| + \|Tz_n - Tx_n\| \\ \leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n\| + \|y_n - Tz_n\| + (1 - \gamma_n)\|Tx_n - x_n\|.$$
(2.12)

It follows that

 $\gamma_n \|Tx_n - x_n\| \leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n\| + \|y_n - Tz_n\|.$

From condition (ii) and (2.9)–(2.11) we have

$$\lim_{n \to \infty} \|Tx_n - x_n\| = 0.$$
(2.13)

1000

Next, we claim that

$$\limsup_{n \to \infty} \langle u - q, J(x_n - q) \rangle \leq 0, \tag{2.14}$$

where $q = Qu = \lim_{t\to 0} z_t$ with z_t being the fixed point of the contraction $z \mapsto tu + (1-t)Tz$. First, z_t solves the fixed point equation

$$z_t = tu + (1-t)Tz_t.$$

Therefore, we have

$$||z_t - x_n|| = ||(1 - t)(Tz_t - x_n) + t(u - x_n)||.$$

It follows from Lemma 1.2, the nonexpansive property of T, and the definition of J that

$$||z_t - x_n||^2 \leq (1 - t)^2 ||Tz_t - x_n||^2 + 2t \langle u - x_n, J(z_t - x_n) \rangle$$

$$\leq (1 - 2t + t^2) ||z_t - x_n||^2 + f_n(t) + 2t \langle u - z_t, J(z_t - x_n) \rangle + 2t ||z_t - x_n||^2, \qquad (2.15)$$

where

$$f_n(t) = \left(2\|z_t - x_n\| + \|x_n - Tx_n\|\right)\|x_n - Tx_n\| \to 0 \quad \text{as } n \to 0.$$
(2.16)

It follows that

$$\langle z_t - u, J(z_t - x_n) \rangle \leq \frac{t}{2} ||z_t - x_n||^2 + \frac{1}{2t} f_n(t).$$
 (2.17)

Letting $n \to \infty$ in (2.17) and noting (2.16) yields

$$\limsup_{n \to \infty} \langle z_t - u, J(z_t - x_n) \rangle \leqslant \frac{t}{2} M_2, \tag{2.18}$$

where $M_2 > 0$ is a constant such that $M_2 \ge ||z_t - x_n||^2$ for all $t \in (0, 1)$ and $n \ge 1$. Letting $t \to 0$ from (2.18), we have

$$\limsup_{t\to 0}\limsup_{n\to\infty}\langle z_t-u, J(z_t-x_n)\rangle \leq 0.$$

So, for any $\epsilon > 0$, there exists a positive number δ_1 , when $t \in (0, \delta_1)$ we get

$$\limsup_{n \to \infty} \langle z_t - u, J(z_t - x_n) \rangle \leqslant \frac{\epsilon}{2}.$$
(2.19)

On the other hand, $z_t \to q$ as $t \to 0$, from Lemma 1.1, $\exists \delta_2 > 0$, such that when $t \in (0, \delta_2)$ we have

$$\begin{aligned} \left| \left\langle u - q, J(x_n - q) \right\rangle - \left\langle z_t - u, J(z_t - x_n) \right\rangle \right| \\ &\leq \left| \left\langle u - q, J(x_n - q) \right\rangle - \left\langle u - q, J(x_n - z_t) \right\rangle \right| + \left| \left\langle u - q, J(x_n - z_t) \right\rangle - \left\langle z_t - u, J(z_t - x_n) \right\rangle \right| \\ &\leq \left| \left\langle u - q, J(x_n - q) - J(x_n - z_t) \right\rangle \right| + \left\langle z_t - q, J(x_n - z_t) \right\rangle \leq \frac{\epsilon}{2}. \end{aligned}$$

Choosing $\delta = \min{\{\delta_1, \delta_2\}}; \forall t \in (0, \delta)$, we have

$$\langle u-q, J(x_n-q) \rangle \leq \langle z_t-u, J(z_t-x_n) \rangle + \frac{\epsilon}{2},$$

which yields that

$$\limsup_{n\to\infty} \langle u-q, J(x_n-q) \rangle \leq \lim_{n\to\infty} \langle z_t-u, J(z_t-x_n) \rangle + \frac{\epsilon}{2}.$$

It follows from (2.19) that

$$\limsup_{n\to\infty} \langle u-q, J(x_n-q) \rangle \leqslant \epsilon$$

Since ϵ is chosen arbitrarily, we have

$$\limsup_{n \to \infty} \langle u - q, J(x_n - q) \rangle \leq 0.$$
(2.20)

Finally, we show that $x_n \rightarrow q$ strongly and this concludes the proof. Indeed, using Lemma 1.2 again we obtain

$$\|x_{n+1} - q\|^{2} = \|(1 - \alpha_{n})(y_{n} - q) + \alpha_{n}(u - q)\|^{2}$$

$$\leq (1 - \alpha_{n})^{2}\|y_{n} - q\|^{2} + 2\alpha_{n}\langle u - q, J(x_{n+1} - q)\rangle$$

$$\leq (1 - \alpha_{n})\|x_{n} - q\|^{2} + 2\alpha_{n}\langle u - q, J(x_{n+1} - q)\rangle.$$

Now we use (2.20) and apply Lemma 4 to see that $||x_n - q|| \rightarrow 0$. \Box

As a corollary of Theorem 2.1, we have the following immediately:

Corollary 2.2. (See Kim and Xu [7].) Let C be a closed convex subset of a uniformly smooth Banach space E and let $T: C \to C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Given a point $u \in C$ and given sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ in [0, 1], the following conditions are satisfied:

(i) $\sum_{n=0}^{\infty} \alpha_n = \infty$ and $\sum_{n=0}^{\infty} \beta_n = \infty$; (ii) $\alpha_n \to 0, \ \beta_n \to 0$; (iii) $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$ and $\sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty$.

Let $\{x_n\}_{n=1}^{\infty}$ be a composite process defined by (1.3), then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a fixed point of T.

Remark. Kim and Xu [7] proved the sequence defined by iteration scheme (1.3) converges to fixed point of T, under the conditions

(i)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$
 and $\sum_{n=0}^{\infty} \beta_n = \infty$

(ii)
$$\alpha_n \to 0, \beta_n \to 0;$$

(ii) $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$ and $\sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty$ on the parameters.

Actually, the condition $\sum_{n=0}^{\infty} \beta_n = \infty$ can be removed, and the condition $\beta_n \to 0$ also can be relaxed to $0 < \beta_n \le a < 1$, for some $a \in (0, 1)$.

Acknowledgments

The authors are extremely grateful to the referees for useful suggestions that improved the content of the paper.

References

- [1] R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973) 341-355.
- [2] F.E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967) 82–90.
- [3] F.E. Browder, Fixed points theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA 53 (1965) 1272-1276.
- [4] S.S. Chang, On Halpern's open question, Acta Math. Sinica 48 (2005) 979-984.
- [5] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- [6] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. (N.S.) 73 (1967) 957–961.
- [7] T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, J. Math. Anal. Appl. 61 (2005) 51-60.
- [8] P.L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris Sér. A-B 284 (1977) 1357-1359.
- [9] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973) 57-70.
- [10] S. Reich, Approximating fixed points of nonexpansive mappings, Panamer. Math. J. 4 (1994) 486-491.
- [11] S. Reich, Strong convergence theorems for resolvent of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287–292.
- [12] R. Wittmann, Approximation of fixed points nonexpansive mappings, Arch. Math. (Basel) 59 (1992) 486-491.
- [13] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002) 240–256.
- [14] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678.