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a b s t r a c t

Mealiness is a symptom of fruit physiological disorder, which is characterized by abnormal softness and
lack of free juice in the fruit. This research investigated the potential of hyperspectral scattering tech-
nique for detecting mealy apples. Spectral scattering profiles between 600 and 1000 nm were acquired,
using a hyperspectral imaging system, for ‘Red Delicious’ apples that either had been kept in refriger-
ated air at 4 ◦C or undergone mealiness treatment at 20 ◦C and 95% relative humidity for various time
periods of 0–5 weeks. The spectral scattering profiles at individual wavelengths were quantified by rel-
ative mean reflectance for 10 mm scattering distance for the test apples. The mealiness of the apples
was determined by the hardness and juiciness measurements from destructive confined compression
tests. Prediction models for hardness and juiciness were developed using partial least squares regression
(PLS); they had low correlation with the destructive measurement (r ≤ 0.76 for hardness and r ≤ 0.54 for
juiciness). Moreover, PLS discriminant models were built for two-class (‘mealy’ and ‘nonmealy’), three-

class (‘mealy’, ‘semi-mealy’ and ‘fresh’) and four-class (‘mealy’, ‘soft’, ‘dry’, and ‘fresh’) classification. The
overall classification accuracies for the two classes of ‘nonmealy’ and ‘mealy’ apples were between 74.6%
and 86.7%, while the overall accuracies in the three-class classification ranged between 60.2% and 71.2%.
Much better results (≥93% accuracy) were achieved for the two-class classification of ‘mealy’ apples that
had undergone longer time of mealiness treatment (i.e., 4–5 weeks of storage at 20 ◦C and 95% relative
humidity). Hyperspectral scattering technique is potentially useful for nondestructive detection of apple

rovem
mealiness; however, imp

. Introduction

Mealiness in apples is characterized by the sensation of a
eteriorative texture and lack of juiciness. It results from pectin
egradation in the middle lamellae (Gross and Sams, 1984; Von
ollendorf et al., 1993). Mealiness degrades the quality of apples

nd reduces their commercial value. Apple mealiness is influenced
y such factors as harvest date, fruit size, long-term storage and
torage conditions including air composition, temperature and rel-
tive humidity (Fisher, 1943; Barreiro et al., 2000; Harker and
allett, 1992; Von Mollendorf et al., 1992; De Smedt, 2000). Mealy
pples can be induced using room temperature (20 ◦C) and high

elative humidity (95%) (Barreiro et al., 1998).

Mealiness in apples can be assessed by sensory panels with
ensorial descriptors (Harker et al., 2002; Bignami et al., 2003).
owever, the sensory panel method is subjective and time con-

� Mention of commercial products in this article is only for providing factual infor-
ation and does not constitute endorsement by USDA over those not mentioned.
∗ Corresponding author. Tel.: +1 517 432 8062.

E-mail addresses: huangmzqb@163.com (M. Huang), renfu.lu@ars.usda.gov,
ur@msu.edu (R. Lu).

925-5214/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.postharvbio.2010.08.002
ents in classification accuracy are needed.
Published by Elsevier B.V.

suming, and it is only suitable for testing a small number of fruit.
Instrumental methods for apple mealiness measurement are thus
preferred because they tend to be more objective and efficient
and because they correlate reasonably well with sensory evalua-
tion (Harker et al., 1997; Barreiro et al., 1998; De Smedt, 2000).
Barreiro et al. (1998) established a new instrumental mealiness
scale based on the combination of instrumental parameters like
loss of crispness, hardness and juiciness, which was related to the
mealiness perceived by sensory panelists. De Smedt et al. (2002)
developed a mathematical model relating the textural attributes
of apples (i.e., juiciness, tensile strength and hardness) to the cell
turgor and middle lamella.

A number of nondestructive methods for mealiness detec-
tion have been investigated and evaluated against destructive
instrumental measurement for apple, peach, and tomato. They
include magnetic resonance imaging (Barreiro et al., 1999), acoustic
impulse response (De Smedt, 2000), nuclear magnetic resonance
(Barreiro et al., 2002), impact (Arana et al., 2004), near-infrared

spectroscopy (Ortiz et al., 2001), ultrasonic (Bechar et al., 2005)
and time-resolved reflectance spectroscopy (Valero et al., 2005).
Despite all these efforts, a nondestructive technique that is rapid,
noninvasive, and suitable for online sorting and grading still needs
to be developed (Valero et al., 2005).

