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ABSTRACT

An introduction to the wavelet transform and its applications
in spectroscopy analysis are presented. Owing to the property
of the dual localization both in time and in frequency
domains, the wavelet transform exhibits several useful char-
acteristics. With the wavelet transform a signal can be decom-
posed into series of contributions according to the frequency
difference, these contributions are respectively called discrete
approximations and discrete details. By applying certain treat-
ment to the discrete approximations (the low frequency part)
or the discrete details (the high frequency part), a part of the
original signal within a certain frequency range can be
obtained. The wavelet transform has been applied in various
fields of the analytical chemistry, including removal of high
frequency noise, information extraction, resolution of over-
lapping signals, and data compression etc. Research concern-
ing application in analytical chemistry are introduced in
respect of photoacoustic spectroscopy, EXAFS spectrum,
NMR analysis, and Raman spectrum.

Key Words: Wavelet transform; Spectral analysis;
De-noising; Resolution; Derivative; Data compression

I. INTRODUCTION

The wavelet transform originated in 1980 with Morlet[1] working on
seismic data analysis. Later, Grossmann and Morlet[2] developed the geome-
trical formalism of the continuous wavelet transform based on invariance
under the affine group, namely translation and dilation. In 1986, Daubechies
et al.[3] began research of the discrete wavelet transform by selecting a discrete
subset called a wavelet frame from the continuous wavelet space. In 1988,
Mallat[4] introduced the concept of multiresolution analysis (MRA). This
approach gives a general method for building orthogonal wavelet bases
and leads to the implementation of fast wavelet algorithms.[5,6]

The wavelet transform resembles the Fourier transform in some
respects. The Fourier transform is localized in frequency but not in time
domain. But the wavelet transform keeps the localization both in scale
(frequency) and in position (time) domains. This dual localization makes
the wavelet transform a powerful tool to study the local property of a signal
and to eliminate the perturbation of the measuring error.
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By virtue of the dual localization, the wavelet transform soon got
applied in various fields such as acoustic[7] and fluid mechanics.[8] The first
application in analytical chemistry was to evaluate peak intensities in
flow injection analysis (FIA) by Bos and Hoogendam.[9] In 1994, they
used the wavelet transform to preprocess IR spectra in the identification
of substituted bezenes.[10] In recent years, much research was performed in
the de-noising,[11–20] data compression,[19–22] and analysis of complex signals
including resolution of chromatographic peaks,[23–25] NMR analysis,[26,27]

near infrared spectroscopy,[28] electroanalytical chemistry,[29] EXAFS
analysis,[30] chromatography analysis,[31–33] and biology relevant analysis.[34]

The combination of the wavelet transform with other chemometric methods
was also studied.[35–39]

Our research concerning the wavelet transform in recent years has been
focused on chromatography and spectroscopic analysis. In this paper, the
implementation of the discrete wavelet transform to denoise and resolve
spectroscopic data is discussed. A new algorithm based on the Mallat
pyramid is described. Work performed in our laboratory in spectroscopic
analysis is reported here as well as research by other workers.

II. THEORY AND ALGORITHMS

A. Theory of Wavelet Transform

If a function  ðxÞ 2 L2
ðRÞ (L2

ðRÞ denotes the Hilbert space of
measurable, square integrable functions) satisfies the conditionZ þ1

�1

j ̂ ðxÞj � jxj�1 dx <1; ð1Þ

where  ̂ ðxÞ denotes the Fourier transform of  ðxÞ, it is called a ‘mother
wavelet’.

A series of ‘self-similar’ wavelets can be generated from a mother
wavelet by two kinds of processes, dilation and translation. If variable a
and b are used to control the dilation and the translation respectively, the
wavelet is defined as

 a;bðtÞ ¼
1ffiffiffiffiffiffi
jaj

p  
t� b

a

� �
a; b 2 R; a 6¼ 0; ð2Þ

where the normalization term 1=
ffiffiffiffiffiffi
jaj

p
keeps the energy of the wavelet the

same as that of the mother wavelet.
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The wavelet transform is defined as the projection of a function f ðtÞ
ð f ðtÞ 2 L2

ðRÞÞ onto the wavelet

Wf ða; bÞ ¼

Z þ1

�1

f ðtÞ �
a;bðtÞ dt

¼
1ffiffiffiffiffiffi
jaj

p

Z þ1

�1

f ðtÞ � t� b

a

� �
dt; ð3Þ

where the superscript � represent the complex conjugate. If we denote the
dilation of  ðxÞ with the scale parameter a by  aðxÞ ¼

ffiffiffi
a

p
 ðaxÞ and denote

 ð�xÞ by ~  aðxÞ, the transform at a point u and a scale a can be written as a
convolution product with ~  aðxÞ

Wa f ðuÞ ¼ f � ~  aðuÞ: ð4Þ

Therefore, the wavelet transform can be viewed as a filtering of f (x)
with a band-pass filter whose impulse response is ~  aðxÞ.

