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ARTICLE INFO ABSTRACT

Keywords: This paper is concerned with the periodic solutions of the following delay non-autonomous
Variational methods systems

Delay differential system ,

Critical point u'(t) = —f(t, u(t —r)), (1)

where r>0, fe C(R! x R"R") satisfies f(t+r,z)=f(t,z) for all z<R". Some multiplicity
results of periodic solutions of (1) are obtained via variational methods.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

In this paper, we consider the multiplicity problems of periodic solutions for the following non-autonomous delay
systems

u'(t) = —f(tu(t—r) (1.1

via variational methods, where r > 0, fe C(R! x R® R") satisfies f(t + r,z) = f(t,z) for all z€ R™

For autonomous delay differential equations dealing with scalar, the existence of the periodic solutions has been exten-
sively studied in the past years via fixed point theory and some other techniques, for example, see [1-7]. It is not our purpose
to give a survey in this paper. We only mention some related work here. In 2005, Guo and Yu [8] took the lead in using the
variational approaches to study the existence of multiple periodic solutions for (1.1), and a multiplicity result was given by
using a pseudo-index theory. Up to now, to the authors’ knowledge, there is not any other existence and multiplicity results
of periodic solutions for (1.1) dealing with variational approaches. In the present paper, our main purpose is to study the
multiplicity of periodic orbits for the systems (1.1) via some recent critical point theorems for strongly indefinite functionals.

Now, we give some preliminaries. Let X and Y be Banach spaces with X being separable and reflexive, and set E = X ¢ Y. Let
S C X* be a dense subset. For each s € S, there is a semi-norm on E defined by

p:E—=R' pu)=I|sx)|+]|y| foru=x+yeXay.

We denote by 75 the topology on E induced by semi-norm family {p,}, and let w and w* denote the weak-topology and
weak*-topology, respectively.

For a functional @ e C'(E,R!) we write &, = {u € E: ®(u) > a}. Recall that @ is said to be weak sequentially continuous if
for any u, — u in E, one has limg_, .. @' (uy)v - @'(u)v for each v e E, i.e. @ : (E,w) - (E*,w") is sequentially continuous. For
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c € R! we say that @ satisfies the (C). condition if any sequence {u;} c E such that ®(u) — ¢ and (1 + ||ju|)®'(u) - 0 as
k — oo contains a convergent subsequence. Similarly, we say that @ satisfies the (PS). condition if any sequence {u,} c E such
that &(uy) — c and @'(u) — 0 as k — oo contains a convergent subsequence.

Suppose that

(&) for any c € R}, @, is T s-closed, and &' : (&, T s) — (E*,w") is continuous,

() there exists a p >0 such that k :=inf®(dB, (" Y) > 0, where
B, = {ucE: |ul <p},

(@,) there exists a finite dimensional subspace Yo CY and R> p such that ¢ :=sup &(Ey) < oo and sup @(Ep\Sp) <
inf®(B, NY), where

Eo :=XDYy, and SoZ{UEEoi HUH <R}

(@s3) there exists an increasing sequence of finite dimensional subspaces Y, C Y and there exist R, > p such that
sup @(E;) < oo and sup ®(E;\S,) < inf (B, N Y), where E,:=X & Yy, Sp={u € E; : ||u]| <Ry}

Theorem 1.1 [9]. Assume that @ is even and (®y)-( D) are satisfied. Then @ has at least m = dim Y, pairs of critical points with
critical values less than or equal to ¢ provided @ satisfies the (C). condition for all ¢ € [k, c].

Theorem 1.2 [10]. Assume that @ is even and (®y), (@) and (®3) are satisfied. Then @ has an unbounded sequence of critical
values provided @ satisfies the (PS). condition for every c € (0,0).

In our applications we take S = X", so that 7 s is the product topology on E = X @ Y given by the weak topology on X and
the strong topology on Y. Moreover, we need the following lemma which can be found in [10,11].

