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Abstract—Existing analytical methods to model multistage
switch networks cannot be applied to the performance modeling
of switch networks with phase-type and bursty traffic because of
the problem of state-space explosion and unrealistic assumptions,
e.g., uniform traffic and independent destination (UTID). This
paper presents an approximate scheme to model and analyze such
networks. First, a traffic aggregation technique is proposed to
deal with phase-type and bursty traffic, including splitting and
merging. For the aggregation of two bursty traffic, a closed-form
solution is obtained for buffer state probabilities. For the aggre-
gation of more bursty traffic, a recursive algorithm is derived
in terms of the buffer size and number of inputs of a switch.
Second, a switch decomposition technique is developed, by which
the crossbar of a switch is decomposed from its preceding and
succeeding buffers. In this way, a switch network of inputs
and outputs is converted to tandem queues, for which the
performance can be easily evaluated. Our extensive numerical
and simulation examples have shown that the proposed scheme
achieves satisfied accuracy and computational efficiency.

Index Terms—Finite buffer, performance modeling, switch net-
work, traffic modeling.

I. INTRODUCTION

W ITH the advent of optical WDM technologies, we
can use multistage switch architectures to build large

switches for backbone networks to meet the increasing demand
on traffic volume on order of terabits per second [1]. However,
the performance modeling problem of multistage switches has
not been adequately solved due to the diversity of the packet
generation mechanism, inherently bursty nature of data traffic,
and various switching stages the packets have to go through.
This work aims to develop an approximate solution for the
problem. It will help one gain analytical insight into the perfor-
mance of multistage switches and assist simulation studies in
practice.

For a packet-switch, there are three basic buffering strate-
gies: input-, output-, and shared-buffering. Each has different
advantages and drawbacks in terms of performance and feasi-
bility [2]–[4]. Today’s switches mainly use the input-buffering
strategy with a nonblocking architecture due to its feasibility in
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Fig. 1. An input-buffered switch with � inputs and � outputs.

Fig. 2. A three-stage Clos network with � switches in the first and third stages
while � in the second stage.

building large size switches with high-speed links. Each input
maintains a separate queue for each output, known as virtual
output queue (VOQ), to avoid head-of-line (HOL) blocking. An
example is shown in Fig. 1, where a buffer and crossbar (XB)
are used to represent the buffering and switching procedures ap-
plied on the incoming packets, respectively. The scheduling is
an algorithm for input-output matching, such as the parallel it-
erative matching (PIM) [4]–[6].

To construct a large-scale switch with high capacity, various
numbers of switches at different stages are interconnected
by using multistage interconnection networks. An example
is shown in Fig. 2, where each of the switches can be an
input-buffered one as shown in Fig. 1. Note that the switches
in the intermediate stage can be unbuffered or buffered at both
input and output [1], [7]. For simplicity, the input-buffered
switch with a fast matching algorithm is referred to as a
switch, while the constructed large-scale one is referred to as a
switch network. Actually, the architecture shown in Fig. 2 is a
three-stage Clos network. Other networks that can be similarly
constructed are delta or banyan networks.

The performance modeling of switch networks has been
a classical and difficult problem. The major difficulties are
due to: 1) the lack of an appropriate description of the traffic
aggregation processes; and 2) the state-space explosion. By the
latter, we mean that the number of states needed to describe
a switch network grows exponentially with the number of
switches, switch size, and buffer size.

1063-6692/$26.00 © 2009 IEEE
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A. Related Work

Traditionally, many traffic models, in conjunction with con-
stant service time, have been used in performance modeling of
high-speed networks. The commonly used models can be cat-
egorized into three classes. The first one includes the simple
Bernoulli processes and two-state Markov modulated Bernoulli
process (MMBP), i.e., bursty traffic [8], [9]. The second one in-
cludes the classical Poisson processes and correlated Markov
modulated Poisson process (MMPP) models [10], [11]. Since
much of queueing theory revolves around exponential distribu-
tion that enables an analysis via Markov chains, it is a natural
way to model a general distribution by a combination of ex-
ponential distributions, known as phase-type (PH) distribution
[12]. Therefore, the third class is the traffic process described
by PH distributions, i.e., PH traffic, which includes exponen-
tial distribution, Erlang distribution, mixture of generalized Er-
lang (MGE) distribution, i.e., Coxian phase-type distribution,
and hyperexponential distribution.

For a switch, a simple method for performance modeling is
to use a discrete time M/G/1 queue. The most common assump-
tions are: 1) uniform traffic (UT): packet arrivals to the switch
are uniformly distributed over all the input links, and thus over
all the outputs; 2) independent destination (ID): consecutive
packets at each input link are independently assigned random
destination addresses upon entry to the switch; and 3) buffers
have infinite size. For simplicity, the first two are referred to as
a UTID assumption. In this way, the multiple queues in a switch
exhibit the same behavior. Thus, its performance can be ana-
lyzed by using a single queue. In [5] and [6], under the UTID
assumption, for a switch with multiple input queues and finite
buffer size, and i.i.d. Bernoulli or bursty traffic, a closed-form
solution is found for the maximum throughput of the switch by
using Markov chains. In [13], for an switch with a shared
buffer of finite size, the packets in the buffer are organized into

queues, each for an output. The queues strongly depend
on each other. Under the UT assumption, for i.i.d. Bernoulli
and bursty traffic, the authors present an iterative aggregation
method that combines two queues into one queue at a time until
all the queues are combined into one block [13].