dx.doi.org/10.1016/j.postharvbio.2010.08.002
http://www.sciencedirect.com/science/journal/09255214
http://www.elsevier.com/locate/postharvbio
mailto:huangmzqb@163.com
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Optical techniques hold great promise for mealiness detection
nd classification because they usually are rapid and nondestruc-
ive or noninvasive and, more importantly, they can provide a large
mount of information about the condition or status of a sam-
le. When a light beam impinges upon a fruit, most of the light
ill enter the fruit tissue — some of the light will be absorbed,

ome will scatter back from the region close to the beam inci-
ent point, and some may pass the entire fruit and reemerge
rom the opposite side. Chemical constituents in the fruit tissue,
ike chlorophylls, soluble solids and water, directly influence light
bsorption, while fruit density and tissue structures including cells,
iddle lamella, and extracellular matrices are known to affect the

cattering properties (Birth, 1986). Hence, spectral absorption and
cattering properties could be useful for determining the meali-
ess of apples. Hyperspectral scattering is a promising technique
hat acquires spatially resolved diffuse reflectance from a sample
t contiguous wavelengths over a spectral range (Lu, 2007; Qin
nd Lu, 2008). The technique can provide better quantification of
cattering properties about the fruit, compared to conventional
ear-infrared spectroscopy. Moreover, the technique is simpler,

aster and relatively easier to measure the optical properties, com-
ared to other emerging optical techniques such as time-resolved,
requency-domain, and spatial frequency-domain (Cubeddu et al.,
001; Anderson et al., 2007). Hyperspectral scattering technique
as been applied for evaluation of internal quality of fruit including
he soluble solids content and firmness of apples and peaches (Lu,
003, 2007; Lu and Peng, 2006; Peng and Lu, 2008). Since mealiness
esults from changes in the structural and physiological properties
f apples, hyperspectral scattering could potentially be useful for
etecting or differentiating mealy apples.

Therefore, the overall objective of this research was to use
yperspectral scattering technique for detecting apple mealiness.
he specific objectives were to:

acquire hyperspectral scattering images from apples that either
had been kept in refrigerated air or undergone mealiness treat-
ment (i.e., high temperature/relative humidity), over the spectral
region between 600 and 1000 nm;
establish quantitative prediction models relating the hyperspec-
tral scattering features to apple flesh hardness and juiciness
measured by confined compression; and
develop and validate discriminant models for apple mealiness
classification.

. Materials and methods

.1. Fruit samples

Five hundred and eighty ‘Red Delicious’ apples obtained from
wo different sources were used in the experiment. One hundred
ighty apples were harvested from the orchard of Michigan State
niversity (MSU) Horticultural Teaching and Research Center in
olt, Michigan, USA during the 2008 harvest season, and these
pples were kept in controlled atmosphere storage (2% O2 and 3%
O2 at 0 ◦C) for about four months prior to the experiment. The
emaining 400 apples were obtained from a commercial packing-
ouse in Sparta, Michigan. The apples were separated into two
roups: the first group of 240 apples (180 from the commercial
ackinghouse and 60 from the MSU orchard) was kept in a cold
oom at 4 ◦C, and the second group of 340 fruits (220 from the com-

ercial packinghouse and 120 from the MSU orchard) was kept

t 95% relative humidity and 20 ◦C to accelerate the development
f mealiness (Barreiro et al., 1999). Apples that were kept at the
igh humidity condition were expected to develop various degrees
f mealiness at various times during the course of storage, while
Fig. 1. Schematic of the hyperspectral imaging system for acquiring scattering
images from apples.

mealiness was not expected for those apples stored at 4 ◦C. How-
ever, not all fruits in the second group would become mealy after
they had undergone the mealiness treatment. Hence there were
more fruits for the second group than for the first group.

The mealiness of apples was determined by destructive confined
compression tests (see details in Section 2.3). For the first group
(cold storage), 60 samples each for 0, 2, 3, and 4 weeks of storage
were tested, while 85 samples from the second group (high tem-
perature/high humidity storage) were used for 2, 3, 4, and 5 weeks.
For each test, the samples were kept at room temperature (∼24 ◦C)
for at least 15 h before the experiment was started. The equato-
rial diameter of each sample was measured by a digital caliper in
two perpendicular directions and then averaged; this information
was later used for correcting the spectral scattering profiles. The
averaged sample diameter ranged between 60.7 mm and 89.0 mm.