Lemma 1.1. Suppose & < C'(E,R!) be the form
1
O() =5 (IyI° = [%I*) - ¥(u) foru=x+ycE=XoY
such that

(i) ¥ e C!(E,R?) is bounded from below,
(ii) ¥ : (E-w) — R! is sequentially lower semicontinuous, that is, uy — u in (E,w) implies

Y(u) < limkinf (),

(iii) ¥': (E,w) — (E*,w*) is sequentially continuous,
(iv) v:E > RY, v(u) = ||[u||? is C' and v': (E,w) — (E*,w") is sequentially continuous.Then & satisfies .

2. The variational set

First of all, one can easily find that (1.1) can be transformed to the equation
A T
w(t) = Af(;vt, u(t 2)) (2.1)

by making the change of variable t— 2t = 4~ 't. This implies that a 4r-periodic solution of (1.1) corresponds to a 27-periodic
solution of (2.1). Hence we will only seek for the 27-periodic orbits of (2.1) in the sequel.
Throughout this paper, we always assume that

(f1) f(it,z) is odd in z, i.e. f(t,—z) = —f(t,z) for all t € [O,1],

(f») there exists a continuously differentiable function F(t,z)e C'(R! x R%,R!) such that V,F(t,z)=f(tz) for all
(t,z) eR! x R™,

(f3) one of the following conditions holds:
(I) there exists a symmetric matrix B = (bjj)nxn such that lim,_
(I) there exist constants a > 0 and p > 2 such that

el <a(1+2P")
for all (t,z) € [0,r] x R™

[f(tz)—Bz| _
2l

0 uniformly for all t € [0,r].
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Similar to the treatment in [8], we introduce the following variational set. Let L*(S',R™) be the space of square integrable
27 periodic vector-valued functions with dimension n. Let C>°(S',R™) be the space of 2n-periodic C* vector-valued functions
with dimension n. For any u € C>°(S',R™), it has the following Fourier expansion in the sense that it is convergent in the space
L[(SY,R™)

u(t) =

ay 1

\/_\/_

where aj, a, b]'-’ cR". LetH = Hf(Sl,R") be the closure of C>°(S',R™) with respect to the Hilbert norm

1

u|2 — . u2 u2 :
gy + >+ (laf + b7 | -
=1

More specifically, H3(S',R") = {u cL*(S"R"): ] 4 < +oo} with the inner product

Z aj' cosjt + bj sinjt),

Jull =

(. vy = (ahoag) + 31+ (@t af) + (.00

j=1

forany u, v e H%(517R“), where (-,-) denotes the usual inner product in R™ The norm on H is defined by

1

u|2 = . ui2 u 2 :
gyl + > (1 + ) (Ja + b7 | -

=1

l[ully =

By Proposition 6.6 in [12] we know that H is compactly embedded in L5(S!,R™), where s € [1,00).
Now consider a functional I defined on H, given by

I(u) = /0 " B (u(t+§),u(t)) +),F(M,u(t))] dt (2.2)

for any u € H, where u(t) denotes the weak derivative of u. We define an operator L : H — H* as follows: for any u € H, which
is given by

Lu(v) = /027z (u<t+g), v(t))dt

for all v € H, where H* denotes the dual space of H. By the Riesz representation theorem, we can identify H* with H. Thus, Lu
can also be viewed as a function belonging to H such that (Lu, v)y = Lu(v) for any u,v € H.

For any u € H, define a bounded linear operator { : H — H as follows: {u(-) =u(- +%). Set E={u e H: u=-u).ThenEisa
closed subspace of H and invariant with respect to L. It is easy to check that L is a bounded linear operator on H. Moreover, L|g
is self-adjoint.