For a switch network, under the UTID assumption and
Bernoulli traffic, the interstage traffic is often modeled by a
Bernoulli process with traffic splitting and merging [9]. In
this way, the states of the entire switch network are explicitly
modeled, rather than the states of individual input or output
queues in a stage. Thus, it can be referred to as a total network
modeling (TNM) [2]. An iterative algorithm is developed to
numerically solve for the state probabilities. The TNM method
is extended to switch networks with buffers shared among all
the inputs and outputs in a switch [14]–[16]. In [17], a network
of stages of switches is modeled as a system of
queues working in parallel, with a deterministic service time
for each queue. The derived steady-state queue length distri-
bution is exact for the first stage and approximate for stage 2
and thereafter. In addition to the UTID assumption, another
critical assumption made in [17] is that the interstage traffic
is an independent Bernoulli process with a packet generation
probability equal to the utilization of the stage.

Recently, it was found that the interstage traffic is less
uniform than what is assumed by the existing models. Thus,
the analysis based on the UTID assumption underestimates

the packet loss performance [7]. For this reason, we assume
that the heterogeneous traffic in switch networks, including
the interstage traffic and aggregation processes, is of general
distributions and described by PH distributions.

Cao and Towsley use the PH (or discrete Coxian) distribu-
tions to describe the batch traffic [18]. For a switch with infi-
nite buffers, they develop a queueing model and find that such
a switch can be well approximated by a queueing network of a
closed product form. For switch networks with PH traffic, only
those that have two and three stages and finite buffers with a
single input can be modeled and solved analytically [19]. It is
worth noting that a multistage buffered network with one input,
i.e., a tandem queue model, is well investigated in production
research by using the decomposition method (DM) [20]–[24].
In DM, the original network of machines and buffers is decom-
posed into a set of virtual two-machine tandem queues. The
buffer states can be obtained by iteratively solving a set of equa-
tions, each describing a two-machine tandem queue.

In summary, the existing analytical methods can be applied
to: 1) PH traffic, for only two- and three-stage switch networks
with tandem queue models; 2) bursty traffic, for only single
switches under the UTID or UT assumption. Without the as-
sumptions of UTID and Bernoulli interstage traffic, switch net-
works cannot be solved analytically.

B. Contribution of This Work

First, for PH and bursty traffic, we propose to recursively
aggregate (disaggregate) all the input (output) traffic to (from)
a buffer into one input by using merging (splitting). In this way,
the number of states in buffer modeling is significantly reduced,
and a switch network is regrouped into multiple tandem queues.
Second, for the aggregation of two bursty traffic inputs, we find
an exact solution for the states of the aggregation buffer, which
can be recursively used to aggregate more bursty traffic in-
puts. Third, we develop an approximate switch decomposition
technique, by which the XB of a switch is decomposed from
its preceding and succeeding buffers. Based on the conserva-
tion-of-flow principle, a set of nonlinear equations is formed
and solved for the buffer states. In this way, the performance of
switch networks can be modeled without the commonly used
UTID assumption, and the state-space explosion problem is
significantly reduced.

C. Organization of the Paper

Section II presents a traffic aggregation technique for PH
traffic and an exact solution for the aggregation of two bursty
traffic streams. Section III presents a new decomposition tech-
nique to model switch networks with finite buffers. The perfor-
mance metrics such as throughput and delay are then evaluated
in Section IV. Numerical and simulation examples are given to
illustrate the proposed methods in Section V. Concluding re-
marks are presented in Section VI.

II. TRAFFIC AGGREGATION

A typical switch network is shown in Fig. 2. It is a three-stage
Clos network , where is the number of switch mod-
ules in the first and third stages; is the number of switch mod-
ules in the middle stage; and is the number of inputs (outputs)
of the switch in the first (third) stage [3]. The network size is

. A typical input-buffered switch is shown in Fig. 1,
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which has input and output ports, respectively. The size of
a buffer for input in a switch is assumed to be finite and
denoted as . We assume that a packet has a unit size and is
processed in a time slot. If the number of packets that need to be
buffered is larger than , then some of the packets have to be
dropped. In this work, we assume that the buffer management
algorithm drops the newly arrived packets when the buffer is
full. Note that an XB can hold a packet being switched. It is as-
sumed that the XB has a buffer size of one packet for modeling
purpose.

A. Aggregation of PH Traffic

A PH distribution can be considered as the distribution of the
packet service time until absorption in a Markov chain with a
single absorbing state. More precisely, a PH distribution is the
distribution of time till absorbing state 0 in a Markov chain
of the states with its initial probability vector

(1)

where is a row vector of size , ; an infinitesimal
generator

(2)

where is a column vector of size ; is an matrix,
; is a row vector of 0’s, and is a column vector of

1’s. The PH distribution is denoted by . The density
function [25] is

for (3)

The moments [25] are

for (4)

For the aggregation of the heterogeneous traffic streams in a
switch network, PH distributions have been extensively used to
approximate the distribution of the aggregated process through a
moment-matching method [12], [26]. The structure and param-
eters of the approximate PH distribution depend on the squared
coefficient of variation. For an r.v. , the squared coefficient of
variation, denoted by , is defined as the ratio of its variance to
its squared mean of [27]

(5)

It can be seen that ; is close to zero (low variability)
if assumes values that are close to each other.