2.2. Hyperspectral scattering images acquisition

An in-house developed line-scan hyperspectral imaging sys-
tem was used to acquire hyperspectral scattering images from ‘Red
Delicious’ apples (Fig. 1). This system mainly consisted of a hyper-
spectral imaging unit, a DC regulated light source and a sample
handling unit. The hyperspectral imaging unit was made up of
a back-illuminated 512 × 512-pixel CCD (charge-coupled device)
camera (Model C4880-21-24A, Hamamatsu Photonics Systems,
Bridgewater, NJ, USA), an imaging spectrograph (ImSpector V10,
Spectral Imaging Ltd., Oulu, Finland) covering an effective range
of 400–1000 nm connected with a zoom lens, and a computer for
controlling the camera and acquiring images. The DC light source
was composed of a 250-W quartz tungsten halogen lamp housing
(Oriel Instruments, Stratford, CT, USA) with a feedback controller
(Spectra-Physics, Mountain View, CA, USA), and a single optic fiber
coupled with a microlens for delivering a circular beam of 1.0 mm
diameter to the sample with the divergence angle less than 15◦. The
sample handling unit consisted of one vertical motorized stage, one
horizontal motorized stage and a through-beam photoelectric sen-
sor. Each test fruit was placed onto the sample cup; the fruit was
such oriented that its stem-calyx axis was kept horizontal and also
perpendicular to the scanning line of the hyperspectral imaging
unit. The two motorized stages automatically moved the fruit to the

pre-determined initial position. The vertical stage was used to posi-
tion the sample at the pre-determined height, so that the distance
between the camera and the light spot on the fruit would be kept
constant. The horizontal stage then started to move horizontally
in synchronization with the camera’s acquisition of hyperspectral
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Fig. 2. Hyperspectral scattering image of an apple (left), a

cattering images from the fruit. The system was calibrated both
pectrally and spatially by following the procedures described in
in and Lu (2007).

For each test fruit, 10 scans covering 9 mm distance were
cquired on the equator of the fruit at an exposure time of 200 ms
or each scanning image. These scanning images were then aver-
ged to obtain the mean image for each fruit. Only the mean images
ere saved for future analysis. After 2 × 2 binning operations, the

esultant hyperspectral scattering images had 4.54 nm spectral res-
lution per pixel and 0.20 mm spatial resolution per pixel. For
orrecting the light source effect, reference scattering images were
lso acquired from a white Teflon disk for every 10 apples.

A typical raw hyperspectral scattering image is shown in Fig. 2
left), where the horizontal axis represents a spatial dimension
nd the vertical axis shows the spectral dimension. Each scattering
mage in effect consisted of more than 100 spatial scattering pro-
les, each representing a specific wavelength. The region of interest
overing the spectral region of 600–1000 nm and the total spa-
ial distance of 20 mm was selected from each image for further
rocessing and analysis.

.3. Destructive instrumental tests

After the acquisition of hyperspectral scattering images, con-
ned compression tests were performed, using a specially built
xture with a Texture Analyzer (model TA.XT2i, Stable Micro Sys-
ems, Inc., Surrey, UK), for measuring the hardness and juiciness
f the apples to determine fruit mealiness. Cylindrical fruit speci-
ens of 16 mm in length and 18 mm in diameter were excised from

he outer part of the fruit in the radial direction from the same
rea where the hyperspectral scattering images had been taken.
he specimens were placed into the hole of a stainless steel block
f 25 mm height and of the same diameter as the fruit specimens.
he probe used for compression test was 17 mm in diameter, one
m smaller than the diameter of the hole, to avoid any contacts

etween the probe and the sample holding block during the com-
ression test. The maximum deformation of 3 mm was applied to
he specimens at 20 mm/min deformation rate. After the probe
eached the maximum deformation, it returned immediately at
he same speed in the opposite direction (Barreiro et al., 1998;
e Smedt, 2000). Hardness, expressed in KN/m, was determined
y the slope between 1/3 and 2/3 of the maximum force of the
orce–deformation curve measured during compression (Moshou
t al., 2003).

For measuring the juiciness, a filter paper (Whatman Grade No.

(1005-090)) was placed beneath the sample holding block to

ecover the juice extracted during the compression test. The juici-
ess level was determined by measuring the juice-soaked area (in
m2) on the filter paper using a monochromatic imager (Hitachi,
okyo, Japan) (Barreiro et al., 1998).
w spatial scattering profiles at three wavelengths (right).