Let eq,eo,...,e, denote the usual normal orthogonal bases in R™. Define the subspaces E* and E~ of E as follows:

E* = span{e,cos(2j — 1)t,e,sin(2j — 1)t:jc Z* jis even, k=1,2,...,n},
E~ =span{e,cos(2j — 1t,e,sin(2j—1)t:jeZ" jisodd, k=1,2,...,n},

where Z' is the set of all positive integers. By using the definition of E and a Fourier series argument, we see that E=E" ¢ E".
Moreover, for any u € E, it has a Fourier expansion as follows:

1~ i u . .
v > [aZj—l cos(4j — 1)t + by, sin(4j — 1)t]
=1

Thus,
27 ) b 00 1 )
(Lu,u)y = / (it +5),u()de = (45— 1)l o[> + b5 ) > 5 Z41(|a4] 1 b4 1) = 5l
=1
Similarly, (Lu,u), < —3 1||u||% for any u € E~. Then we can define an equivalent norm ||| on E given by

Jul* = (Lu* 7u*>H—<Lu’,u’>H

foru=u"+u" € E" @ E". Denote by (-,-) the inner product corresponding to ||-|| on E. Clearly, the spaces E* and E~ are mutu-
ally orthogonal with respect to the inner products (-,-), (-,-)y and (,-),> by the orthogonality of trigonometric functions,
where (-,-),» denotes the usual inner product on L*(S',R™).

Let

G(u) = /0 8 JF(t,u(t))dt
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for any u € H. Then I(u) can be rewritten as

I(u) = 5 (Ju*)* = Ju”1*) + G(u) (2.3)

1
2

foru=u"+u cE.
Lemma 2.1. G is weakly sequentially continuous on H under the assumption (f3).

Proof. Since f(t,z) is r-periodic in t, by (f3), there are constants cy,c, > 0 such that
f(t.2)] < &1 + oz (2.4)

for all (t,z) € R! x R™. Let {u;} be any sequence converging to some u weakly in H. By the compactness of embedding, one has
U, — u in [P(S',R™). By Holder inequality we have

2n
|G(ue) = G(u)| =

)
A

2n 1
i/ / (f (2t u+s(ug — u)), uy — u)dsdt
0 0

F(at,u) — F(it, u)dt’ -

0

2,1
< )L/ / (01 +Colu + s(uy — u)|”’1> |uy — u|dsdt
0 0
27 2n 1
< ;L/ el — u|dt+l/ Co (] + [t — u])P " |u — ulde
0 0

2n 2n
< )L/ C1lug — uldt + )v/ 27 1¢, <|u|’H + | — u|p’1> |u, — uldt
0 0

<o (1 Jullf "+ g = ulfy ") g = ulle,

where c3 > 0 is a constant. This implies G(uy) — G(u). The proof is completed. O
By Proposition B.37 in [12], we have the following lemma.

Lemma 2.2. Assume that f satisfies (f») and (f3). Then the functional I is continuously differentiable on H and I'(u) is defined by

I'(u)v= /Ozn B (u(t + g) — (- g), v(t)) +AFGE u(t)), v(t))] dt

for all ve H. In particular,

I'(uyv = /Ozn [(u(t + g) v(t)) + At u(t)), v(r))} dt

forallu,vekE.

Moreover, G’ : H— H* is a compact mapping and

27
Gwov= | Af(tu(), v()dt,
0

forany ve H.

By the Riesz theorem, we can view G'(u) as an element of H for any u € H. In addition, one can easily prove that E is invari-
ant with respect to G’ under condition (f7)(see [8]). As usual, we identify u € H with its continuous representant.

Since E is invariant with respect to L and G’, an argument as in [8] yields.

Lemma 2.3. Assume that f satisfies (f;), (f>) and (f3). Then a critical point of functional I restricted to E is a 2m-periodic solution of
system (2.1).

Remark 2.1. It is pointed in [8] that a critical point u of I in H is a weak solution of (2.1). However, a simple regularity argu-
ment shows that u € C!(S',R") (see the proof of Theorem 6.10 in [12]).

Remark 2.2. As usual, we should deal with (2.2) in the space H. But, according to Lemma 2.3, we only need to treat the func-
tional I in the subspace E of H. From now on we will view I as I|g.

3. Main results

In this section we denote by Z" the set of all positive integers; ¢; stand for different positive constants for i € Z".



K. Wu, X. Wu/Applied Mathematics and Computation 218 (2011) 1765-1773 1769

The following hypotheses will be used in our main results.