The inverse transform of Wf (a, b) can be described as

f ðtÞ ¼
1

C

Z þ1

�1

Z þ1

�1

Wf ða; bÞ a;b
t� b

a

� �
da db

a2
; ð5Þ

where

C ¼

Z þ1

�1

 ̂ �
ð!Þ ̂ ð!Þ

!
d!:

In practice applications, the discrete wavelet transform is generally
used, i.e., the values for variables a and b are restricted as follows

a ¼ am0
b ¼ bn0

�
; ðm; n 2 z; a0 6¼ 0Þ: ð6Þ

Consequently, the discrete form of Eqs. (2) and (3) can be expressed as

 m;nðtÞ ¼ a
�m=2
0  a�m0 t� nb0ð Þ

Wf ðm; nÞ ¼ a�m=20

Z þ1

�1

f ðtÞ a�m0 t� nb0ð Þ dt:
ð7Þ

B. Multiresolution Signal Decomposition (MRSD)

In order to implement the computation of the discrete wavelet trans-
form, several algorithms have been developed.[2,5,6] The multiresolution
signal decomposition (MRSD) by Mallat[5,6] is commonly used.
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The theory of MRSD can be simply interpreted by

V2 j ¼ O2 j�1 
 V2 j�1 ¼ � � � ¼ 

j�J

j¼j�1
O2 j 
 V2J : ð8Þ

If an orthogonal wavelet dilated from  ðxÞ by
ffiffiffiffiffiffiffi
2�j

p
 2 j ðt� 2�jnÞ is the

orthogonal basis of O2 j , there is a corresponding scaling function �ðtÞ whose
dilation

ffiffiffiffiffiffiffi
2�j

p
 2 j ðt� 2�jnÞ is the orthogonal basis of V2 j . Therefore, the

wavelet decomposition can be simply illustrated by

Cð0Þ
ðnÞ ! Cð1Þ

ðnÞ ! � � � ! CðJ�1Þ
ðnÞ ! CðJÞ

ðnÞ

# # #

Dð1Þ
ðnÞ Dð2Þ

ðnÞ � � � DðJÞ
ðnÞ

; ð9Þ

where Cð0Þ
ðnÞ is the original experimental signal, Cð j Þ

ðnÞ and Dð j Þ
ðnÞ are

respectively called the discrete approximation and the discrete detail. J is the
highest resolution level.

The implementation of an orthogonal wavelet decomposition can be
written as[6]

Cð j Þ
ðnÞ ¼ Cð j�1Þ

ðnÞ � eHH ¼
X
l2Z

~hhðl � 2nÞCð j�1Þ
ðlÞ; ð10Þ

Dð j Þ
ðnÞ ¼ Dð j�1Þ

ðnÞ � eGG ¼
X
l2Z

~ggðl � 2nÞCð j�1Þ
ðlÞ; ð11Þ

where ~HH ¼ f ~hhðlÞ; l 2 Zg and ~GG ¼ f ~ggðlÞ; l 2 Zg are the mirror filters of the
discrete filters H and G defined by

hðnÞ ¼ �2�1 ðuÞ; �ðu� nÞ
� 	

; ð12Þ

gðnÞ ¼  2�1 ðuÞ; �ðu� nÞ
� 	

: ð13Þ

Therefore, Cð j Þ
ðnÞ and Dð j Þ

ðnÞ respectively denote the low frequency
(lower than 2 j) and the high frequency (between 2 j and 2 jþ1) parts of
Cð j�1Þ

ðnÞ.
The reconstruction, i.e., the inverse transform can be illustrated by

CðJÞ
ðnÞ ! CðJ�1Þ

ðnÞ ! � � �Cð2Þ
ðnÞ ! Cð1Þ

ðnÞ ! Cð0Þ
ðnÞ

" " "