The instrumental measurements of hardness (‘S’) and juiciness
(‘J’) were used for determining the mealiness of the test apples. A
fruit was considered ‘hard’ when the S value was equal to or greater
than 40 KN/m, or ‘not hard’ when S was less than 40 KN/m. Likewise,
a fruit would be considered ‘juicy’ when the J value was equal to
or greater than 5.0 cm2, or ‘not juicy’ when J was less than 5.0 cm2.
An apple sample was considered mealy when it was graded ‘not
hard’ and ‘not juicy’ simultaneously. The threshold values for S and
J were selected according to Barreiro et al. (1998) and in view of the
specific testing configurations used in the experiment.

2.4. Data analysis

Different methods may be used to characterize the scattering
profiles (Fig. 2); they include the fundamental method of cal-
culating the absorption and scattering coefficients (Qin and Lu,
2008), empirical models like the modified Lorentzian functions
(Peng and Lu, 2008), and a simple method of calculating mean
reflectance (Lu, 2007). In this study, the method of calculating mean
reflectance for each scattering profile for a distance of 10 mm was
used (Lu, 2007) because it is much simpler and faster. In addition,
mean reflectance also provides good characterization of the scat-
tering profiles because they can be well described by Gaussian or
Lorentzian type functions. Mean reflectance, R̄s, for the apple sam-
ples was calculated for each wavelength. It was then corrected by
the mean reflectance R̄T obtained from the white Teflon disk using
the following equation:

R̄ = R̄s

R̄T

for 0 ≤ x ≤ 10 mm (1)

Prior to the mean calculations, each scattering profile was
corrected for nonuniform instrument response and fruit size by
following the procedures described in Qin and Lu (2008).

Partial least squares (PLS) regression was applied to predict the
hardness and juiciness using the relative mean reflectance spectra.
The samples were arranged in descending order for the hardness
(or juiciness). The first sample was selected for validation, and the
second and third samples were selected for calibration. The pro-
cedure was repeated for the rest of the samples, resulting in 67%
apples for the calibration set and 33% apples for the validation set.
The PLS models for hardness and juiciness were built for the cali-
bration samples using leave-one-out cross validation. The number
of factors chosen for the PLS models was determined based on the
root mean square error of cross validation (RMSECV). Thereafter,
the prediction models were evaluated by the validation samples,

in terms of the correlation coefficient and standard error between
predicted and the measured variables (i.e., hardness and juiciness).

Furthermore, partial least squares discriminant analysis (PLS-
DA) was performed on the relative mean reflectance spectra for
mealiness classification based on the categorical instrumental
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Table 1
Classification of apple mealiness according to the destructive instrumental measurements of hardness and juiciness.

Two classes Four classes
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Juicy (≥5 cm2) Not j

Hard (≥40 KN/m) Nonmealy Nonm
Not hard (<40 KN/m) Nonmealy Meal

ealiness scale. PLS-DA is an inverse-least-squares approach to
inear discrimination analysis (LDA), and it produces essentially the
ame results with the LDA but with the noise reduction and variable
election advantages of PLS (Barker and Rayens, 2003). The selec-
ion process for calibration and validation samples for classification
as the same as the one described earlier for the quantitative pre-
iction model development. Similarly, the classification errors for
ross validation (leave-one-out) were used to determine the most
uitable number of factors for the PLS-DA models. In this procedure,
he calculated threshold was estimated using Bayes’ theorem and
he available data to minimize total errors.

The PLS and PLS-DA were run in Matlab (R2007b) with PLS Tool-
ox 5.0 (Eigenvector Research, Inc., Wenatchee, WA, USA).

Several sample groupings for the apples of two origins were
sed in performing the mealiness classification. Classification mod-
ls were first established for each group of samples (i.e., commercial
ackinghouse or CP and MSU), and then for the pooled data of the
wo groups. In addition, classification models were also developed
sing the samples from the first two tests (i.e., 0 and 2 weeks) of the
rst group and the last two tests (i.e., 4 and 5 weeks) of the second
roup. This sample grouping was used for mealiness classification
ecause the two groups of samples had gone through different stor-
ge treatments in terms of both time and storage condition (i.e.,
emperature and humidity) and more severe mealiness would have
een developed in those apples under longer time of high humidity
reatment. The selected samples included 200 samples from CP and
0 samples from MSU.