(fa) lim,_o F22 5 ‘2 = 0 uniformly for t € [0,7],
(fs) (Bz,2) > £ |z|* for all ze R™\{0},
(fs) for any posmve integer j, (—1)"! <2f )™ ¢ &(B), where a(B) is the set of all eigenvalues of B; B is the n x n symmetric

matrix appearing in (f3)(I).

Define m = max {j €eZ": (4 -3)z)* < 2t (Bz,z) for z;éO}. Then we have the following main result.

Theorem 3.1. Assume that f satisfies (f1), (f2), (f3)(1) and (f4)-(fs). Then (1.1) possesses at least 2mn pairs of 4r-periodic classical
solutions.

Proof. We will show that &(u) = —I(u) satisfies all hypotheses of Theorem 1.1. The proof of this theorem will be divided into
several parts.
Step 1. We prove that & satisfies (®Pg). Let X=E*, Y=E~ and ¥(u) = G(u). Then

1
O() =5 (IYI* ~ IX°) - ¥(w) foru=x+yeXaY,

and ¥(u) € C'(E,R?) satisfies (ii) of Lemma 1.1 by Lemma 2.1.
Let {u;} be any sequence converging to u weakly in E. For 1 < r < oo, since the injection of E into L'(S',R™) is continuous, the
sequence {u,} converges to u weakly in L'(S',R™). Hence, in Lr(Sl, R™), any convergent subsequence of {u,} converges to u, and

hence
2n 2n 2T 2n
/ |u|rdt:1iminf/ \uk\rdtglimsup/ |uk|rdt:/ |u|"dt.
0 k—oo Jo k=00 0 0

It follows that u; — u in L'(S!,R™) and u; — u a.e. on [0,27]. Thus, for every v € E we get that (flit, u (), u(t)) = (AL, u(t)), «t))
a.e. for t € [0,27]. Moreover, by (2.4), one has

2n

2n
- -1 -1
(f(ﬂ»t,uka)),v(t))dtk / (1ol + caluP ol de < callvlly + Callul B N2l — il +callul§ 2.
0 0

Thus, the Vitali theorem is applicable

[ g0t vonde— [ ue), vende
0 0

that is, ¥'(ux)v — ¥'(u)v for any v € E. Hence W satisfies (iii) of Lemma 1.1. Moreover, note that E is a Hilbert space. (iv) of
Lemma 1.1 holds, obviously.

It remains to prove that ¥ is bounded from below. Notice that f e C(R! x R®,R") and f(t,z) is r-periodic in t. Hence (f3)(I)
implies that there exists a constant ¢ > 0 such that

£(t,2) ~ Bz < 21 +)

for all (t,z) € R! x R®, where 1 = Z, (learly, it can be deduced from (f4) that F(t,0) = 0. Consequently, by (fs) and the above
inequality, one has

2n 27 27 27
‘P(u):/ )F)tudt_/ / A(f(At,su),u dsdt_z/ Buudt+/ / A(f(At,su) — sBu, u)dsdt

2n 2n
> g [Twkac 3 [T [ s cpuidsar > Lt -l

which implies that ¥ is bounded from below. By virtue of Lemma 1.1, @ satisfies (®).
Step 2. @ satisfies (®;). Indeed, for any ¢ > 0, by (2.4) and (f3), there is a ¢ = c(¢) > 0 such that

IF(t,2)| < elzl® +clz”
for all (t,z) € R! x R™ Hence, for u € Y and small ¢, we have
1 2n . 1 .
P(u) =5 Juf? —/0 AF(at,u)dt > jHUH2 — Zelullz — Acullf, HUH2 — Callul’.
Since p > 2, there is a small p > 0 such that ! p? > c,p?. Therefore,
K —mf(I)(E)B ﬂy) 8p >0 (3.1)
and hence (&) holds.



1770 K. Wu, X. Wu/Applied Mathematics and Computation 218 (2011) 1765-1773

Step 3. (@,) is satisfied under the hypotheses of Theorem 3.1. Let
Yo = span{e,cos(4j — 3)t,exsin(4j —3)t:jeZ" j<mk=1,2,....n}.

