Strong convergence of the composite Halpern iteration

Xiaolong Qin ${ }^{\text {a,b,* }}$, Yongfu Su ${ }^{\text {a }}$, Meijuan Shang ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China
${ }^{\mathrm{b}}$ Department of Mathematics, Gyeongsang National University, Chinju 660-701, Republic of Korea
${ }^{\text {c }}$ Department of Mathematics, Shijiazhuang University, Shijiazhuang 050035, China

Received 16 November 2005
Available online 1 August 2007
Submitted by D. Khavinson

Abstract

Let C be a closed convex subset of a uniformly smooth Banach space E and let $T: C \rightarrow C$ be a nonexpansive mapping with a nonempty fixed points set. Given a point $u \in C$, the initial guess $x_{0} \in C$ is chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$, $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ in $(0,1)$, the following conditions are satisfied:

(i) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $\alpha_{n} \rightarrow 0, \beta_{n} \rightarrow 0$ and $0<a \leqslant \gamma_{n}$, for some $a \in(0,1)$;
(iii) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$ and $\sum_{n=0}^{\infty}\left|\gamma_{n+1}-\gamma_{n}\right|<\infty$. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a composite iteration process defined by

$$
\left\{\begin{array}{l}
z_{n}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) T x_{n} \\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T z_{n} \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}
\end{array}\right.
$$

then $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to a fixed point of T.
© 2007 Elsevier Inc. All rights reserved.
Keywords: Iteration scheme; Sunny and nonexpansive retraction; Nonexpansive mapping; Banach space

1. Introduction and preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E, and $T: C \rightarrow C$ a mapping. Recall that T is nonexpansive if

$$
\|T x-T y\| \leqslant\|x-y\|, \quad \text { for all } x, y \in C .
$$

[^0]A point $x \in C$ is a fixed point of T provided $T x=x$. Denote by $F(T)$ the set of fixed points of T; that is $F(T)=$ $\{x \in C: T x=x\}$. It is assumed throughout that T is a nonexpansive mapping such that $F(T) \neq \emptyset$.

One classical way to study nonexpansive mappings is to use contractions to approximate a nonexpansive mapping [3,11]. More precisely, take $t \in(0,1)$ and define a contraction $T_{t}: C \rightarrow C$ by

$$
T_{t} x=t u+(1-t) T x, \quad x \in C,
$$

where $u \in C$ is a arbitrary (but fixed) point. Banach's Contraction Mapping Principle guarantees that T_{t} has a unique fixed point x_{t} in C. It is unclear, in general, what is the behavior of $\left\{x_{t}\right\}$ as $t \rightarrow 0$, even if T has a fixed point. However, in the case of T having a fixed point, Browder [3] proved that, if E is a uniformly smooth Banach space, then $\left\{x_{t}\right\}$ converges strongly to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from C onto $F(T)$.

In 1967, Halpern [6] first introduced the following iteration scheme:

$$
\left\{\begin{array}{l}
x_{0}=x \in C, \quad \text { chosen arbitrarily } \tag{1.1}\\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}
\end{array}\right.
$$

see also Browder [2]. He pointed out that the conditions $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ are necessary in the sense that, if the iteration scheme (1.1) converges to a fixed point of T, then these conditions must be satisfied. Ten years later, Lions [8] investigated the general case in Hilbert space under the conditions

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\left(\alpha_{n}-\alpha_{n+1}\right)^{2}}{\alpha_{n+1}}=0
$$

on the parameters. However, Lions' conditions on the parameters were more restrictive and did not include the natural candidate $\left\{\alpha_{n}\right\}=\frac{1}{n}$. In 1980, Reich [11] gave the iteration scheme (1.1) in the case when E is uniformly smooth and $\left\{\alpha_{n}\right\}=n^{-\delta}$ with $0<\delta<1$.

In 1992, Wittmann [12] studied the iteration scheme (1.1) in the case when E is a Hilbert space and $\left\{\alpha_{n}\right\}$ satisfies

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty
$$

In 1994, Reich [10] obtained a strong convergence of the iterates (1.1) with two necessary and decreasing conditions on parameters for convergence in the case when E is uniformly smooth with a weakly continuous duality mapping.

Recently Chang [4] studied the iteration scheme (1.1) in the case when E is a uniformly smooth Banach space and $\left\{\alpha_{n}\right\}$ satisfies

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \quad \text { and } \quad\left\|T x_{n}-x_{n}\right\| \rightarrow 0
$$

then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.
This paper introduces the composite iteration scheme as follows:

$$
\left\{\begin{array}{l}
z_{n}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) T x_{n}, \tag{1.2}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T z_{n}, \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n},
\end{array}\right.
$$

where $u \in C$ is an arbitrary (but fixed) element in C, and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. We prove, under certain appropriate assumptions on the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$, that $\left\{x_{n}\right\}$ defined by (1.2) converges strongly to a fixed point of T.