For the merge of two PH traffic processes and , denoted
by and , respectively, the aggregated
traffic proces, is also a PH traffic denoted by . Be-
cause , the distribution of is the convolution
of those of and . Thus, we have [25]

(6)

and

(7)

where ; , while and
are the th and th components of and , respectively.

For the splitting of a PH traffic process , denoted by
, we assume that

(8)

If is split into and , with probability and , re-
spectively, then we can find that and are also of PH dis-
tributions, that is, and , respectively,
where [25]

(9)

where and stand for the elements of
and of , respectively. The above splitting

requires two assumptions. First, the Markov chain of the states
has two disjoint subsets, that is, and

. Otherwise, we need to separate the
Markov chain by using balance equations before conducting the
splitting [25]. Second, is given by the scheduling mechanism
of a switch [4], [5].

One common phase-type distribution is MGE, which is often
called the Coxian distribution. It is used to model the mixtures
of exponential, hyperexponential, and Erlang distributions. As
an example, for the mixture of two exponential distributions, in
terms of (3), the density function of the MGE distribution is

where and with
, and being the two exponentially distributed

mean service rates, and is a state transition probability that
describes a two-state Markov chain. In terms of (4) and (5), we
find

(10)

(11)

The above MGE distribution is a two-phase distribution and is
denoted as . Similar results can be obtained
for the aggregation of two phase-type distributions.

Another common PH distribution is Erlang. The density func-
tion of an Erlang distribution with phases with rate param-
eter , denoted by Erlang- , is [25]

for (12)

It has a mean of and variance , respectively.
In principle, the Laplace–Stieltjes transform (LST) of any dis-

tribution function can be approximated arbitrarily closely by a
rational function. Therefore, PH distributions can be used to
model any aggregation processes. In order to use PH distribu-
tions, many efforts have been devoted to determine the struc-
ture and parameters by various methods, including moment-
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Fig. 3. A bursty traffic model.

matching methods [12]. In this work, we assume that hetero-
geneous traffic processes are described by phase-type distribu-
tions. Thus, we can find the parameters for traffic aggregation
processes, similar to (10) and (11).

It is worth pointing out that in order to accurately model the
correlation properties of a traffic aggregation process, we can
fit the traffic into correlated traffic models such as MMPP [11].
In this work, we focus on switch networks with PH and bursty
traffic. We leave the cases of correlated and mixed traffic as a
future research topic.

B. Aggregation of Bursty Traffic

Denote by the bursty traffic model, which is gov-
erned by a two-state Markov model shown in Fig. 3. At an input
port, a packet is assumed to be generated when the underlying
Markov chain is in state 1. Otherwise, in state 0, there will be no
arriving packet at this port in the current time slot. In this model,

is the burstiness [8] defined as

(13)

where is the transition probability from state to ,
. By defining and , we have

The average length of the periods in state 1 is , i.e.,
the burst length. The length in state 0 is . Thus, the average
offered load is

which is the mean arrival rate of an incoming Bernoulli process.
Combining the above two expressions, we find

(14)

Therefore, can be also described by and , as dis-
cussed in the Appendix.

For an independent splitting of , as shown in Fig. 4,
each packet is routed along a tagged direction with a splitting
probability. The splitting process is exactly described by an
MMBP, denoted by , , where

, , and is the splitting probability. The splitting
process [9] can be approximated by with

(15)

Fig. 4. Traffic splitting.

Fig. 5. Traffic merging.

Similar results are found for a correlated splitting of the bursty
traffic by using a three-state MMBP model [9].

The traffic merging process is more complicated. As shown in
Fig. 5, processes , , are merged in a
buffer with size of . The merged traffic stream is described
by . Denote by the joint state of
the traffic arrivals, where if queue transmits a packet,
and otherwise, , for . Denote by
the steady-state joint probability that there are packets in
when it is in state . Note that means that the buffer
is full and the succeeding XB holds one packet currently being
worked on. The proceeding XB is said to be in a blocking state.
Then, the newly arrived packets to the buffer will be dropped,
as analyzed in the Appendix.

Denote by the probability that the output buffer is empty.
By applying the concept of the conservation-of-flow, we have

(16)

Upon substituting and
into a local balance equation

, we find

By using the boundary condition (e.g., (A.21) in the Appendix),

we have , where ,
, which is . Thus, . We

find the equivalent parameters

(17)
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Fig. 6. (a) A switch network in tandem queue model, (b) a decomposed switch,
and (c) a decomposed buffer.

In the Appendix, we present a recursive algorithm to find the
exact solution of . For the case of , the solution is sum-
marized in the following theorem.

Theorem 1: The probability that the output buffer is empty is
given by

(18)

where

(19)

where means the first column of the inside matrix; is
an all-1 row vector; is given in (A.16); and and
are given in (A.19). Note that , , and only depend
on parameters of the input traffic, i.e., and , .