Obviously, Yo C Y and dimYy = 2mn. In order to obtain the desired conclusion, it is sufficient to prove that &(u) - —oco as
u € Eg and ||u|| —» co. By the definition of m, there exists a 6(0 < < 1) such that

(4m — 3 +9)|z]* < /(Bz,2) (3.2)
for all z € R™\{0}. Notice that
(4m —3)[ylz = [yl? (3.3)

for any y € Yo. Let IN:(t,z) =F(it,z) — 1 (Bz,z). Then for u=x+y € Eo, by (3.2) and (3.3), one has
) 2n 1 ) 1 ) 2n 2n
o) =5 (17 - IKP) ~ [ 2FGede < 5 (4m = 3)lyE — 510 =5 [ aBuwde— [ iF(eud

1 1 m
(4m — 3) Iyl — 5 eI — 5 (4m — 3 + )l - / JE(t,u)dt

1 27I4 5 ) 1 ) 2n
(4m — 3yl o Il? — 5 (4m 3+ 3) Iyl - | AR < — g P = 5 P - [ 2F (e

Nl'—‘ N\'—‘ NI'—‘

< 0 [ E b wdt
< gl - [ R

It remains to show that

1 2n

as ||u|| - oo. For any ¢ > 0, by the continuity of f, (f3)(I) and the periodicity of f{-,z) we know that there exists a positive con-
stant ¢ = ¢(¢) such that

If(t,z) —Bz| < glz| + ¢ (3.5)

for (t,z) € R x R™. Thus, for u € Eq with ||u|| # 0 we have

1 2n
ellu —+ C||Uu||,1 &+
<o (H 2+ cluly) < ( ”u”)

which implies that (3.4) is true by the arbitrariness of &. Hence (®,) holds.
Step 4. & satisfies the (C). condition for any c € R!. Let {u;} c E be any sequence such that

O(u) — ¢, (1+ ||l ¥ () — O (3.6)
then [ = 1.

27

2n 1
(At,su) —B(su),u)dsdt‘ < ”:”2 /0 /0 (&|su] + c)|u|dsdt

as k — co. We claim that {u} is bounded in E. Assume by contradiction that |juy|| - oo as k - oo. Let ¢, = ‘u T
Without loss of generality, we can assume that ¢, — ¢ in E and ¢, — ¢ in L*(S!,R™). Hence for each v € E, by (3.5) and Hélder
inequality, one has

1 2n 2n

el Jo (Bo,, — Bo, u)dt'

2n 2n
(otu. v~ [ o, v)dr\ < \L (F(it. ) — Bu, v)dt\ N ]
0 luell Jo 0

] 2n o
< (el otder (maxiog ) [ to - gl

ellugll212llz + cllll) + cell @ — @l 172

1
<
el
<c + |y ul|.
(s i+l ol ) o]

By |[ui|| — oo, ||@ — @],z — 0 and the arbitrariness of ¢, we get that

2n

”:—k” /0 “(FUt.w), v)de — [ (Bo, v)de (3.7)

as k — oo. This yields
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@,(uk)l/ o . 1 2n ; ) o - 2n
o =P V) = (@ V) — / AF(L W), v)dt = (@~ v7) —(@", v") — | A(Be,v)dt+o(1)
fltel lluell Jo 0
27
~Wp. vy~ [ B vyt +o(1)
0
It can be deduced from the above equality that
2n
(Lo, v)y +/ A(Bp,v)dt =0, VveeE. (3.8)
0
Using the definition of E we can set
Z[azj 1 €0S(2j — 1)t + b, sin(2j — 1)t]
and
_ L iﬁ [az”. 1€0s(2j — 1)t + by;_; sin(2j — 1)t}.
N pa j— j—
Then, by (3.8) one can obtain
+00 i . v
> [(0B+ (=172 - 1)ha§ g, ) + (UB+ (=172~ DbG b5, )| =0,
=1
where I is the n x n unit matrix. For any j, take v(t) = el cos(2j — 1)tand v(t) = \/_e,ﬂ sin(2j — 1)t, wherei=1,2,...,n. An easy
computation shows that
B+ (-1Y(2j - 1)ha_, =0
and
(AB+( 1)1 (2j - )bg’] ;=0
Hence, by 2~ '(—1Y*1(2j — 1) ¢ 6(B) we know ¢ =0 and
2n 2n 2T
/ (f(At,uy), @ )dt = / (f(2t, uy), (pk)dt—/ (B, @y )dt.
[ [[utel]
This shows by replacing » with ¢, in the proof of (3.7) that
27
(f4t, ), @y )dt — 0. 3.9