DðJÞ
ðnÞ � � � Dð2Þ

ðnÞ Dð1Þ
ðnÞ

; ð14Þ

and the computation is

Cð j�1Þ
ðnÞ ¼ eGG�

�Dð j Þ
ðnÞ þ eHH�

� Cð j Þ
ðnÞ

¼
X
l2Z

~gg�ðn� 2lÞDð j Þ
ðl Þ þ

X
l2Z

~hh�ðl � 2nÞCð j Þ
ðl Þ; ð15Þ
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C. Improved Algorithm for Processing the Analytical Signal

The MRSD algorithm requires 2N where N is an integer. This number
is reduced to half after each decomposition, which makes the decomposed
results e.g., spectra, or chromatograms, discontinuous. Therefore, Eqs. (10)
and (11) are reformulated as

Cð j Þ
ðnÞ ¼

XLð j Þ
�1

l¼0

~hhð j ÞðlÞCð j�1Þ
ðn� lÞ; ð16Þ

Dð j Þ
ðnÞ ¼

XLð j Þ
�1

l¼0

~ggð j ÞðlÞCð j�1Þ
ðn� lÞ; ð17Þ

where L(j) is the data number of eHHð j Þ
¼ f ~hhð j ÞðlÞ; l 2 Zg or eGGð j Þ

¼ f ~ggð j ÞðlÞ,
l 2 Zg, which are generated by inserting 2j�1

� 1 zeros into every adjacent
item of eHH or eGG, and the value of L( j) will be doubled when j increases. These
two equations can process signals of any length, and smooth decomposed
results can be obtained. In most cases, they are more suitable than Eqs. (10)
and (11).

III. APPLICATIONS

A. Signal-to-Noise Ratio (SNR) Improvement

Noise and signal are simultaneously collected by an analytical
instrument. The irreproducibility of the noise makes it difficult to analyze
the original signal. Therefore, the technique of de-noising is very important
in many fields. A number of filtering methods have been developed, such as
Fourier filtering, Savitzky-Golay smoothing, and Kalman filtering etc.
In spite of the existence of the methods, the problems of complicated
computation and poor de-noising performance still exist.

The wavelet transform has been proven to be an effective method for
de-noising chemical data.[19] The general procedure of the de-noising with
the wavelet transform can be done in three steps. (1) Perform the wavelet
transform of a noisy signal fnoise, and obtain the wavelet coefficients W;
(2) suppress those elements in W that are determined to be from noise by
certain thresholding method; (3) apply the inverse wavelet transform to the
suppressed W to obtain the de-noised signal fde-noised. There are several
methods[11,14,19] to estimate the threshold and to perform the thresholding.

In our studies,[33] the de-noising based on the improved algorithm in
Sec. II.C was preferred. Because both the discrete approximations and the
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discrete details have the same data length as the original signal, it is
unnecessary to go through the whole three steps, we can obtain de-noised
result simply by selecting one of the discrete approximations. This improved
algorithm was applied to the de-noising of the photoacoustic spectrum of
NdCl3�6H2O.[40]

Figure 1A and 1B are the decomposed results from the normalized PA
spectrum of NdCl3�6H2O. The Symmlet (N¼ 8) wavelet was used. Curves C
and D in Fig. 1 respectively denote the discrete approximations and the
discrete details, and C(0) denotes the original spectrum. As C(0) shows, the
noise made it difficult to determine the positions of the peaks, especially in
the region of 300–450 nm. Therefore, direct analysis from the raw spectrum
is surely inaccurate. From Fig. 1, it is apparently that with the wavelet
transform the noise is gradually separated into the discrete details, D( j)s,
and that the amplitude of the noise in the discrete approximations, C( j )s, is
gradually low. It can also be found that D(1)–D(5) are the high frequency
noise, and that the photoacoustic information begins to emerge in D(6).
Meanwhile, the photoacoustic information begins to be lost from C(7),
which can be found from the comparison between C(6) and C(7) in the
region of 300–500 nm. Therefore, C(6) is chosen as the de-noised spectrum.
It can be seen that the SNR of the de-noised result was greatly improved.
Consequently, the positions of the peaks in the region of 300–450 nm can be
easily determined. Furthermore, the correlation between intramolecular
energy transition bands and spectral range was compared in Ref. [40], it
was found that all the peaks’ positions are consistent with the theoretical
energy transition bands.

We also applied the wavelet transform to de-noise Raman spectra.[41]

Ethanolic solutions of CCl4 (liquid in a capillary with concentration of 30,
45, 60, 75, and 90%, V/V) were prepared. Figure 2 shows the Raman spectra
of the solutions.