For the cases of , we can use the exact solutions in
the Appendix to find the parameters of the aggregated traffic,
as in (17). This method is named the exact traffic aggregation
(ETA) method. By using the results from the aggregation of two
traffic streams, we can also iteratively aggregate two streams
into one at a time until all the streams are aggregated into an
equivalent one, for which we can find the state of the output
buffer. This method is named the approximate traffic aggrega-
tion (ATA) method. Mathematically, the latter is more tractable
than the former, particularly when the buffer is finite but of
relatively large size, which cannot be handled by any existing
methods to the authors’ knowledge.

III. SWITCH DECOMPOSITION METHOD

After traffic aggregation, a switch with input and output
ports can be regrouped into queues. Accordingly, a switch
network with stages can be regrouped into tandem queues,
with each queue representing a concerned input–output route as
shown in Fig. 6.

This work considers two flow control mechanisms: global and
local [2]. With the former, the XB of a switch allows its prede-
cessor to send it a packet if it has one empty buffer slot currently
or if one of the packets in its buffer leaves in the current cycle.
With the latter, the XB allows its predecessor to send a packet
only if its buffer has an empty slot.

A. Switch Decomposition

Consider a tandem queue in Fig. 6(a), where the buffers and
XBs are numbered as , and .
Denote by the steady-state joint probability that there
are packets in the buffer at stage , where is the state of the
traffic arrivals.

For traffic merging, as shown in Fig. 5, the buffer for merged
traffic has traffic inputs from the XBs in its previous stage.
To simplify the notation, let denote . Thus, and

, are the probability for and , i.e.,
is empty and full, respectively.

In order to find the relationship between the state of an XB
and its buffers, we denote by the probability that a packet
is available to enter , as in [2]. Here, we use an overline to
indicate the complement of a probability, e.g., and

. By its definition, we can find

(20)

The reason is that if at least one of the preceding buffers is not
empty, then a new packet is available to enter .

The case that meets the UTID assumption (see [2]) can be
treated as a special case of (20). Here, can be calculated based
on one buffer and thus (20) can be simplified to

(21)

The reason is that a packet is available to enter an input buffer
of a switch at stage if at least one of the buffers of the pre-
decessor is nonempty and has a first packet for the particular
switch at stage . Note that the states of the buffers are as-
sumed to be independent.

For traffic splitting, as shown in Fig. 4, the buffer in stage
has successors in stage , with their buffer size ,
and . We also use to represent the joint
state of the traffic outputs. Let be the probability that a
successor of the XB at stage can accept a packet. Under local
flow control, we can find

(22)

The reason is that if at least one of the successors is not being
blocked, then it can accept a packet.

Under global flow control, we need to consider one more
stage. The probability that the first packet in a buffer in stage

can leave during a given cycle equals the probability that
its successor’s buffer in stage is not full when the buffer
in stage is full. Thus, we have

(23)

The reason is that even if the successor’s buffer is full, it can
still accept a packet if there is a packet leaving the successor for
its next stage during the same cycle.

From the viewpoint of an XB, it is said to be in a starving state
when its preceding buffer is empty. It is in a blocking state when
its succeeding buffer is full. Only when its preceding buffer is
not empty and succeeding one is not full can the XB work prop-
erly. We denote by the service rate of an XB at stage , the
actual rate at which the packets are leaving and entering

is

(24)
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Now, it is clear that if the state of a buffer, i.e., , is known, then
the state of its XBs can be obtained. This allows us to express the
state of a buffer as a function of one parameter only as follows.

Consider a buffer , . Denote by the
actual arrival rate to in the steady state. The offered load is
defined as

(25)

or equivalently

(26)

in which is unknown and used as a to-be-determined param-
eter. If has both input and output buffer, an output buffer

is followed by an input buffer , instead of . Then,
in (25) is replaced by . We need to express the state of

buffers in the form of .
The throughput of an XB can be defined as a leaving rate, at

which the packets are processed and output to a next stage. For
an XB at stage of the tandem queue, the throughput is

(27)

In terms of (24), we have

(28)

where is the number of stages in the switch network.
For a tandem queue with stages, as shown in Fig. 6(a),

it is assumed that is always nonempty, i.e., with saturated
input, and the buffer after always has space to accept
packets, i.e., and . Thus, there are
buffers whose states need to be determined. In the steady state,
the number of packets processed by the XBs at each stage should
observe the conservation of flow. Thus, we obtain the following
set of equations:

(29)

If we can express the buffer state in a form of , then by
substituting (28) into (29), we can obtain equations and
thus solve them for the parameters, ,

.
Otherwise, for example, for a bursty traffic with fixed service

time, in terms of (A.23) in the Appendix, we can choose as
the buffer parameter at a stage since all the can be obtained
by using . For a tandem queue with stages, in terms of
(16), for stage , we have

(30)

Therefore, the traffic parameters for the next stage, i.e., and
, can be obtained in terms of (17).

B. Buffer Modeling

Consider a buffer in stage with its predecessor and successor
XBs, as shown in Fig. 6(c). Note that each buffer has only one
traffic input after the splitting and merging operations as dis-
cussed in Section II.

Fig. 7. A buffer state transition diagram.