([t

It follows from (3.9) that

l 2n . ~ ~
= (0 20) ~ [ / HF Gt ), @ )de = [ |2+ o(1),

which implies ||¢, || — 0. Similarly, ||¢; || — O. It is impossible since ||@i|| =1 for any k. Consequently, {u} is bounded in E.
Moreover, by the compactness of ¥/, going if necessary to a subsequence, we can assume that u, — u and ¥'(u) - ¥'(u)
in E. Then

e = )1” = (e =y —u) = (9 () — @'(W) (U —u) + (¥(we) — ') (e —u) — 0.

Similarly, ||u; — u*||* — 0. Hence uy — u in E and the (C). condition is satisfied. Finally, @ is even since f(t,z) is odd in z and
F(t,0) = 0. Hence Theorem 3.1 follows from Theorem 1.1. The proof is completed. O

Theorem 3.2. Assume that f satisfies (f;), (f2), (fs)1), (f4), (fs) and the following condition
(f7) (Bz,z) < —3Z|z|* for all z € R™\{0}.

Then (1.1) possesses at least 2mn pairs of 4r-periodic classical solutions, where m = max {j ezt —(4j-1)z* >
2 (Bz,z) for z#0}.
Proof. Let X=E", Y=E, ®(u)=1I(u), ¥(u)=—-G(u) and

Yo = span{e,cos(4j — 1)t, e;sin(4j—1)t:jeZ", j<m, k=1,2,...,n}.

Then the conclusion will be obtained by the same argument as Theorem 3.1. The proof is completed. [
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Theorem 3.3. Assume that f satisfies (f1), (), (f3)(1), (f4), (fs) and the following condition

(fs) F(t,z) = 0 and F(t,z) — +oc as |z| - oouniformly for t € [0,r], where F(t,z) = 1(f(t,z),z) — F(t,2).

Let m be given by Theorem 3.1. Then (1.1) possesses at least 2mn pairs of 4r-periodic classical solutions.

Proof. Let @ and ¥ be that in Theorem 3.1. From the proof of Theorem 3.1 we see that the condition (fs) was only used to
prove the (C). condition. Hence, it is sufficient to prove that @ satisfies the (C). condition.

Let {ux} C E be any sequence such that ®(uy) — ¢, (1 + |Jugl|)®'(ux) — 0 as k - oco. We claim that {uy} is bounded in E.
Assume by contradiction that ||uy|| - oo as k — oco. Let ¢, = m, then |||l = 1. Without loss of generality, we can assume that
Qr— @ in E, o — ¢ in L*(S',R™) and @(t) - ¢(t) for almost all t € [0,27]. If ¢ =0, the argument of Theorem 3.1 shows
ll@kll — 0. This contradicts ||¢.|| = 1. Hence the case ¢ =0 will not occur, and hence ¢ # 0. Set Q= {t € [0,27]:i(t) —
¢(t) # 0}. Then Q has a positive measure and u(t) — oo for all t € Q. It follows from (fg) that

27

~

c=lim | P(uy) —%@’(uk)uk] = lim JF(t,u)dt > | liminf AF(t, u)dt — +o0.

k—oo —0o0 J0 Q k—o0
This is a contradiction. Therefore, {u;} is bounded. Moreover, by arguing as in Theorem 3.1 we know that {u,} has a conver-
gent subsequence. The proof is completed. O
At the end of this paper, we discuss the infinitely many solutions for system (1.1).