If $\left\{\beta_{n}\right\}=0$ and $\left\{\gamma_{n}\right\}=1$ in (1.2) then we have the usual Halpern iterative sequence $\left\{x_{n}\right\}$ defined by (1.1).
On the other hand, the composite iterations this paper introduced is a modified Ishikawa iteration. If $\left\{\gamma_{n}\right\}=1$ in (1.2) then (1.2) can be viewed as a modified Mann iteration

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}, \tag{1.3}\\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n},
\end{array}\right.
$$

which was considered by Kim and Xu [7].

It is our purpose in this paper to introduce this composite iteration scheme for approximating a fixed point of nonexpansive mappings in the framework of uniformly smooth Banach spaces. We establish strong convergence of the composite iteration scheme $\left\{x_{n}\right\}$ defined by (1.2). The results improve and extend results of Chang [4], Wittmann [12], Kim and $\mathrm{Xu}[7]$ and many others.

Let E be a real Banach space and let J denote the normalized duality mapping from E into $2^{E^{*}}$ given by

$$
J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}, \quad x \in E,
$$

where E^{*} denotes the dual space of E and $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{1.4}
\end{equation*}
$$

exists for each x, y in its unit sphere $U=\{x \in E:\|x\|=1\}$. A Banach space E whose norm is uniformly Gâteaux differentiable; then the duality map J is single-valued and norm-to-weak* uniformly continuous on bounded sets of E. It is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (1.4) is attained uniformly for $(x, y) \in U \times U$.

We need the following lemmas for the proof of our main results.
Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality map J is single-valued and norm-to-norm uniformly continuous on bounded sets of E.

In our convergence results in the next sections, we need to estimate the square-norm $\left\|x_{n+1}-p\right\|^{2}$ in terms of the square-norm $\left\|x_{n}-p\right\|^{2}$, where x_{i} is the i th iterate for $i \geqslant 1$, and p is a fixed point of the mapping T. To do this, we need the following well-known (subdifferential) inequality:

Lemma 1.2. In a Banach space E, there holds the inequality

$$
\|x+y\|^{2} \leqslant\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad x, y \in E,
$$

where $j(x+y) \in J(x+y)$.
Recall that if C and D are nonempty subsets of a Banach space E such that C is nonempty, closed, convex and $D \subset C$, then a map $Q: C \rightarrow D$ is sunny [1,9] provided $Q(x+t(x-Q(x)))=Q(x)$ for all $x \in C$ and $t \geqslant 0$ whenever $x+t(x-Q(x)) \in C$. A sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions play an important role in our argument. They are characterized as follows [1,5,9]: if E is a smooth Banach space, then $Q: C \rightarrow D$ is a sunny nonexpansive retraction if and only if there holds the inequality

$$
\langle x-Q x, J(y-Q x)\rangle \leqslant 0, \quad \text { for all } x \in C, y \in D
$$

Reich [11] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into itself, then there is a sunny nonexpansive retraction from C onto D and it can be constructed as follows:

Lemma 1.3. (See Reich [11].) Let E be a uniformly smooth Banach space and let $T: C \rightarrow C$ be a nonexpansive mapping with a fixed point $x_{t} \in C$ of the contraction $C \ni x \mapsto t u+(1-t) t x$. Then $\left\{x_{t}\right\}$ converges strongly as $t \rightarrow 0$ to a fixed point of T. Define $Q: C \rightarrow F(T)$ by $Q u=\lim _{t \rightarrow 0} x_{t}$. Then Q is the unique sunny nonexpansive retract from C onto $F(T)$; that is, Q satisfies the property

$$
\langle u-Q u, J(z-Q u)\rangle \leqslant 0, \quad u \in C, z \in F(T)
$$

Lemma 1.4. (See $X u[13,14]$.) Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a sequence of nonnegative real numbers satisfying the property

$$
\alpha_{n+1} \leqslant\left(1-\gamma_{n}\right) \alpha_{n}+\gamma_{n} \sigma_{n}, \quad n \geqslant 0,
$$

where $\{\gamma\}_{n=0}^{\infty} \subset(0,1)$ and $\{\sigma\}_{n=0}^{\infty}$ are such that
(i) $\lim _{n \rightarrow \infty} \gamma_{n}=0$ and $\sum_{n=0}^{\infty} \gamma_{n}=\infty$,
(ii) either $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leqslant 0$ or $\sum_{n=0}^{\infty}\left|\gamma_{n} \sigma_{n}\right|<\infty$.