It can be seen that all the spectra suffer from a high noise level, especially
that the peak almost disappears when the concentration is 30%. These
spectra are decomposed by our improved algorithm with Haar wavelet.
According to the same criteria introduced above, the discrete approximations,
C(6)s, are chosen as the de-noised results shown in Fig. 3.

From Fig. 3 it can be seen that, compared with that of the original
spectra, the SNR of de-noised signals is greatly improved, especially in the
cases of concentrations being 30 and 45% where the signal peaks are almost
invisible in the original spectra. But the wavelet transform yields meaningful
de-noised results. Owing to the high level and the non-uniform distribution
of the noise, the baselines of the five de-noised spectra in Fig. 3 are not
restrictedly zero, and side bands appear. However, the intensity of the
side bands is very weak compared with that of the signal peak, and the
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Figure 1. The normalized PA spectrum of NdCl3�6H2O, and the decomposed
results by wavelet transform. (A) The discrete approximations; (B) the discrete details.
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comparative intensity of the side bands decreases with the increase of the
SNR of the original spectra.

B. Information Extraction

From the theory of MRSD in Sec. II.B, it is concluded that the wavelet
transform can decompose a given signal into two kinds of contributions.
One is the high frequency (between 2 j and 2 jþ1) parts, i.e., the discrete
details, D( j)(n)s, and the other is the low frequency (lower than 2 j ) parts,

Figure 3. Filtered results from the Raman spectra in Fig. 2, which correspond
to the discrete approximations, C(6)s, in the wavelet decompositions.

Figure 2. Raman spectra of ethanolic solutions of CCl4 of different concentrations.
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i.e., the discrete approximations, C( j)(n)s. If all the D( j)(n)s are set zero, and
the reconstruction is done by Eq. (15), the reconstructed signal is the low
frequency part of the original signal. Similarly, if all the C( j)(n)s are set zero,
the reconstructed signal is the high frequency part of the original signal.
Therefore, wavelet transform can be used to extract the information of
different frequency from the original signal.

Wavelet transform was applied to extract the extended X-ray absorp-
tion fine structure (EXAFS) information from the measured spectrum.[42]

The conventional procedure is to use cubic spline interpolation to obtain the
background absorption, then subtract it from the measured spectrum.
However, in the conventional process, several points (usually 3–5) must
be selected from the original spectrum for the cubic spline interpolation.
The manual selection is tedious and time-consuming, and the result by trial
and inspection surely results in poor reproducibility. There exists the fact
that the measured EXAFS spectrum is composed of the high frequency
EXAFS oscillation information and the smooth low frequency background
absorption. Based on the fact, with the wavelet transform the EXAFS
oscillation information can be extracted because its frequency is higher
than the background’s.

Figure 4 is a spectrum of Cu in k-space obtained (with k¼ [0.263�
(E�E0)]1/2, and E0

¼ 8393.5 eV) from the measured spectrum in E-space.
The decomposed results by the wavelet transform are shown in Fig. 5 using

Figure 4. The experimental EXAFS spectrum of Cu in k-space (E0
¼ 8393.5 eV).
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Daubechies (N¼ 4) wavelet. It is clear that the EXAFS oscillation informa-
tion is gradually separated from the discrete approximations, C( j)s, into
the discrete details, D( j)s. The characteristic of the background absorption
gradually emerges in the C( j)s, and is totally exhibited by C(4). Therefore, the
extraction can be performed by setting all theC( j)s zero in the reconstruction.

The extracted spectrum is shown in Fig. 6 in solid curve. As a compar-
ison, the result of the conventional cubic spline interpolation is also given as
dotted curve. It can be found that the main characteristics of the two curves
are similar. But in the high k region, the amplitude of the signal by the wavelet
transform is greater than that by the conventional method, the higher SNR
means that more accurate results could be obtained. It should be
mentioned here that although the dotted curve in Fig. 6 is not the best result
of the conventional cubic spline interpolation, it was obtained from many
times of trials and inspections.

The structural parameters of the first coordination shell of Cu
obtained from the extracted EXAFS oscillation (the solid and the dotted
curves in Fig. 6) are listed in Table 1. They are the coordination number, N,
the Debye-Waller factor, �, the coordination distance, r, and the electron
mean free path, l. The errors of curve fitting are also given in Table 1.

