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Broadband Saturable Absorption of Graphene Oxide
Thin Film and Its Application in Pulsed Fiber Lasers
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Abstract—Graphene oxide (GO) has been used for optical inten-
sity manipulation and short pulse shaping. Most interestingly, it
can be used as a broadband light absorber. Such property has been
systematically investigated in this paper, in a broad wavelength
range from 1 to 2-um. We fabricated one type of GO/polyvinyl al-
cohol (GO/PVA) film and use it as a saturable absorber (SA) in Er-,
Yb-, and Tm-doped fiber ring lasers, respectively, to build pulsed
fiber lasers. It is demonstrated that broad range of mode-locking
in the 1-pum and 1.5-pm regions can be obtained. In addition,
Q-switching around wavelength of 1870 nm can be obtained in a
Tm-doped fiber ring lasers. To the best our knowledge, this is the
broadest wavelength regime in which one type of GO SA film can
be used to build all-fiber pulsed ring lasers.

Index Terms—Fiber lasers, graphene oxide, mode-locking,
Q-switching, modulation depth.

1. INTRODUCTION

ARIOUS carbon based materials, due to their unique
V and outstanding optical, magnetic, electronic and struc-
tural properties, have been intensively studied and applied in
many fields, such as ultrafast optics [1]-[7], biosensing [8], op-
tical modulator [9], and photodetector [10]-[12]. Single walled-
carbon nanotube (SWNT) and graphene have been applied in
ultrafast optics [12]-[24]. SWNT has also been used in the
broadband technology by combining SWNTs with diameter
distribution [15]. Through tuning the extra components such
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as stretching CFBG, the wavelength tenability can be also
achieved [23]. Very recently, single-layer graphene has been val-
idated the intrinsic broadband operation property [25]. Among
carbon based materials, graphene oxide (GO), as an excellent
nonlinear optical material, can be employed for optical inten-
sity manipulation and short pulse shaping [26]—[28]. These two
characteristics are developed as optical limiters (OLs) and sat-
urable absorbers (SAs) [28]. OL allows a low transmission at
high light densities, which can be used for light protection and
in sensor focal-plane. While SA gives a low absorption at high
light densities, which can be used to achieve ultrashort pulses
in solid state lasers, waveguide lasers, fiber lasers and even
semiconductor lasers [29]-[34]. GO can be considered as an
insulating and disordered analogue of a highly conducting crys-
talline graphene [26]. However, the fast carrier relaxation and
large saturable absorption of few-layered GO indicate that oxi-
dation mainly exists at the edge areas and has negligible effects
on ultrafast dynamics and optical nonlinearities [35].

GO, as a cheap carbon material which can be mass produced,
has been widely utilized in passively mode-mocked lasers as
a SA. Recently, GO-based passively mode-locked fiber lasers
have been demonstrated in Er-doped, Yb-doped, and Tm-doped
fiber lasers, respectively [31], [36]-[39]. We have reported
GO walled paper absorber that was applied in the Yb-doped
passively mode-locked fiber laser operating in the all-normal-
dispersion (ANDI) regimes [31]. Liu er al. demonstrated Er-
doped fiber lasers mode-locked by using a hollow-core photon-
ics crystal fiber filled with GO solution [36]. Recently, Jung
et al. investigated the GO SA implemented on a side-polished
fiber for femtosecond pulse generation in the 2-pm region [38].
However, all the aforementioned results are reported only in one
particular operation wavelength region. It is not clear whether
one type of GO SA film can perform in a wide spectral range
as a SA, e.g. from the 1-um region for Yb-doped fiber (YDF)
laser, to the 1.5-pm region for Er-doped fiber (EDF) laser, and
up to the 1.9-um region for Tm-doped fiber (TDF) laser. In
addition, even it can operate in different wavelength regions,
what would be the performance of those pulsed fiber lasers? All
these questions should be answered in order to better understand
the saturable absorption properties of GO so as to apply it to
the implementation of high performance pulsed fiber lasers in a
broadband wavelength range.