Then $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ converges to zero.

2. Main results

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth Banach space E and let $T: C \rightarrow C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Given a point $u \in C$, the initial guess $x_{0} \in C$ is chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ in $[0,1]$, the following conditions are satisfied:
(i) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $\alpha_{n} \rightarrow 0, \beta_{n} \rightarrow 0$ and $0<a \leqslant \gamma_{n}$, for some $a \in(0,1)$;
(iii) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$ and $\sum_{n=0}^{\infty}\left|\gamma_{n+1}-\gamma_{n}\right|<\infty$. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be composite process defined by (1.2), then $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to a fixed point of T.

Proof. First we observe that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded. Indeed, if we take a fixed point p of T, noting that

$$
\begin{equation*}
\left\|z_{n}-p\right\| \leqslant \gamma_{n}\left\|x_{n}-p\right\|+\left(1-\gamma_{n}\right)\left\|T x_{n}-p\right\| \leqslant\left\|x_{n}-p\right\| . \tag{2.1}
\end{equation*}
$$

It follows from (1.2) and (2.1) that

$$
\begin{aligned}
\left\|y_{n}-p\right\| & \leqslant \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|T z_{n}-p\right\| \\
& \leqslant \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|z_{n}-p\right\| \\
& \leqslant\left\|x_{n}-p\right\|,
\end{aligned}
$$

which yields that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leqslant \alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|y_{n}-p\right\| \\
& \leqslant \alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| \\
& \leqslant \max \left\{\|u-p\|,\left\|x_{n}-p\right\|\right\} .
\end{aligned}
$$

Now, by simple induction yields

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leqslant \max \left\{\|u-p\|,\left\|x_{0}-p\right\|\right\}, \quad n \geqslant 0 . \tag{2.2}
\end{equation*}
$$

This implies that $\left\{x_{n}\right\}$ is bounded and so are $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$.
Next, we claim that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{2.3}
\end{equation*}
$$

In order to prove (2.3) from (1.2), after some manipulations we have

$$
\begin{aligned}
x_{n+1}-x_{n}= & \left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left(T z_{n}-T z_{n-1}\right)+\left(1-\alpha_{n}\right) \beta_{n}\left(x_{n}-x_{n-1}\right) \\
& +\left[\left(\beta_{n}-\beta_{n-1}\right)\left(1-\alpha_{n}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) \beta_{n-1}\right]\left(x_{n-1}-T z_{n-1}\right) \\
& +\left(\alpha_{n}-\alpha_{n-1}\right)\left(u-T z_{n-1}\right) .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leqslant & \left(1-\beta_{n}\right)\left(1-\alpha_{n}\right)\left\|T z_{n}-T z_{n-1}\right\|+\left(1-\alpha_{n}\right) \beta_{n}\left\|x_{n}-x_{n-1}\right\| \\
& +\left|\left(\beta_{n}-\beta_{n-1}\right)\left(1-\alpha_{n}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) \beta_{n-1}\right|\left\|x_{n-1}-T z_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u-T z_{n-1}\right\| . \tag{2.4}
\end{align*}
$$

That is

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leqslant & \left(1-\beta_{n}\right)\left(1-\alpha_{n}\right)\left\|z_{n}-z_{n-1}\right\|+\left(1-\alpha_{n}\right) \beta_{n}\left\|x_{n}-x_{n-1}\right\| \\
& +\left|\left(\beta_{n}-\beta_{n-1}\right)\left(1-\alpha_{n}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) \beta_{n-1}\right|\left\|x_{n-1}-T z_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u-T z_{n-1}\right\| . \tag{2.5}
\end{align*}
$$

Since

$$
z_{n}-z_{n-1}=\left(1-\gamma_{n}\right)\left(T x_{n}-T x_{n-1}\right)+\gamma_{n}\left(x_{n}-x_{n-1}\right)+\left(\gamma_{n-1}-\gamma_{n}\right)\left(T x_{n-1}-x_{n-1}\right),
$$

we have

$$
\begin{equation*}
\left\|z_{n}-z_{n-1}\right\| \leqslant\left\|x_{n}-x_{n-1}\right\|+\left|\gamma_{n-1}-\gamma_{n}\right|\left\|T x_{n-1}-x_{n-1}\right\| . \tag{2.6}
\end{equation*}
$$