Theorem 3.4. Assume that f satisfies (f), (f2), (f3)(II), (f4) and the following condition

(fo) there exists an r > 0 such that
(f(t,2),2) = pF(t,z) >0

forte[0,r] and |z| = T, where p appears in (f3)(II). Then (1.1) possesses an unbounded sequence of 4r-periodic classical solutions.

Proof. Let @, ¥ and X, Y be given by Theorem 3.1. The proof of this theorem will be completed with the aid of Theorem 1.2.
First, since the assumption (fg) is the Ambrosetti-Rabinowitz condition, it is well known that there exist constants
1,2 > 0 such that

F(t,2) > cil2P — ¢ (3.10)

for (t,z) € R! x R™. This implies that ¥ is bounded from below. Moreover, by the argument of Theorem 3.1 we see that &
satisfies (@) and (@4).
Next, we check that @ satisfies (). To do this, let Y be any finite dimensional subspace of Y. It is sufficient to prove that
D(u) > ooasueE =Xa Y and |jul| > cc.
Since Y is finite dimensional, there is a & = 5(Y) > 0 such that

Iyll2 = olyl (3.11)
for any y € Y. Hence for u = u* + u~ € X& Y, by (3.10) and (3.11) and I% < 1, one has
1 ~ 270 .
o) =5 (I~ Ju*]?) / ARG e < o (Jur? — ) - | alur - e
0
1 " :
_2 2 —2 2 —p g
<5 (| = fu )—c3</0 '+ u \dr) v 2micy <3 (Ju I~ ' ) - el |2 + 2mic,
1 1
<5||u*\|2— lut|* = esdP|fu”||” + 2macs < Hu I§ —§||u+||2+c4:—§||un2+c4.

This yields ®(u) —» —co as u € E and |ju|| — cc. Hence (®5) holds.
Finally, we prove that the (PS). condition holds for any c € (0,00). Let {u,} be any sequence such that &(u) — ¢ >0 and
@'(uy) - 0 as k - co. We can assume ||@'(uy)|| < 1. By (fo) and (3.10) we have

2n
2+ ||ug|| = 20(w) — @' (W)U = / A(FOt, ug), we) — 2F(At, uy)]dt
0

27 2n

2n
> A(p — 2)F(At,uy)dt + / A(f(At uy), u) — pF(At, ug))dt = / A(p = 2)(c1|uglf — c2)dt — cs
0 0 0

> ce||ullfy — c7
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which implies
1
gl < Cs(1 + Huka) (3.12)

Write uy = uj +u;,, € X @Y. Then for large k, by (f3)(II) and Holder inequality we get that

2n

2n
> 10wt | = g 1P = [ 2t )] > o P = [ 7000+ gt
> |l 1? — Aallu |l — Adlfwel gl > e * = collug | — crolluwlf g |

This yields

el < ean (1+ ) (3.13)
Similarly, one can easily get that

| < e (14 el ). (3.14)
The combination of (3.12)-(3.14) shows that

ot < ]+ s < cnz (1 -+ el 7).

It implies that {u,} is bounded in E. Moreover, {u,} has a convergent subsequence according to the argument in Theorem 3.1.
Hence (PS). condition holds for any c € (0, ).

We have pointed out the fact that @ is even in Theorem 3.1. By virtue of Theorem 1.2, & has a sequence of critical points
{u,} C E such that |®(u,)| - oco. If {u,,} is bounded in E, then by the assumption (f3)(II) and the definition of &, one know that
{|®@(uy)|} is also bounded, a contradiction. Hence {u,} is unbounded in E. The proof is completed. O

Remark 3.1. Similar to the treatment of Theorem 3.2, we can get the same conclusion as Theorem 3.4 by replacing (fs) with
the following condition

(—fo) there exists an 7 > 0 such that
(—f(t,Z),Z) = _pF(th) >0

fort€[0,r] and |z| > T.
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