Three schemes were used in performing apple classifications
ccording to the method shown in Table 1 (or Fig. 3). In the first
cheme, the samples were classified into two classes, i.e., ‘non-

ealy’ and ‘mealy’. A sample was assigned to the ‘mealy’ class when

t was rated both not ‘hard’ and not ‘juicy’ at the same time; oth-
rwise, the sample would be rated as ‘nonmealy’. In the four-class
lassification scheme, the samples were classified into ‘fresh’ (‘hard’
nd ‘juicy’), ‘mealy’ (‘not hard’ and ‘not juicy’), ‘soft’ (‘not hard’ and

ig. 3. Classification of apple samples based on the destructive confined compression test
roup were kept at room temperature (20 ◦C) with 95% relative humidity.
5 cm2) Juicy (≥5 cm2) Not juicy (<5 cm2)

Fresh Dry
Soft Mealy

‘juicy’), or ‘dry’ (‘hard’ and ‘not juicy’). Three-class classification was
also performed; those samples that had been rated either ‘soft’ or
‘dry’ were considered as ‘semi-mealy’ because only a few samples
fell into these two classes in the four-class classification. The rat-
ings of ‘hard’ and ‘juicy’ were based on destructive instrumental
measurements, as described in Section 2.3.

3. 3 Results and discussion

3.1. Destructive instrumental measurements

The fruits kept in cold storage (4 ◦C) had the mean value of
65.90 N/mm for hardness and 5.98 cm2 for juiciness; their standard
deviation (SD) was 9.66 KN/m for hardness and 1.36 cm2 for juici-
ness. For the fruits stored at 20 ◦C and 95% relative humidity, they
had the mean value of 36.2 KN/m for hardness and 4.21 cm2 for
juiciness; the standard deviation (SD) was 8.26 KN/m for hardness
and 1.10 cm2 for juiciness.

Fig. 3 shows the mealiness classification of the apple samples
for the two storage treatments, based on the instrumental mea-
surements for hardness and juiciness. For the cold storage group
(or group 1), 98% of the apples were greater than 40 KN/m in hard-
ness and 75% apples had a juiciness value of greater than 5 cm2.
For the apples stored at room temperature (group 2), 70% of the
samples had firmness values below 40 KN/m and 80% of the sam-
ples had a juiciness reading lower than 5 cm2. These results indicate
that only less than 2% apples stored in cold storage had developed
mealiness, while more than 60% apples stored at room temperature
had developed mealiness.
3.2. Characterization of spectral scattering profiles

Fig. 4 shows relative mean reflectance spectra for 10 ‘nonmealy’
apples and 10 ‘mealy’ apples. Values of the relative reflectance spec-
tra for ‘nonmealy’ apples were greater than those for ‘mealy’ apples.

s. Apples for the first group were kept in cold storage at 4 ◦C and those in the second
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Fig. 4. Relative mean reflectance for 10 ‘nonmealy’ apples (left) and 10 ‘mealy’ apples (right).

Table 2
Partial least squares (PLS) prediction of fruit hardness and juiciness for the validation set of ‘Red Delicious’ apples.

Output Sample origina Factors Calibration Validation

r SECb r SEPb

Hardness
CP 16 0.778 10.59 0.741 11.53
MSU 5 0.794 9.56 0.761 10.67
Pooled 14 0.773 10.86 0.689 12.61

Juiciness
CP 10 0.696 1.06 0.512 1.34
MSU 2 0.581 1.21 0.539 1.29
Pooled 7 0.588 1.20 0.524 1.31
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a CP = commercial packinghouse, MSU = Michigan State University’s experimenta
b SEC = standard error for calibration, SEP = standard error for validation.

arge variations in the spectra in the visible range of 600–730 nm
ere observed. A distinctive downward peak was observed around

75 nm due to chlorophyll absorption. Over the spectral region
f 730–920 nm, reflectance was relatively flat. Around 970 nm,
nother downward peak was observed due to water absorption.
hile the mean relative reflectance spectra are somewhat similar

n pattern to conventional visible/near-infrared reflectance spec-
ra, their specific features and underlining interpretation are quite
ifferent because of the different lighting/detecting configurations
sed for acquiring the optical signal. The mean relative reflectance
pectra calculated from the spectral scattering images (Fig. 2) carry
patial scattering information, whereas the same cannot be said of
isible/near-infrared reflectance spectra.
.3. Prediction models for apple hardness and juiciness

Table 2 summarizes the calibration and validation results for
ardness and juiciness prediction for the three groups of samples,

.e., commercial packinghouse (CP,) MSU, and their pooled data. The

able 3
wo-class classification results for the validation sets of ‘Red Delicious’ apples from two o