Substituting (2.6) into (2.5), we get

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leqslant & \left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left|\gamma_{n}-\gamma_{n-1}\right|\left\|T x_{n-1}-x_{n-1}\right\| \\
& +\left|\left(\beta_{n}-\beta_{n-1}\right)\left(1-\alpha_{n}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) \beta_{n-1}\right|\left\|x_{n-1}-T z_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u-T z_{n-1}\right\|, \tag{2.7}
\end{align*}
$$

which implies that

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leqslant & \left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\| \\
& +M_{1}\left(\left|\gamma_{n}-\gamma_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|+2\left|\alpha_{n}-\alpha_{n-1}\right|\right) \tag{2.8}
\end{align*}
$$

where M_{1} is a constant such that

$$
M_{1} \geqslant \max \left\{\left\|u-T z_{n-1}\right\|,\left\|x_{n-1}-T x_{n-1}\right\|,\left\|x_{n-1}-T z_{n-1}\right\|\right\}
$$

for all n. By assumptions (i)-(iii), we have that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty
$$

and

$$
\sum_{n=1}^{\infty}\left(\left|\beta_{n}-\beta_{n-1}\right|+2\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\gamma_{n}-\gamma_{n-1}\right|\right)<\infty
$$

Hence, Lemma 1.4 is applicable to (2.8) and we obtain

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.9}
\end{equation*}
$$

On the other hand, from condition (ii), we have

$$
\begin{equation*}
\left\|x_{n+1}-y_{n}\right\|=\alpha_{n}\|u-y\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{n}-T z_{n}\right\|=\beta_{n}\left\|x_{n}-T z_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{2.11}
\end{equation*}
$$

Again, it follows from (1.2) and the fact that T is nonexpansive that

$$
\begin{align*}
\left\|T x_{n}-x_{n}\right\| & \leqslant\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|+\left\|y_{n}-T z_{n}\right\|+\left\|T z_{n}-T x_{n}\right\| \\
& \leqslant\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|+\left\|y_{n}-T z_{n}\right\|+\left(1-\gamma_{n}\right)\left\|T x_{n}-x_{n}\right\| . \tag{2.12}
\end{align*}
$$

It follows that

$$
\gamma_{n}\left\|T x_{n}-x_{n}\right\| \leqslant\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|+\left\|y_{n}-T z_{n}\right\| .
$$

From condition (ii) and (2.9)-(2.11) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0 \tag{2.13}
\end{equation*}
$$

Next, we claim that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leqslant 0, \tag{2.14}
\end{equation*}
$$

where $q=Q u=\lim _{t \rightarrow 0} z_{t}$ with z_{t} being the fixed point of the contraction $z \mapsto t u+(1-t) T z$. First, z_{t} solves the fixed point equation

$$
z_{t}=t u+(1-t) T z_{t} .
$$

Therefore, we have

$$
\left\|z_{t}-x_{n}\right\|=\left\|(1-t)\left(T z_{t}-x_{n}\right)+t\left(u-x_{n}\right)\right\| .
$$

It follows from Lemma 1.2, the nonexpansive property of T, and the definition of J that

$$
\begin{align*}
\left\|z_{t}-x_{n}\right\|^{2} & \leqslant(1-t)^{2}\left\|T z_{t}-x_{n}\right\|^{2}+2 t\left\langle u-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle \\
& \leqslant\left(1-2 t+t^{2}\right)\left\|z_{t}-x_{n}\right\|^{2}+f_{n}(t)+2 t\left\langle u-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle+2 t\left\|z_{t}-x_{n}\right\|^{2} \tag{2.15}
\end{align*}
$$

where

$$
\begin{equation*}
f_{n}(t)=\left(2\left\|z_{t}-x_{n}\right\|+\left\|x_{n}-T x_{n}\right\|\right)\left\|x_{n}-T x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow 0 . \tag{2.16}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leqslant \frac{t}{2}\left\|z_{t}-x_{n}\right\|^{2}+\frac{1}{2 t} f_{n}(t) . \tag{2.17}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (2.17) and noting (2.16) yields

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leqslant \frac{t}{2} M_{2}, \tag{2.18}
\end{equation*}
$$

where $M_{2}>0$ is a constant such that $M_{2} \geqslant\left\|z_{t}-x_{n}\right\|^{2}$ for all $t \in(0,1)$ and $n \geqslant 1$. Letting $t \rightarrow 0$ from (2.18), we have

$$
\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\{z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leqslant 0 .
$$

So, for any $\epsilon>0$, there exists a positive number δ_{1}, when $t \in\left(0, \delta_{1}\right)$ we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leqslant \frac{\epsilon}{2} . \tag{2.19}
\end{equation*}
$$

