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Normal coordinate in harmonic crystal obtained by
virtue of the classical correspondence of the

invariant eigen-operator∗
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Noticing that the equation
d2On

dt2
= {Hc, {Hc, On}} = λOn

with double-Poisson bracket, where On is normal coordinate, Hc is classical Hamiltonian, is the classical correspondence

of the invariant eigen-operator equation (2004 Phys. Lett. A. 321 75), we can find normal coordinates in harmonic

crystal by virtue of the invariant eigen-operator method.
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1. Introduction

Usually for obtaining energy spectrum of dy-

namic systems in quantum mechanics, one appeals

to solving the stationary Schrödinger equation.[1] In

Refs. [2]–[6] we have proposed the invariant eigen-

operator (IEO) method for deriving energy level of

Hamiltonians, which is based on the original idea of

the Schrödinger quantisation scheme and the Heisen-

berg equation of motion. Schrödinger took the iden-

tification i
d

dt
←→ Ĥ (in this paper we assume ~ = 1

for simplicity), so i
d

dt
is named the Schrödinger op-

erator in many reference papers. Similarly, we have(
i
d

dt

)n

←→ Ĥn, then set up the following equation

for an operator Ôe,(
i
d

dt

)n

Ôe = λÔe, (1)

when n = 1, it looks similar in form to the Schrödinger

equation i(d/dt)ψ = Ĥψ. Thus we name Eq. (1) as

n-order invariant eigen-operator equation, with the

eigenvalue being λ. Using the Heisenberg equation

i
d

dt
Ôe = [Ôe, Ĥ], (2)

we can write Eq. (2) as(
i
d

dt

)n

Ôe = [. . . [[Ôe, Ĥ], Ĥ] . . . , Ĥ] = λÔe. (3)

If we can find such an Ôe that satisfies Eq. (3), we can

say that n
√
λ is the energy-level gap of Ĥ. To clarify

this point of view, we take n = 2 in Eq. (3) for exam-

ple, assuming |ψa⟩ and |ψb⟩ are two adjacent eigen-

states of Hamiltonian Ĥ with eigen-values Ea and Eb,

respectively, then we have

⟨ψa|(i
d

dt
)2Ôe|ψb⟩ = ⟨ψa|[[Ôe, Ĥ], Ĥ]|ψb⟩

= (Eb − Ea)
2⟨ψa|Ôe|ψb⟩

= λ⟨ψa|Ôe|ψb⟩; (4)

whenever ⟨ψa|Ôe|ψb⟩ is a nonzero matrix element, the

energy gap between |ψa⟩ and |ψb⟩ can be obtained as

|Ea − Eb| =
√
λ. So this IEO method may be used to

derive the energy eigenvalues of some quantum sys-

tems, without directly solving the Schrödinger equa-

tion as did in Ref. [7].

In this work we point out that the classical

correspondence of the IEO equation (i(d/dt))2Ôe =

[[Ôe, Ĥ], Ĥ] = λÔe is useful to finding normal coor-

dinates in harmonic crystal. This classical correspon-

dence is composed of classical Poisson brackets. In
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turn, the normal coordinates in harmonic crystal can

be derived by virtue of the IEO method, which seems

convenient and effective.

2. Classical correspondence of

IEO equation

By considering the classical correspondence of

Eq. (3) in n = 2 case. We are naturally led to the

following equation composed of Poisson brackets

d2O

dt2
= {H, {H,O}} = λO, (5)

where O is a classical dynamic variable, which is not

explicitly time-dependent, ∂O/∂t = 0, H is a classi-

cal Hamiltonian. The reason is as follows. The time

evolution of O is[8]

dO

dt
=

∑
i

(
∂O

∂pi
ṗi + q̇i

∂O

∂qi

)
. (6)

Using the Hamiltonian equation

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, (7)

and the definition of Poisson brackets

{f, g} =
∑
i

(
∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi

)
, (8)

one can rewrite Eq. (6) as

dO

dt
=

∑
i

(
∂H

∂pi

∂O

∂qi
− ∂O

∂pi

∂H

∂qi

)
= {H,O}, (9)

which is very-well known. It then follows that

d2O

dt2
=

d

dt

dO

dt
=

∑
i

[
∂H

∂pi

∂Ȯ

∂qi
− ∂Ȯ

∂pi

∂H

∂qi

]
=

∑
i

[
∂H

∂pi

∂

∂qi

(
∂H

∂pi

∂O

∂qi
− ∂O

∂pi

∂H

∂qi

)
−∂H
∂qi

∂

∂pi

(
∂H

∂pi

∂O

∂qi
− ∂O

∂pi

∂H

∂qi

)]
= {H, {H,O}}, (10)

where {H, {H,O}} is a double-Poisson bracket, sel-

dom used in analytical mechanics in the literature be-

fore, but now we pay attention to it since it is classical

correspondence of IEO equation (3).

If we can find some O obeying

{H, {H,O}} = λO, (11)

then we name O the normal coordinate. Let us explain

this.

For the multimode coupled oscillators whose clas-

sical Lagrangian is

L =
1

2

( l∑
i=1

mix
2
i −

l∑
i,j=1

kijxixj

)
, (12)

an important task is to find its collective vibration

(normal vibration) modes. Normal vibration means

that l-particles located at xi, i = 1, 2, . . . , l, vibrate

with the same frequency ωα, α = 1, 2, . . . , l, i.e., there

are l collective vibration modes. The real vibration

is the linear superposition of these l-collective modes.