Sample originb Instrumental classification Mo

Me

CP
Mealy 33
Nonmealy 24
Overall 57

MSU
Mealy 22
Nonmealy 9
Overall 31

Pooled
Mealy 56
Nonmealy 36
Overall 92

a Rows: classified by compression measurements. Columns: predicted by hyperspectra
b CP = commercial packinghouse; MSU = Michigan State University’s experimental orch
ard in Holt, MI.

models had better prediction results for hardness, with the r values
for validation being equal to 0.741 and 0.761 for the CP and MSU
groups, respectively. The hardness prediction model had a lower
r value (=0.689) for the pooled data. The predictions for juiciness
were much poorer (r < 0.6 and SEP > 1.2 cm2) compared to the hard-
ness prediction results. This may be due to the fact that juiciness
is not directly related to water content; instead it relates to how
easily juice is liberated during compression. These results indicate
the difficulty of accurate prediction of apple hardness and juiciness.
However, the results obtained from this study compare favorably
with those (r < 0.4) reported by Valero et al. (2005) when time-
resolved technique was used, which could have been attributed to
the differences in measurement method and sample preparation
used in the two studies. The models for MSU fruit contained fewer

factors (5 and 2 for ‘Hardness’ and ‘Juiciness’ prediction, respec-
tively) compared to the modes for CP fruit (16 and 10 factors,
respectively). This could be because MSU fruit were more homoge-
neous after the storage treatment while the commercial fruit were
more variable. The large differences in the number of factors for

rigins for all test dates.a

del classification Classification accuracy, %

aly Nonmealy

7 82.5
68 73.9
75 76.5

6 78.6
22 71.0
28 74.6

11 83.6
87 70.7
98 75.3

l scattering technique.
ard in Holt, MI.



M. Huang, R. Lu / Postharvest Biology and Technology 58 (2010) 168–175 173

Table 4
Two-class classification results for the selected validation sets of ‘Red Delicious’ apples of two origins from the first two test dates (weeks 0 and 2) of cold storage (4 ◦C) and
the last two test dates (weeks 4 and 5) of storage at 20 ◦C and 95% relative humidity.a

Sample originb Instrumental classification Model classification Classification accuracy, %

Mealy Nonmealy

CP
Mealy 25 1 96.2
Nonmealy 8 32 80.0
Overall 33 33 86.4

MSU
Mealy 16 0 100.0
Nonmealy 4 10 71.4
Overall 20 10 86.7

Mealy 39 3 92.9
Nonmealy 11 43 79.6
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Pooled
Overall

a Rows: classified by compression measurement. Columns: predicted by hypersp
b CP = commercial packinghouse; MSU = Michigan State University’s experimenta

ach set of fruit also demonstrated that the models were not robust
nd accurate enough to predict fruit hardness and juiciness.

.4. Discriminant models for two-class mealiness classification

Table 3 shows the two-class (‘mealy’ and ‘nonmealy’) classifica-
ion results for each group of validation samples (i.e., CP and MSU)
nd their combined data for all test dates. The model achieved 75.3%
lassification accuracy for the calibration set of CP samples, while
6.5% of the validation samples were correctly classified. A higher
isclassification rate (26.1%) for the ‘nonmealy’ class was obtained

ompared with 17.5% misclassification rate for the ‘mealy’ class. The
verall classification results for the MSU samples were similar to
hose for the CP samples; the percentage of correctly classified sam-
les was 84.4% for calibration and 74.6% for validation. Again more
onmealy samples were incorrectly classified as ‘mealy’ (29.0%)
ersus 21.4% misclassification rate for mealy samples. When the
amples from the two groups were pooled, the classification accu-
acy was 83.6% for mealy apples and 70.7% for nonmealy apples.
n summary, for all three sample groups, better classification was
chieved for the ‘mealy’ class than for the ‘nonmealy’ class and the
verall classification results for the pooled data fell between the
esults for each individual group.

Table 4 further shows two-class classification results for the

hree groups of validation samples that came from the first two test
ates (weeks 0 and 2) of cold storage and the last two dates (weeks
and 5) of high temperature/humidity storage. Compared with the
alidation results in Table 3, significant improvements in the overall
lassification accuracies were achieved for these selected groups of

able 5
hree-class classification of the validation sets of ‘Red Delicious’ apples from two origins

Sample originb Instrumental classification Model classific

Mealy

CP

Mealy 27
Semi-mealy 15
Fresh 11
Overall 53

MSU

Mealy 20
Semi-mealy 5
Fresh 2
Overall 27

Pooled

Mealy 44
Semi-mealy 20
Fresh 6
Overall 70

a Rows: classified by compression measurement. Columns: predicted by hyperspectral
b CP = commercial packinghouse; MSU = Michigan State University’s experimental orch
46 85.4

scattering technique.
ard in Holt, MI.

samples; an increase of 9.9 percentage points in classification accu-
racy was achieved for the CP samples, 12.1 percentage points for
the MSU samples and 10.1 percentage points for the pooled sam-
ples. Significantly higher classification accuracies were achieved
for the ‘mealy’ class, ranging between 92.9% and 100% for the three
groups. Better classification results for the selected groups of sam-
ples indicate that the technique can be effective in discriminating
more severe mealy apples.