In this paper, we systematically investigated the GO SA prop-
erties by using a Ti:sapphire femtosecond laser at different wave-
lengths tuned by optical parametric oscillator (OPO) technique
and a home-made passively mode-locked EDF laser. The opti-
cal SA property has been studied in three different wavelength
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regimes from 1 to 2 um. The results indicate that the GO SA
truly has an ultra-broadband SA property. We investigated one
GO SA film as the wall-paper absorber in three types of fiber
ring lasers based on Yb-, Er-, and Tm-doped fibers, respectively.
Mode-locked YDF and EDF lasers have been successfully im-
plemented. As the YDF and EDF lasers are operated in dif-
ferent dispersion regimes, dissipative soliton was obtained in
the YDF ring lasers, while conventional soliton was obtained
in the Er-doped fiber ring lasers. Due to a higher loss in the
TDF ring laser cavity, Q-switching was obtained at ~1.87 ym
in the current experiments. In addition, we have systematically
studied the effects of the different modulation depth of GO
SA, cavity loss, and gain on the performance of pulsed fiber
lasers. This study reveals that one GO SA flake can be used in
a broad wavelength range as an SA for potentially achieving
high-performance pulsed fiber lasers.

II. GO ABSORBER PREPARATION AND ITS OPTICAL PROPERTY

In the experiments, the GO sheets, fabricated by ultrasonic
agitation after chemical oxidation of graphite, consist of few
atomic layers with a thickness of 0.1-5 pm (typically from
1 to 3 layers). GO wall paper absorber is prepared by using
vertical evaporation method [29], [31]. The fabrication process
of the GO is free of surfactant such as sodium dodecyl sulfate.
GO/polyvinyl alcohol (GO/PVA) dispersion is mixed with 0.6 g
PVA powder and 0.25 mg GO aqueous solution at 90 °C for 3 h.
Then, the GO/PVA dispersion is poured into a polystyrene cell
to evaporate for several days. After evaporation the GO/PVA
SA is formed. The average thickness of GO/PVA membrane is
about 30 pm. We use a small piece of the GO SA film in the
passively mode-locked fiber lasers by inserting the film between
two fiber connectors. In addition, the graphene oxide can also be
fabricated by liquid phase exfoliation method, which is cheap
and easily scalable method [40], [41].

Fig. 1(a) shows the linear transmission spectrum of GO/PVA
film and PVA thin film measured by using the UV-VIS-NIR
spectrometer. The GO/PVA film experiences higher losses at
the wavelength regime below 500 nm. The linear transmissions
at 1060, 1550, and 1900 nm are 78.1%, 83.7%, and 85.8%,
respectively.

Fig. 1(b) shows the Raman spectrum of the GO/PVA SA film
excited by a 532 nm laser. The spectrum shows two prominent
peaks (i.e., Dband at 1336 cm™!, and Gband at 1612.4cm™!). D
band can be interpreted as the structural imperfections induced
by the attachment of hydroxyl and epoxide groups on the carbon
basal plane. The G band is related to the first-order scattering
from the Ey, mode. Only a tiny 2-D band is found, indicating
that the GO films of considerable thickness were coated. There
are some other peaks as well as the background as seen in the
Raman spectrum. They are caused by some acrylic or some other
polymers in the SA films, induced in the fabrication processes.

The nonlinear SA property of GO as a function of light in-
tensity can be expressed as [3], [42]
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Fig. 1. (a) Linear transmission spectra of the GO/PVA films (green dashed
line) and the pure PVA films (red dashed line), in the wavelength range from
~300 to 2500 nm. (b) Raman spectrum of GO/PVA films.

where I, ag and ay g are the saturation intensity, saturable,
and nonsaturable absorption, respectively.