On the other hand, $z_{t} \rightarrow q$ as $t \rightarrow 0$, from Lemma 1.1, $\exists \delta_{2}>0$, such that when $t \in\left(0, \delta_{2}\right)$ we have

$$
\begin{aligned}
& \left|\left\langle u-q, J\left(x_{n}-q\right)\right\rangle-\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle\right| \\
& \quad \leqslant\left|\left\langle u-q, J\left(x_{n}-q\right)\right\rangle-\left\langle u-q, J\left(x_{n}-z_{t}\right)\right\rangle\right|+\left|\left\langle u-q, J\left(x_{n}-z_{t}\right)\right\rangle-\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle\right| \\
& \quad \leqslant\left|\left\langle u-q, J\left(x_{n}-q\right)-J\left(x_{n}-z_{t}\right)\right\rangle\right|+\left\langle z_{t}-q, J\left(x_{n}-z_{t}\right)\right\rangle \leqslant \frac{\epsilon}{2} .
\end{aligned}
$$

Choosing $\delta=\min \left\{\delta_{1}, \delta_{2}\right\} ; \forall t \in(0, \delta)$, we have

$$
\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leqslant\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle+\frac{\epsilon}{2},
$$

which yields that

$$
\limsup _{n \rightarrow \infty}\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leqslant \lim _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle+\frac{\epsilon}{2} .
$$

It follows from (2.19) that

$$
\limsup _{n \rightarrow \infty}\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leqslant \epsilon .
$$

Since ϵ is chosen arbitrarily, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leqslant 0 . \tag{2.20}
\end{equation*}
$$

Finally, we show that $x_{n} \rightarrow q$ strongly and this concludes the proof. Indeed, using Lemma 1.2 again we obtain

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2} & =\left\|\left(1-\alpha_{n}\right)\left(y_{n}-q\right)+\alpha_{n}(u-q)\right\|^{2} \\
& \leqslant\left(1-\alpha_{n}\right)^{2}\left\|y_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle u-q, J\left(x_{n+1}-q\right)\right\rangle \\
& \leqslant\left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle u-q, J\left(x_{n+1}-q\right)\right\rangle .
\end{aligned}
$$

Now we use (2.20) and apply Lemma 4 to see that $\left\|x_{n}-q\right\| \rightarrow 0$.
As a corollary of Theorem 2.1, we have the following immediately:
Corollary 2.2. (See Kim and Xu [7].) Let C be a closed convex subset of a uniformly smooth Banach space E and let $T: C \rightarrow C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Given a point $u \in C$ and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ in $[0,1]$, the following conditions are satisfied:
(i) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$;
(ii) $\alpha_{n} \rightarrow 0, \beta_{n} \rightarrow 0$;
(iii) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a composite process defined by (1.3), then $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to a fixed point of T.
Remark. Kim and Xu [7] proved the sequence defined by iteration scheme (1.3) converges to fixed point of T, under the conditions
(i) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$;
(ii) $\alpha_{n} \rightarrow 0, \beta_{n} \rightarrow 0$;
(iii) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$ on the parameters.

Actually, the condition $\sum_{n=0}^{\infty} \beta_{n}=\infty$ can be removed, and the condition $\beta_{n} \rightarrow 0$ also can be relaxed to $0<\beta_{n} \leqslant$ $a<1$, for some $a \in(0,1)$.

Acknowledgments

The authors are extremely grateful to the referees for useful suggestions that improved the content of the paper.

References

[1] R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973) 341-355.
[2] F.E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967) 82-90.
[3] F.E. Browder, Fixed points theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA 53 (1965) $1272-1276$.
[4] S.S. Chang, On Halpern's open question, Acta Math. Sinica 48 (2005) 979-984.
[5] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[6] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. (N.S.) 73 (1967) 957-961.
[7] T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, J. Math. Anal. Appl. 61 (2005) 51-60.
[8] P.L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris Sér. A-B 284 (1977) 1357-1359.
[9] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973) 57-70.
[10] S. Reich, Approximating fixed points of nonexpansive mappings, Panamer. Math. J. 4 (1994) 486-491.
[11] S. Reich, Strong convergence theorems for resolvent of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) $287-292$.
[12] R. Wittmann, Approximation of fixed points nonexpansive mappings, Arch. Math. (Basel) 59 (1992) 486-491.
[13] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002) 240-256.
[14] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678.

[^0]: * Corresponding author at: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Republic of Korea.

 E-mail address: qxlxajh@163.com (X. Qin).