3.5. Discriminant models for three-class and four-class mealiness
classification

Table 5 shows the results for classifying apples into three classes
(i.e., ‘mealy’, ‘semi-mealy’ and ‘fresh’). As expected, the three-class
classification accuracies declined compared with the two-class
classification results. For the calibration sets of samples, the over-
all classification accuracy for the three-class model was only 63.7%
for the CP samples versus 75.3% for the two-class model. Likewise,
the overall three-class classification accuracies were only 64.1% for
the MSU samples and 64.0% for the pooled samples. For the vali-
dation samples, the models only achieved 60.2%, 63.2% and 61.3%
for the CP and MSU groups and the pooled data, respectively. As
shown in Table 5, better classification accuracies were achieved for
the ‘mealy’ and ‘fresh’ classes, while the ‘semi-mealy’ class (i.e., the

class of either ‘dry’ or ‘soft’) was worst predicted in all cases, with
the classification accuracies ranging between 24.0% and 35.7% for
the three groups of samples. The overall classification accuracies
for the three sample groups were similar; the model for the pooled
group fell between the two other models.

for all test dates.a

ation Classification accuracy, %

Semi-mealy Fresh

11 2 67.5
12 9 33.3

5 41 71.9
28 52 60.2

5 2 74.1
5 4 35.7
3 11 68.8

13 17 63.2

12 11 65.7
12 18 24.0

7 61 82.4
31 90 61.3

scattering technique.
ard in Holt, MI.
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Table 6
Three-class classification of the selected validation sets of ‘Red Delicious’ apples from two origins for the first two test dates (weeks 0 and 2) of cold storage at 4 ◦C and the
last two dates (weeks 4 and 5) of storage at 20 ◦C and 95% relative humidity.a

Sample originb Instrumental classification Model classification Classification accuracy, %

Mealy Semi-mealy Fresh

CP

Mealy 20 6 0 76.9
Semi-mealy 5 5 3 38.5
Fresh 2 3 22 81.5
Overall 27 14 25 71.2

MSU

Mealy 10 3 3 62.5
Semi-mealy 2 3 0 60.0
Fresh 2 0 8 80.0
Overall 14 6 11 67.7

Pooled

Mealy 34 8 0 81.0
Semi-mealy 7 6 5 33.3
Fresh 2 6 29 78.4
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Overall 43

a Rows: classified by compression measurement. Columns: predicted by parame
b CP = commercial packinghouse; MSU = Michigan State University’s experimenta

Table 6 further shows the results for the three-class classifica-
ion of validation apples from the first two dates (0 and 2 weeks)
f cold storage at 4 ◦C and the last two dates (4 and 5 weeks) of
torage at 20 ◦C and 95% relative humidity. The classification accu-
acy increased by 11.0 percentage points for the CP samples, 4.5
ercentage points for the MSU samples and 9.8 percentage points
or the pooled samples. These results are considerably better than
hose presented in Table 5 when all apple samples were used.

When the PLS-DA models were used to estimate the four
extural classes (i.e., ‘mealy’, ‘soft’, ‘dry’ and ‘fresh’), the overall clas-
ification accuracies for the CP, MSU and pooled validation groups
ecreased to 57.1%, 61.0% and 61.0%, respectively (Table 7). Poor
lassification accuracies (<38%) were obtained for the ‘soft’ and ‘dry’
lasses. It should be mentioned that because of fewer samples for
hese two classes, especially for the ‘soft’ class, the classification
esults may have not adequately reflected the actual performance
f the models.
.6. Discussion

This research showed that hyperspectral scattering technique
as not accurate enough to predict the hardness and juiciness

f apples, two textural attributes for quantifying apple mealiness.

able 7
our-class classification of the validation set of ‘Red Delicious’ apples from two origins fo

Sample originb Instrumental classification Model classificatio

Mealy

CP

Mealy 23
Soft 1
Dry 12
Fresh 8
Overall 44

MSU

Mealy 21
Soft 3
Dry 1
Fresh 1
Overall 26

Pooled

Mealy 40
Soft 4
Dry 13
Fresh 7
Overall 64

a Rows: classified by compression measurement. Columns: predicted by hyperspectral
b CP = commercial packinghouse; MSU = Michigan State University’s experimental orch
20 34 71.1

ctra of hyperspectral scattering technique.
ard in Holt, MI.