The curve fitting errors in Table 1 show that the data analysis based on
the wavelet transform is more accurate than that based on the cubic spline
interpolation. Consequently, the results by the wavelet transform are more

Figure 5. Decomposed results by the wavelet transform from the spectrum in Fig. 4.
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credible. Overall, the values obtained by the wavelet transform are more in
agreement with those values by other methods.[43] On the other hand, the
values of the structural parameters show that the reproducibility of the
wavelet transform method is obviously superior to that of the cubic spline
interpolation. The reason of the superiority is that there was no user’s
interference in the information extraction by the wavelet transform, while
the interpolating points have to be specified by the user in the background
absorption removal by the cubic spline interpolation.

Figure 6. The extracted EXAFS oscillation by the wavelet transform (the solid
curve), and the result obtained by the conventional cubic spline interpolation

(the dotted curve).

Table 1. Comparison of the Structural Parameters Obtained by Least Square
Curve Fitting from the EXAFS Oscillations Extracted by the Wavelet Transform

and the Cubic Spline Interpolation

Spectrum Method N r � l Error

I Wavelet 12 2.50 0.112 6.5 0.0026

Cubic spline 8 2.52 0.077 4.4 0.0074
II Wavelet 12 2.49 0.109 6.3 0.0027

Cubic spline 9 2.53 0.082 4.5 0.0029

III Wavelet 12 2.51 0.113 6.3 0.0011
Cubic spline 9 2.52 0.084 4.5 0.0056
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C. Resolution of Overlapping Signals

Nuclear magnetic resonance (NMR) is a powerful tool in analytical
chemistry, organic chemistry, and bioorganic chemistry. But it is always
difficult to obtain the structural information of a sample when the peaks
of its NMR spectrum are overlapping. Though several techniques[44–47] had
been developed to enhance the resolution of NMR spectra, the problems of
low resolution in the spectra of most biological macro-molecules still exist.

As mentioned above, the wavelet transform can decompose a signal
into contributions of different frequency. Therefore, if we amplify one or
some of the relatively high frequency contributions, i.e., the discrete details,
which represent the useful information, then the frequency of the recon-
structed signal will be increased. In another word, with the wavelet transform,
an overlapping spectrum can be further resolved.[48]

Figure 7 shows the experimental NMR spectra of a biomolecule
(gramicidin-S) on a Bruker DMX-500 NMR spectrometer (Switzerland)
at room temperature. In Fig. 7, spectra (a) and (b) were measured with
low resolution for the investigation, and spectrum (c) with the highest
resolution for comparison. In order to improve the resolution of the spectra,
the original spectra were decomposed using Daubechies (N¼ 4) wavelet,
since it is the most suitable for resolution.[48,49] The discrete details D(1)

and D(2) are chosen to be amplified 10 times, then the reconstruction was
performed.

For comparison, parts of the spectra between 4.0 and 5.0 ppm are
shown in detail in Fig. 8. It can be seen clearly that the resolution is greatly
improved. Three groups located at about 4.75, 4.57, and 4.30 ppm are well
resolved.

The derivative spectrum is another commonly used technique to
analyze the overlapping spectrum. Generally, the calculation is done with
several methods, such as numerical differentiation, Fourier transform, and
Savitzky-Golay polynomial filtering, etc. However, these methods cannot
yield smooth curves when treating the noise involved spectrum, which
affects the accuracy. Leung et al.[50] attempted to use the discrete wavelet
transform to perform the differentiation, and obtained high SNR derivative
spectra. But the high order derivative with their method is seriously
distorted when the original data number is small, and for a low SNR spec-
trum, their method suffers from complexity in computation and decreasing
in accuracy.

According to our research,[51] a novelmethod to perform the differentia-
tion was proposed. The method is based on the continuous wavelet transform
using the Haar wavelet. The new method was tested with the simulated
Gaussian peak with 10%white noise added. The original simulated spectrum
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is shown in Fig. 9 as curve (a). Curves (b)–(f) are the results from the
above-mentioned methods. It is obvious that the derivative spectrum
obtained with the continuous wavelet method is smooth and clean, the
SNR is greatly improved compared with the results of the other methods.
Moreover, the SNR is even higher than that of the original spectrum. It is
because the Haar wavelet is a filter, in the derivative calculation, the smooth-
ing is performed simultaneously. Therefore, the method based on the con-
tinuous wavelet transform is superior to the mentioned methods in treating
noisy data.