The nonlinear SA properties of GO absorber are studied by
power-dependent measurements at different wavelengths with a
Ti:sapphire femtosecond lasers and an OPO system. SA proper-
ties can be obviously observed with the increase of the incident
light intensity. The corresponding nonlinear transmission spec-
trum of the GO SA is shown in Fig. 2. The nonlinear transmis-
sion of the GO absorber has been measured at three different
wavelengths (i.e., 1.06, 1.5, 1.9 um), respectively. Due to the ma-
terial scattering losses and the fiber connector-induced losses,
the measured minimum nonlinear transmission at low power
intensity are 65.8%, 70.6%, and 72.1%, respectively. The mea-
sured values are smaller than the linear transmissions at the
corresponding wavelengths as shown in Fig. 2. The modulation
depths of GO SA (i.e., ag) are 20.6% at 1.06 pum, 16.1% at
1.5 pm, and 12.8% at 1.9 um. As seen in Fig. 2, we can cal-
culate that the saturation intensities (i.e., I;) of the GO SA at
different wavelengths are about 1.41, 1.32, and 0.90 MW/cm?,
respectively.

III. EXPERIMENTAL SETUP

The GO sheet was mixed with the PVA as the SA film. A
piece of GO SA with size of 2 mm? is placed into the fiber
connectors to form a mode locker. Fig. 3 shows the general
experimental setup for the GO SA film applied in different
rear-earth doped fiber ring lasers. The GO SA film is inserted
into three different fiber ring cavities, which uses 0.8-m YDF
(CorActive YB164 with core diameter of around 6 p4m, cladding
diameter of 125 pm, Numerical Aperture of 0.14, and Core Ab-
sorption of about 500 dB/m at 976 nm. The group velocity
dispersion (GVD) is about —43.33 ps/nm/km at 1030 nm.), 0.8-
EDF (Liekki Er80-8/125 with Mode Field Diameter of about
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Fig. 2. Nonlinear transmissions of GO SA flake at the (a) 1060 nm,
(b) 1550 nm, and (c) 1900 nm regimes, respectively.
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Fig. 3. Experimental setup for the three-different-wavelength (1, 1.5, and
1.9 m) pulsed fiber laser based on GO SAs.
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9.5 pm at 1550 nm, NA of 0.13, Cladding diameter of about
125 pm. The peak absorption is about 50 dB/m at 976 nm. The
GVD is about -0.02 ps®/m), and 2.5-m TDF (Nefern SM-TSF-
9/125 with Mode field diameter of 10.5 pm at 2000 nm, Core
NA of 0.150, cut off wavelength of 1750 nm, Core Absorption
of 1.5 dB/m at 1570 nm. The GVD is around 32 ps/nm/km at
1800 nm.) as gain medium, respectively. The fiber lasers have
total lengths of 10.7, 10.9, and 26.2 m, respectively. The rest
single mode fiber (SMF) considering the pigtail of the compo-
nents in each cavity are 9.9-m Corning@HI-1060 (The GVD
is —43 ps/nm/km at 1030 nm), 10.1-m SMF-28 (The GVD
is 17 ps/mm/km at 1560), and 23.7-m SMF-28, respectively.
The YDF and EDF ring lasers have used the same pump laser
diode with a pump wavelength of 976-nm and a pump power of
500 mW. While the Tm-doped fiber laser is pumped by using
a wavelength tunable laser at 1570 nm (Yokogawa, AQ-2200-
136) and a 30-dBm EDFA as a pump laser source (Amonics,
AEDFA-PM-30-B-FA). All the three fiber lasers consist of op-
tical couplers with splitting ratios of 30:70 for the YDF laser,
10:90 for the EDF laser, and 30:70 for the TDF laser. In order
to stabilize the laser output, polarization controllers (PCs) are
used in each cavity. Polarization-insensitive isolators (PI-ISO)
are also used in each fiber cavity. GO wall paper thin films,
inserted between the fiber connectors, are used as SAs in each
cavity. The EDF laser operates in the anomalous dispersion
regimes with total dispersion of —0.24 ps?, while the YDF laser
operates in the normal dispersion regime with total dispersion
of 0.26 ps?. Because the TDF laser is operated in the ~1.9 ym
regime, it has a large loss in the silica fibers. The dispersion in
single mode fiber (SMF-28) and TDF is also anomalous that the
total dispersion of the fiber laser cavity is about —1.36 ps?.