It is well known that, for Poisson arrivals, the buffer can be
exactly modeled as an M/M/1 queue if we choose as the
average arrival rate, which is defined in (26). The buffer state
transition diagram is shown in Fig. 7. In terms of flow balance
equations, the following results can be easily obtained:

(31)

to model a buffer with Poisson arrivals and exponential service
times.

For PH traffic, including MGE-n and Erlang-n distribution,
we can use (31) to approximately model the buffer states. The
reason is that the rates of traffic that arrive at and departure from
an M/M/1 buffer can be also interpreted as the mean rates of
packet arrival and departure. Thus, for PH traffic process ,
the traffic arrival rate is , which is given by (10)
and (11). If the service time of a switch is of PH distribution,
e.g., distribution, then we can also use (10) and (11)
to calculate the mean service time, that is, . For
traffic of Erlang-n distributions, similar results can be obtained
by using (12), as shown in the examples.

Once the buffers have been modeled by (31), by substituting
(31) into (29), we can numerically solve for the buffer param-
eters , , for a tandem queue with
stages. Subsequently, all the states , ,

, can be obtained.
For bursty traffic, we propose to aggregate all the traffic inputs

to a buffer into one traffic by using the ATA method. The buffer
state can be easily obtained by simplifying (A.7) and (A.21) (we
omit the stage number for simplicity)

(32)

where and have the first and second column of , respec-
tively, while the other column is zero

where , , and

and is the probability that the buffer is in the blocking
state. Define a row vector of ones: , we have

(33)
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By applying the normalization condition, , to
(32), we have

(34)

where ,
, ,

and . Thus

(35)

By applying the boundary condition in (A.21), i.e.,
, to ,

we find

(36)

where

Accordingly, we can find in terms of (35), and ,
, in terms of (33) and (32).

For a tandem queue with stages, the traffic parameters are
given only for the first stage. For the second stage and thereafter,
by substituting (36) into (30), we can find the parameters
and also in terms of (17).

It is worth noting that, for an infinite buffer size, the buffer
states can be easily obtained by using the generating function
method [8], [9]. The difficult case is the buffer with a finite but
relatively large size because there needs a large dimension to
describe the buffer state transition matrix.

IV. PERFORMANCE ANALYSIS

Based on the proposed switch decomposition technique, we
can easily calculate the performance metrics as defined in [2].

The average number of packets in the network can be calcu-
lated straightforwardly as [2]

(37)

The average delay through the network can be calculated by
summing the average delays at each stage, which can be ob-
tained by using Little’s Law. For a network using a global con-
trol strategy, the delay is [2]

(38)

where the quantity in the denominator of the initial fraction is
the average arrival rate at stage and the summation is the av-
erage queue length. If the local control strategy is used, we just
substitute for the expression in the denominator of
(38) to obtain the delay [2]

(39)

The throughput can be directly evaluated by using one of the
stage

(40)

The packet loss ratio for each stage can be calculated by

(41)

The entire algorithm can be outlined as follows:
1) Find the parameters of the traffic models. They are given

in (1) and (2) for PH traffic and (14) for bursty traffic.
2) Aggregate the multiple traffic inputs into one stream. They

are given in (6)–(9) for PH traffic and (15) and (17) for
bursty traffic.

3) Solve the tandem queues for buffer parameters. For PH
traffic, numerically solve (29) for . For bursty traffic, the
solution is given in (36).

4) Calculate buffer states. They are given in (31) for PH traffic
and (32) for bursty traffic.

5) Evaluate network performance according to (38)–(41).
The computational advantage of the proposed technique can

be analyzed in two cases. Here, we assume that a network has
stages of switches, each switch has inputs and outputs,

and each input has a buffer of size .
1) PH Traffic: The number of states needed for a Markov

chain to describe a buffer is . The number of states to

describe a switch is . The number

of states to describe the network is
, which equals for a typical network:

, , and , leading to a state-space explosion
problem.

Using the proposed method, a buffer only needs to be identi-
fied as empty, full, or not empty and not full. Only one param-
eter (e.g., ) is needed to describe the three states, which can
be numerically solved from a set of equations, each is a

-th order algebraic equation, see (31), which describes
the underlying Markov chain of states and can be solved
with a time of . Note that in a tandem queue model,
after switch decomposition, an XB’s state is only related to its
neighboring buffers’ states, which are governed by a set of alge-
braic equations (e.g., the principle of flow conservation). There-
fore, a buffer needs only one state to be modeled. All other states
of the buffer can be derived from the buffer parameter. There-
fore, we only need to determine the buffer states for a
tandem queue with a time of . The net-
work is converted into tandem queues after traffic aggrega-
tions. Therefore, the time complexity is to analyze
the network performance.

2) Bursty Traffic: To exactly describe the merge of bursty
traffic streams, we need states, which is the dimension of
the transition matrix (see the Appendix). For a buffer size of ,
we need to solve for , to determine the buffer
states, where is a vector of dimension . Therefore, we
need states to describe a buffer. For a tandem queue
of stages, we need states. Since the network
is converted into tandem queues, we need
states to describe the network if the ETA method is chosen for
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traffic aggregations. Clearly, the state-space explosion problem
is scaled down significantly but not eliminated.