Thus one can introduce normal coordinate (general-

ized coordinate), for which L exhibits l independent

vibrations

L =
1

2

( l∑
α=1

Q̇(α)2 −
l∑

α=1

ω2
αQ

(α)2

)
, (13)

so the Lagrangian equation

d

dt

∂L
∂Q̇(α)

− ∂L
∂Q(α)

= 0

leads to the Newton equation

d2

dt2
Q(α) = ω2

αQ
(α). (14)

Comparing Eq. (14) with Eq. (5), we see that λ in

Eq. (5) corresponds to ω2
α in Eq. (14), so O just rep-

resents the normal coordinate for the Hamiltonian H.
On the other hand, since O is the classical corre-

spondence of O in the formalism of the IEO method,

we can find normal coordinates of the dynamic sys-

tems by virtue of the IEO method (findingO in Eq. (3)

first). This approach seems convenient and efficient.

In solid state physics,[9−11] an analysis of the classical

normal modes of a lattice of ions is of great utility.

In the next section, as an example, we will search for

normal coordinates of a harmonic crystal.

3. Normal coordinates of a di-

atomic linear chain in which

alternate ions having different

masses

We consider a diatomic linear chain in which al-

ternate N ions (located at xn and x′n respectively)

have masses m and m′ and only nearest neighbours
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interact, whose Hamiltonian is

H =
N∑

n=1

[
P 2
n

2m
+
P ′2
n

2m′ +
β

2
(xn − x′n)2

+
β

2
(x′n − xn+1)

2

]
. (15)

To derive its normal coordinates we impose the quan-

tisation condition

[Pn, xj ] = [P ′
n, x

′
j ] = − i δj,n, (16)

while other commutators are zero, i.e.,

[Pn, P
′
j ] = [xn, x

′
j ] = [Pn, x

′
j ]

= [P ′
n, xj ] = [Pn, Pj ] = [xn, xj ] = 0, (17)

soH becomes a quantum mechanical Hamiltonian and

we search for its invariant eigen-operator O. Assum-

ing O is

O =
N∑

n=1

(fnPn + f ′nP
′
n), (18)

where fn and f ′n are to be determined, hoping O sat-

isfying

[[O,H],H] = ϖ2O. (19)

From

[Pn,H] =

[
Pn,

β

2
(xn − x′n)2 +

β

2
(xn − x′n−1)

2

]
= iβ(x′n + x′n−1 − 2xn), (20)

[xn,H] =

[
xn,

P 2
n

2m

]
=

i

m
Pn, [x′n,H] =

i

m′P
′
n, (21)

and

[P ′
n,H] = iβ(xn + xn+1 − 2x′n), (22)

we calculate

[O,H] =
N∑

n=1

iβ[(f ′n + f ′n−1 − 2fn)xn

+(fn + fn+1 − 2f ′n)x
′
n]. (23)

It then follows that

[[O,H],H] =
N∑

n=1

[
− β

m
(f ′n + f ′n−1 − 2fn)Pn

− β

m′ (fn + fn+1 − 2f ′n)P
′
n

]
. (24)

Comparing Eq. (24) with Eq. (19), we have

ω̄2 = − β

mfn
(f ′n + f ′n−1 − 2fn)

= − β

m′f ′n
(fn + fn+1 − 2f ′n), (25)

which means

1

m

(
1−

f ′n + f ′n−1

2fn

)
=

1

m′

(
1− fn + fn+1

2f ′n

)
,

n = 1, 2, . . . , N. (26)

Analysing Eq. (26), we set up equations for determin-

ing fn and f ′n,

fn = ξ cos(2nθl), f ′n = ξ′ cos((2n+ 1)θl), (27)

where

θl =
l

N
π, l = 1, 2, . . . , 2N. (28)

Substituting Eq. (27) into Eq. (25) yields

ω̄2 =
2β

m

(
1− ξ′

ξ
cos θl

)
=

2β

m′

(
1− ξ

ξ′
cos θl

)
. (29)

Then we have

ξ′

ξ
=

2β cos θl
2β −m′ω̄2

=
2β −mω̄2

2β cos θl
, (30)

from which we further have

m′ω̄4 − 2β(m+m′)ω̄2 + 4β2 sin2 θl = 0, (31)

with the solution

ω̄± =

{
β

(
1

m
+

1

m′

)
± β

[(
1

m
+

1

m′

)2

−4 sin2 θ

mm′

]1/2}1/2

; (32)

this is the normal mode which conforms with that in

Ref. [4]. Not only we have obtained the normal fre-

quency, we can also know the normal coordinates. In

fact, from Eqs. (27) and (29) we can determine the

invariant eigen-operator

O =
N∑

n=1

[ξPn cos(2nθl) + ξ′P ′
n cos((2n+ 1)θl)]. (33)

Correspondingly, let Pn and P ′
n be classical variables,

then we obtain the normal coordinate (generalised co-

ordinate) for the diatomic chain-lattice

On =
N∑

n=1

[ξPn cos(2nθl) + ξ′P ′
n cos((2n+ 1)θl)].(34)

This method for deriving the normal coordinates

seems convenient and effective. Actually, without this

IEO method, the normal coordinates for the classical
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Hamiltonian (15) can hardly be derived, because one

should make ansatz (some lattice wave solution) to

the second-order differential equation in Eq. (10) (the

only existing method to derive normal coordinates),

and then solve it; however, for the complicated lattice

structure one has no good idea about what the correct

ansatz is.

In summary, in this paper we have introduced

a new method to find normal coordinates for classi-

cal Hamiltonians, i.e. by virtue of the IEO method;

in other words, adopting the IEO method not only

can help us to derive energy spectrum for some quan-

tum mechanical Hamiltonians, but also works well for

finding normal coordinates which may be the classi-

cal correspondence of the invariant eigen-operators. It

seems that the IEO method can significantly simplify

the derivation because calculating quantum commu-

tators sometimes are easier than solving differential

equations.
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