The experimental results, for both YDF and EDF fiber lasers,
were measured by using a commercial optical spectra analyzer
(OSA Yokogawa AQ6370 A with resolution of 0.02 nm), a
high speed oscilloscope (LeCroy-8600 A, bandwidth 6 GHz),
a 10-GHz NIR photodetector, and a commercial autocorrelator
(Alnair Labs, HAC-200). The experimental results for the TDF
laser were obtained by using equipments in the corresponding
wavelength regime. The OSA is Yokogawa AQ6375 (0.05-nm
resolution) and the photodetector used is an InGaAs detector
(DET10D).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

When the GO SA film is inserted into the YDF ring cavities,
mode-locking can be self-started at the center wavelength of
1029.5 nm in the Yb-doped fiber laser when the pump power is
about 50 mW. The mode-locked fiber laser can be self-started at
the pump power of 50 mW. With the increase of the pump power,
single pulse mode-locking are still obtained in the experiments.
Fig. 4 shows the experimental result when the pump power is
about 78 mW. The spectral width is about 0.9 nm with a steep
edge as shown in Fig. 4(a). The corresponding pulse trains are
shown in Fig. 4(b). The pulses operated in normal-dispersion
regimes have large chirps, and dissipative soliton can be formed
in the fiber cavity [43]. The corresponding pulse width is about
190 ps measured with a high-speed oscilloscope as shown in
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Fig. 4. Passively mode-locked Yb-doped fiber laser based on GO film at
a pump power of 78 mW. (a) Spectrum, (b) the corresponding pulse train,
(c) single pulse durations with measured result and Gaussian fit result. (The
center wavelength is 1029.5 nm.).

Fig. 4(c). The time-bandwidth product (TBP) of the pulse is
about 51, which is much larger than the transform-limited value.
By changing the polarization state, the center wavelength of the
mode-locking laser can be tuned accordingly which is due to
the birefringence of the fiber cavities.

Then we apply the GO SA film in Er-doped passively mode-
locked fiber lasers. The EDF laser operates in the wavelength of
1560 nm with pulse duration of 750.5 fs as shown in Fig. 5(a).
The spectra width is about 3.8 nm, corresponding to a TBP of
0.352, which is close to the transform-limited values. The EDF
laser can be self-started at pump power of 80 mW. Since the cav-
ity operates in anomalous dispersion regime, the conventional
soliton is formed in the fiber laser cavity. The suppression of the
Kelly sideband is mainly due to the periodic perturbations such
as gain, filtering, and loss in the fiber resonator [44].

We also applied the GO SA thin film in the Tm-doped fiber
ring lasers. In the experiment, Q-switching phenomena were ob-
tained. The results were measured by using an OSA and an In-
GaAs photodetector together with an Agilent oscilloscope (The
rise time is only about 25 ns). We used a laser diode at 1570 nm
as a seed laser (with an optical power of about 10 mW) and an
EDFA to amplify the seed laser, and then use it as a pump laser
source. When the power of EDFA reaches 330 mW, Q-switching
can be obtained as observed from the oscilloscope. Fig. 6(a) and
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Fig. 5. Passively mode-locked Er-doped fiber laser based on the GO film at
a pump power of 80 mW. (a) Spectrum (The center wavelength is 1559.6 nm),
(b) corresponding pulse train, (c) autocorrelation (AC) trace of the pulse. If a
Sech? profile is assumed for fitting, the pulse duration is the width of AC trace
divided by a factor of 1.54.
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Fig. 6. Passively Q-switched Tm-doped fiber laser based on the GO SA at a
pump power of 330 mW. (a) spectrum, (b) corresponding pulse train. The center
wavelength is ~1870 nm.
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TABLE I
THE SUMMARY RESULT OF THE DIFFERENT WAVELENGTH PULSE GENERATION
BASED ON ONE GO SA FiLm