As we mentioned in the previous section, we can choose the
ATA method in traffic aggregations. By aggregating two traffic
streams at a time, which costs a fixed amount of time (see The-
orem 1), we need times to aggregate traffic streams
into one. Each time only a buffer parameter needs to be solved.
Therefore, we need a total time of ,
i.e., , to evaluate the network performance, which
is a polynomial function of the network sizes.

Based on the above discussion, we summarize the computa-
tional complexity in the following theorem.

Theorem 2: The proposed algorithm has the complexity of
for PH traffic. For bursty traffic, it has the com-

plexity of with the ETA method and
with the ATA method, respectively.

Typically, a nonblocking switch network with size
is constructed from switch blocks with size , where

and . In practice, if one param-
eter is large, then the other one is small, e.g., if , then

. Thus, usually . For these typical
sizes, the exact performance modeling becomes mathematically
intractable. Consequently, the approximate performance mod-
eling that is often assisted by simulation studies has become the
major approach. In terms of the above theorem, the proposed
scheme can be used with simulations to model the typical switch
networks, such as Clos, banyan, and delta networks.

V. NUMERICAL EXAMPLES AND SIMULATION RESULTS

In this section, we verify the proposed method by several ex-
amples. The analysis and simulation are conducted by using
Matlab ver. 7.0 release 14 to find numerical results by following
the algorithm outlined in Section IV. For PH traffic, including
MGE and Erlang distributions, the first three examples demon-
strate the accuracy of our method when applied to the two-,
three-, and five-stage networks and with small, medium, or large
buffers. The results are compared to those by using the decom-
position method (DM) [20]–[24]. For bursty traffic, the fourth
example is to demonstrate the effectiveness of the proposed
method when applied to a typical Clos network without meeting
the UTID assumption. The results are compared to those ob-
tained by simulations on a Dell PowerEdge 2850 server with
two Intel Xeon CPUs at 2.8 GHz and 4 GB memory.

Example 1: Consider a tandem queue model, as shown
in Fig. 6, which consists of two switches and a buffer in
between them. The packet arrivals have an MGE-2 distri-
bution: . The service times of
the two switches have the following MGE-2 distributions:

and (2.5,2.0,0.5), respectively.
The buffer size is .

To model this simple tandem queue, we assume that the first
switch is never starved and the second one is never blocked. By
using (10) and (11) to find the traffic and service rate, and substi-
tuting (31) into (29), we obtain a set of equations with the buffer
parameter as the unknown, which can be easily solved for the
buffer states. The results are shown in Table I, which also lists
the results by using DM method. Define an error, ,

and a relative error, , where is the value

TABLE I
MGE-2 DISTRIBUTION WITH � � �

TABLE II
MGE-2 DISTRIBUTION WITH � � ��

obtained from DM, and is the value from this work. The rel-
ative errors on the empty, blocking probability, and throughput
are about 0.27%, 0.54%, and 0.09%, respectively. We also no-
tice that one of the intermediate results, , has a relative error
12.01%. This is due to the approximation of buffer modeling in
our method, which emphases the accuracy of only those special
buffer states that directly impact the performance results, i.e.,
and .

For a larger buffer size of , similar results are shown
in Table II. It can be seen that the errors are small. It is also found
that the relative errors on , , and are 0.07%, 6.43%,
and 0.01%, respectively. However, for , the relative error is
about 50.80%. Therefore, the proposed method can model the
performances with high accuracy, but not for every state of the
network.

For packet arrivals described by a two-phase representation
with rates , the service times of
the two switches are exponentially distributed with rates 2 and
4. The size of the buffer between the two switches is .
The results are shown in Table III, which are similar to those for
MGE distributions. The errors are found to be in the range of

.
For packet arrivals with Erlang distribution, it is assumed

that the traffic can be described by an Erlang-10 distribution
with rate . The first switch has a service time with an
Erlang-10 distribution with mean service time and

. The second switch has a service time with an Er-
lang-8 distribution with a mean service time and

. The buffer has size of .
The results are shown in Table IV. The error for throughput

is , or a relative error 0.06
1.49%. Note that the DM is considered as a relatively accurate
method because it models a large number of the states of the
underlying Markov chain, for example, 2018 states in this ex-
ample [20], [23], while we use only 27 states. We also see a large
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TABLE III
QUEUES OF PH/M/1 WITH � � ��

TABLE IV
ERLANG-N DISTRIBUTIONS AND � � ��

TABLE V
THROUGHPUT FOR 3 AND 5 STAGES

relative error for , which is caused by the numerical insta-
bilities due to the procedures in finding a solution to the buffer
states when the probability is very small.

Example 2: We consider a special case of a tandem queue
model for which an exact solution exists. The network consists
of three switches and two buffers in between them. The traffic
arrived to the first switch is Poisson with rate . The
switches all have exponentially distributed service times, with
rates . Two buffers have size of

. For the throughput, our result is , with
an error of , or a relative error ,
as compared to the exact result obtained by using the Hunt’s
formula [20]. For DM, , the error is

, or a relative error . It can be seen
that our method results in slightly better accuracy than DM.

We consider a more general three-stage tandem queue with
Poisson traffic with rate . Three switches have mean
service times , 4.0, and 3.0, with squared coefficient
of variation , 1.0, and 0.5, respectively. Two buffers have
sizes: and . The throughput values are shown
in the second column of Table V.