The effect of the dilation factor a was studies with simulated data. The
result is that the larger the factor a is, the more smooth the result is, but
large factor a may eliminate some small peaks. Therefore, in practice uses,
the value of factor a should be determined properly.

The performance of the novel method was further investigated with
the photoacoustic spectrum of Pr(Gly)3Cl3�3H2O.From the original spec-
trum, curve (a) in Fig. 10, it is clear that no accurate determination of any

Figure 7. The NMR spectra of gramicidin-S at different resolution. (a) The NMR
of the lowest resolution, (b) the NMR of the middle resolution, (c) the NMR of the

highest resolution.
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peak positions can be performed due to the noise. According to our
research, neither the numerical differentiation nor the other methods
mentioned above could yield high SNR derivative spectra. However, the
continuous wavelet method yields satisfactory results. In Fig. 10 it can be
found that the derivative spectra are all smooth and clean. Although there is
small fluctuation in the baselines, it does not affect the positions of the peaks.
The peaks’ positions (for the second derivative spectrum) and the zeros’
positions (for the first derivative spectrum) are all clear enough to indicate
the peaks’ positions of the original spectrum. The correlation between intra-
molecular energy transition bands and spectral range is listed in Table 2.
It can be seen that the consistence is very good.

Figure 8. The comparison between the resolved and the experimental NMR spectra.

(a) The experimental spectrum of the low resolution; (b) The resolved spectrum
from (a); (c) The experimental spectrum of the middle resolution; (d) The resolved
spectrum from (c); (e) The experimental spectrum of the highest resolution.
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D. Data Compression

One important technique of modern instrumental analysis is the high-
speed data acquisition, which produces more abundant information.
However, this technique brings side effects too. More space is needed for
the storage, and in some cases the time consumed by the analysis is too long
because of the redundant data. Therefore, pretreatment to remove the
redundant information from the raw analytical signal is necessary, i.e., the
employment of compressing tools.

The wavelet transform has been proven to be an efficient tool for data
compression. Chau et al.[21] applied fast wavelet transform (FWT) to com-
press Ultraviolet-Visible spectra. They tested different Daubechies wavelets,
thresholding values, and maximum decomposition levels, and found that

Figure 9. The simulated Gaussian signal with noise added (a), and its derivative
spectra by numerical differentiation (b), Fourier transform (c), Savitzky-Golay

method (d), Leung’s method (e), and our proposed method with a¼ 60 (f).
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Daubechies wavelet (N¼ 16), thresholding 0.003, and decomposition level 6
are good and efficient coefficients in compressing the UV-vis spectra
with significant storage reduction. Chau’s group[52] later employed biortho-
gonal filter bank (BFB) technique to solve the side-lobe problem. They
found that the linear phase property of filters with the adoption of the
symmetric extension method could effectively solve that problem. They also
used other method, such as differential pulse code modulation (DPCM),
optimal bit allocation (OBA), and variable length coding (VLC) etc., to
further improve the compressing efficiency. Wavelet packet transform
(WPT) was also applied to the compression[20] and the library search[53] of
infrared spectra.

In our study, a NMR spectrum of biological molecules composed of
32,768 points was investigated. Spectrum (a) in Fig. 11 is the measured
spectrum, and spectra (b), (c) and (d) are the reconstructed spectra
from 2048, 1024, and 512 wavelet coefficients respectively. In Fig. 11,
it can be seen that there is almost no difference between the spectra.
The effect of the wavelet basis on the reconstructed result, the degree of

Figure 10. The photoacoustic spectrum of Pr(Gly)3Cl3�3H2O (a) and its first (b) and
second derivative (c) spectra with a¼ 100.
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the decomposition, etc., were also discussed. Results are that, among the
wavelets of Haar, Daubechies, and Symmlet, the Symmlet (N¼ 0) is the most
suitable wavelet for the compression, and the number of the decomposition
should be greater than 8.

Figure 11. Comparison of the original spectrum (a) and the reconstructed spectra

from 2048 (b), 1024 (c) and 512 (d) wavelet coefficients.

Table 2. The Correlation Between the Positions of the

Peaks Determined from the Derivative Spectrum and the
Corresponding Transition Bands of Pr(Gly)3Cl3�3H2O

Positions of the
Peaks (nm)

Spectral
Range (nm)

Transition
Bands

Group
State

451.6 400–460 3P2
3H4

475.4 460–500 3P1

490.4 3P0

594.3 500–636 1D2
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