Overall, better prediction was achieved for hardness (r ∼ 0.7) than
for juiciness (r ∼ 0.5). Although still not satisfactory, the results
from the research are better than those (r < 0.4) reported in Valero
et al. (2005).

The PLS-DA models for estimating the instrumental mealiness
states of ‘nonmealy’ and ‘mealy’ apples showed relatively good
discrimination accuracies (≥75%). But the PLS-DA models did not
perform as well in three-class classification (i.e., ‘fresh’, ‘semi-
mealy’ and ‘mealy’). As expected, the classification results further
decreased when the apples were classified into four classes (i.e.,
‘fresh’, ‘mealy’, ‘soft’, and ‘dry’). The models performed much better
(>92% accuracy) in classification of ‘mealy’ apples that had under-
gone longer time of mealiness treatment (i.e., 20 ◦C and 95% relative
humidity). Since the level of mealiness, as measured by the hard-
ness and juiciness, increases with the time of mealiness treatment,
this suggests that hyperspectral scattering technique can discrim-
inate more severe mealy apples, even though it is not effective
for detecting less mealy apples. Several factors may have con-

tributed to lower classification results. First, the apples used in this
study came from the same harvest date and, therefore, had rela-
tively small variability among them, as shown by the distribution
of their hardness and juiciness values (Fig. 3). Mealiness classifi-
cation results are expected to improve when apples of different

r all test dates.a

n Classification accuracy, %

Soft Dry Fresh

2 12 3 57.5
0 1 2 0.0
2 12 6 37.5
3 5 41 71.9
7 30 52 57.1

4 1 2 75.0
2 1 0 33.3
1 3 3 37.5
3 3 10 58.8

10 8 15 61.0

11 13 3 59.7
1 4 1 10.0
5 8 14 20.0
2 13 52 70.3

19 38 70 61.0

scattering technique.
ard in Holt, MI.
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Von Mollendorf, L.J., Jacobs, G., Villiers, O.T., 1992. Postharvest factors involved in the
M. Huang, R. Lu / Postharvest Biol

aturity/ripeness levels, hence greater ranges of mealiness, are
ncluded for study. Second, this study used confined compression
o measure the hardness and juiciness of apples for determining
ruit mealiness. While this destructive instrumental method has
een used by other researchers (Barreiro et al., 1998; De Smedt,
000), more study is needed on the effectiveness of using hard-
ess and juiciness to quantify mealiness levels and discriminate
ealy apples from nonmealy ones. For instance, the range of juici-

ess measurements between and/or among mealy and nonmealy
pples was relatively small and there was considerable overlap-
ing between the two storage treatments (Fig. 3). This may also
artly explain why juiciness prediction results were worse than
hose for hardness (Table 2). A larger range of hardness or juiciness

easurements is necessary or desirable in developing either quan-
itative prediction models or discriminative models for effective

ealiness classification. Finally, the acquisition of hyperspectral
cattering images was susceptible to the effect of fruit size/shape
s well as factors such as light beam size and its positioning. Hence
urther improvement of the system would enhance its ability for
etecting apple mealiness.

. Conclusions

The quantitative models for predicting hardness and juici-
ess resulted in lower correlation with destructive instrumental
easurements, indicating the difficulty of using hyperspectral

cattering technique to accurately predict fruit mealiness levels.
owever, the partial least squares discriminant analysis models
chieved relatively good two-class (‘mealy’ versus ‘nonmealy’) clas-
ification results, with an overall classification accuracy of 75% or
igher. Hyperspectral scattering technique did not give good classi-
cation results when apples were classified into three classes, (i.e.,

fresh’, ‘mealy’ and ‘semi-mealy’) or four classes (‘fresh’, ‘mealy’,
soft’, and ‘dry’). Better classification accuracies (>92%) for mealy
pples undergoing longer time of mealiness treatment demon-
trated that hyperspectral scattering technique can effectively
etect more severe mealy apples from normal, nonmealy apples.
he technique, however, still cannot accurately determine meali-
ess levels in terms of hardness and juiciness or to discriminate less
evere mealy apples.
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