Example 3: Consider a five-stage tandem queue network
shown in Fig. 6. The traffic has a mean interarrival time of 2.5
with . The switches have mean ,
4.0, 3.0, 2.0, and 5.0, with the squared coefficient of variation

, 0.25, 3.0, 0.30, and 0.75, respectively. The buffer sizes
are , 4, 10, and 4, respectively. The results on network
throughput are shown in the third column of Table V. The
simulation results in the table are the average of 15 simulation

Fig. 8. Throughput for the three-stage Clos network.

runs using Matlab on the Dell server, with 100 000 packets
processed during each run.

Example 4: Consider a more complicated switch network in
Fig. 2, where , , , and . We use
subscript to denote the th input of the th switch in the
th stage. In this example, we assume that all the buffers have

the size of 4, i.e., , for all , , and . The offered
traffic load to the switches in the first stage is ,
for , 2, 3, and , 2, where varies in the range of
0.1 0.9, but is not uniformly distributed over all the output
ports in a switch. We assume that for an input port and output
port of a switch, a specific scheduling algorithm generates:

, if ; and ,
otherwise. Note that is a fraction of input traffic directed to
an output [4]. For the switches at stages 1, 2, and 3, we choose

, 0.6, and 0.5, respectively. For simplicity, we choose
, for all , , and . We assume that all the switches

have unit mean service rate, that is, , for all , ,
and .

First, the traffic aggregations are conducted at each switch
in each stage by recursively merging two inputs into one at a
time until an approximate single input is obtained. Then, for
the equivalent tandem queue model with only one traffic input,
the buffer state can be found by applying the results given in
(32), as well as the network performance, such as the average
throughput and packet delay. For different values of , the
results on throughput are plotted in Fig. 8 (labeled as “This
work”). The results on the average delay are plotted in Fig. 9.
Also plotted in the figures are the simulation results (labeled
as “Simulation”), which are the average of 10 simulation runs.
Each run continues until 1000 dropped packets are observed.

It can be seen that the error of the throughput , as compared
to the simulation results, is relatively small when . As

increases, the error also increases, which is caused by the
approximation error in buffer states due to high offered load. It
is observed that , or a relative error less than 4.0%.
As for the average delay, it has a constant error (time
units), or a relative error 2.0%, in the whole range of the offered
load. The reason is that the delay calculation is impacted by
all the buffer states instead of a few states like the throughput.
Thus, the impact on the error does not change significantly as the
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Fig. 9. Delay for the three-stage Clos network.

offered load increases. Similar results are observed in different
simulation scenarios, e.g., a relative error less than 5.0%, which
is considered as satisfactorily accurate in practice.

VI. CONCLUSION

This paper presents an approximate method for the perfor-
mance modeling of complex switch networks with PH and
bursty traffic inputs. For both traffic patterns, we propose to
aggregate multiple traffic inputs into a single one, convert
a network of inputs and outputs into tandem queues,
and then evaluate the network performance. In this way, the
commonly used UTID assumption is no longer needed. We
derive a recursive solution for the bursty traffic aggregation in
a finite buffer.

It is noticed that the proposed method is based on the assump-
tion that a general traffic can be modeled by the powerful PH
distributions. Theoretically, it is true, but in practice, fitting a
traffic to a PH model, particularly the interstage traffic, may be
difficult. Furthermore, even if an approximate PH representation
is obtained, if the number of phases is large, it may be difficult
and sometimes impossible to deal with the underlying Markov
process due to the size of its state space. Therefore, our future
work will investigate the methods to reduce the size of traffic
described by PH distributions. Another work is to model switch
networks with correlated and mixed traffic and thus further in-
vestigate the applicability of the proposed method to more gen-
eral classes of switch networks.

APPENDIX

In this Appendix, we present a recursive algorithm to find
an exact solution to the aggregation of multiple bursty traffic
inputs.

Consider the traffic merging process, shown in Fig. 5, where
the bursty traffic model is shown in Fig. 3. Denote by

the state of buffer , which consists of the
states of input buffers ; where , ,
equals 1 if buffer transmits in a slot, and 0 otherwise. We
assume that the size of , i.e., . Let be the
probability that buffer contains packets at the end of slot
and the buffer state is . In the steady state, is written

as . Let be the transition probability that the buffer
state goes from at the end of slot to at the end of slot ,
that is

's state goes from at the end of slot

to at the end of slot

's state goes from to

As an example, for , , we can find

(A.1)

where is the Kronecker product; the matrix that describes the
traffic input is:

for

The first-order Markov model yields the following one-step
transition equations [8]:

for (A.2)

for (A.3)

where

if
otherwise

and

It can be seen that , depends on the traffic arrivals.
As we mentioned, if in the current time slot , then
the newly arrived packets will be dropped without admitting to
the buffer. More precisely, since the XB will output one packet
in a time slot, as seen in the above one-step transition equa-
tions, then only one packet will be admitted in the next time slot,
and all other newly arrived packets will be dropped. The buffer
is said to be overflowed. However, which packet is allowed to
enter the buffer is up to the buffer management algorithm. In
this work, we assume that the buffer just randomly chooses one
of the newly arrived packets for admission.