The .
Gain fiber cavity Operating Period Puls'e TBP
1 state duration
ength
Yb-doped .
fiber 10.7 m | Mode-locking 24.4 ns 190 ps 48.4
Er-doped |16 9 1 | Mode-locking | 24.8 ns 750.5fs | 0.352
fiber
Tm-doped g
fiber 26.2 m Q-switching 30-80 ps 12.5-20.5 ps --

(b) shows the spectra and the corresponding oscilloscope trace.
The center wavelength is 1871 nm and only the substrate of the
spectrum becomes broadened when Q-switching are observed
in the temporal domain. The pulse width is about 35 ps, and the
output power is about 20 mW.

With further increasing the power of the EDFA, the repetition
rate of the Tm-doped Q-switched fiber laser increases from
12.5 to 33 kHz and the pulse width decreases from 20.5 to
12.5 ps. Fig. 7(a) shows the corresponding pulse trains observed
from the oscilloscope. The variations of the pulse duration and
the repetition rate are summarized in Fig. 7(b). As the pump
power increases further, Q-switching operation changes to CW
operation in the experiments, which may be due to the reason
that it is near the damage threshold of the GO SA. We anticipate
that the mode locking can be achieved by further control of the
fiber cavity parameters and suitable pump power.

The experimental outputs are summarized in Table I. We can
see that the cavity lengths of the Er- and Yb- doped fiber laser are
almost the same. In the 1 sm regime, the pulses are generated in
the dissipative soliton regime in all-normal dispersion regimes,
which is due to the combined effects of the gain/loss, all normal
dispersion, spectral filtering, and nonlinearity (self-phase mod-
ulation) [45]-[47]. While in the 1.5 pm regime, the mode locked
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fiber laser operates in the conventional soliton regime without
dispersion management. This is caused by the interaction of the
anomalous dispersion, and the nonlinearity (self-phase modu-
lation). The Q-switching in the TDF ring lasers is due to the
relatively high transmission loss in this wavelength regime and
the relatively low pump power. Because of the low damaged
threshold of the PVA, high pump power cannot be responsible
for achieving mode locking with current cavity parameters.

The pulse dynamics for these fiber lasers are different, when
the GO SA is applied in different fiber cavities without in-
tentionally managing the dispersion, the nonlinearity, and the
pump strength. In order to obtain a transform-limited pulse,
the Yb-doped fiber laser can also be designed to work in the
conventional soliton regimes by using a piece of anomalous-
dispersion component, such as grating pairs, chirped fiber Bragg
gratings (CFBG) [48], hollow core photonic crystal fibers (HC-
PCF) [49], or high-order-mode fibers (HOMF) [50]. On the other
hand, high energy pulses can also be obtained in the 1.5 um
and the 2 pum regimes by inserting normal-dispersion compo-
nents [S1]-[53]. In all the operation wavelength regions, the
GO/PVA film acts as a stable SA. In addition, the GO SA can also
be potentially applied in the mid-infrared regime (above 3 pm),
and even be potentially suitable for the THz and microwave band
by controlling the oxidation degree of GO [54], [55]. It is also
possible that the ultra-broadband SA will find its application in
the external cavity semiconductor lasers as well as solid-state
lasers [56].

V. CONCLUSION

The ultra-broadband SA property of GO/PVA films has been
studied in three different wavelength ranging from 1 to 2 pm.
This type of GO SA film has been investigated in three-
wavelength fiber ring lasers based on Yb-, Er-, and Tm-doped
fibers, respectively. The experimental results demonstrated that
the modulation depths of the SA vary at different wavelengths.
Mode locking of dissipative soliton and conventional soliton
can be obtained at 1.06 and 1.56 pum, respectively, whereas Q-
switching can be obtained at the wavelength of 1.87 pum. To the
best of our knowledge, this is the broadest wavelength regime
in which one type of GO SA film can operate in all-fiber pulsed
ring lasers.
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