Accordingly, when , if , then there will
be packets that have to be dropped, respectively.
Similarly, when , if , then there will be

packets that have to be dropped, respectively. Up
to , only if , only one packet needs to
be dropped. For , no packets will be dropped.
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Therefore, the buffer overflow probability, denoted by , can
be found

(A.4)

where as , i.e., the steady-state
probability of the buffer.

A. Aggregation of Two Traffic Inputs

Recursive Equation: For the case of , ;
, , 2. In (A.1), the first column of is ,

, thus we can denote the first column as .
Similarly, the second, third, and fourth columns are denoted as

, , and , respectively.
In the steady state, (A.2) and (A.3) have the following solu-

tions:

for

(A.5)

Denote by

(A.6)

In order to express the individual by its vector form
, we need to expand the vector , into

a matrix. For example, in order to express by , we
expand into a matrix , where is a vector of all
zeros. Thus, .

Define

The one-step transition equations in (A.5) become

for

(A.7)
In order to systematically divide the transition matrix into

subblocks for general number of inputs, we regroup the state
space of according to the number of packets arrived: ,

, and . The state regrouping can be
shown by dividing an identity matrix of the same size as into
subblocks

To further simplify the notation, we define the following ma-
trices:

where a in th column represents a column vector of all 0
components, except the th component is 1, while represents
a column vector of all 0 components.

Now, we can represent the matrix , , and in terms of

Note that is singular. Thus, in (A.7), we cannot express
in terms of , for . In order to do so,

we need to rearrange the equations.
Define

(A.8)

(A.9)

It can be seen that only the first component of is changed. If
we denote by , then (A.9) can be written as

for
(A.10)

where is an identity matrix of .
Substituting (A.10) into (A.7), and note that ,

, and , we have

for

(A.11)
In the derivation of the last equation, we use the fact that

. Comparing (A.11) to (A.7), we can see the
corresponding changes in the equations are straightforward.
First, for each equation of , , change
all the to , respectively, except
that the last term, , which is multiplied by , needs to be
changed to . Second, in the first equation, needs to be
changed to . Third, each equation needs to be compensated
by in the right-hand side of the equation as the
results of the rearrangement.
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Now, (A.11) can be easily solved as follows:

for
(A.12)

where

(A.13)

It can be verified that does exist, so do and . Therefore,
, , can be expressed in terms of ,

which contains only one unknown, i.e., .

Normalization Condition: Define a row vector of ones:
, we have . The normalization condition is

(A.14)

Substituting (A.10) into (A.14), we have

(A.15)

To simplify the notation, we define

(A.16)

and also

(A.17)

By substituting (A.12) and (A.16) into (A.17), we have

that is

(A.18)

where

(A.19)
By substituting (A.18) into (A.15), we have

Thus, we easily find

(A.20)

where means the first column of the inside matrix.
Boundary Condition: The boundary condition can be derived

as follows:

is empty

state of is is empty

state of goes from

where

if
if

and , where can be obtained from the parameter
of the individual traffic stream by using (14).

Noting the definition in (A.6), we have

(A.21)

in which the first row is

Thus, we have

(A.22)

where is given in (A.20).
In terms of (A.20) and (A.8), we immediately find . By

substituting into (A.12), we find , .
In terms of (A.10), we find , . Finally, we
have

(A.23)

The parameters for the aggregated traffic and the buffer over-
flow probability can be obtained, as defined in (17) and (A.4),
respectively.

B. Aggregation of Three Traffic Inputs

For , the transition matrix can be found

which is an 8 8 matrix. Note that .
The state vector is

which can be divided into groups, corresponding to
the number of packets arrived at a time

The number of states in each group is a binomial coefficient:

for
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The division can be shown by an 8 8 identity matrix: The four
blocks are the first column, next three columns, three columns
again, and the last column

Similar to the case of , we define ,
, , and

, where a in th position represents
a column vector of all 0 components, except the component at
the th position in the vector is 1, while a represents a column
vector of all 0’s. Now, we can divide into

for

The one-step transition equations for , , are
the same as those for . For ,

for
(A.24)

The above equations can be similarly solved as follows:

for

(A.25)
where , , and are defined in (A.13). The normal-
ization and boundary conditions are the same as (A.15) and
(A.22), respectively. Therefore, we can similarly find ,

.

C. Aggregation of Traffic Inputs

For a general case of traffic inputs, the transition matrix can
be found

The state can be divided into groups, corresponding to
the number of packets arrived at a time: . The
number of states in each group is the binomial coefficient

for

The division can be shown by a identity matrix: every
number of columns form a block, . Correspond-
ingly, , , can be defined using vectors and .
In this way, we can divide into

for

The one-step transition equations for , ,
are

for
for
for .

By using the transformation in (A.9) and (A.10), the above
equations are reformatted as follows:

for

for

for

where , , and are defined in (A.13). Note that the above
set of linear equations has only one unknown. By using the nor-
malization and boundary conditions e.g., (A.15) and (A.22), ,

, can be similarly obtained.
In the above recursive algorithm, the traffic aggregation is

conducted recursively in terms of the number of traffic inputs.
To aggregating inputs into one, the algorithm needs to run

times. Within each time of the traffic aggregation, the
buffer states are solved recursively in terms of the size of the
buffer. For a buffer size , the algorithm needs to run
times recursively. Therefore, the recursion stops after

times of iteration.
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