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Abstract

Let {X, X;; i > 1} be a sequence of independent and identically distributed positive random variables,
which is in the domain of attraction of the normal law, and #,, be a positive, integer random variable. Denote
Sn = ;-1: 1 Xis Vn2 = l'-':l(X i— X )2, where X denotes the sample mean. Then we show that the self-

o
normalized random product of the partial sums, (]‘[Z‘= 1 If—/i) Vi, is still asymptotically lognormal under

a suitable condition about #.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Throughout this paper let {X, X;; i > 1} be a sequence of independent and identically
distributed (i.i.d.) positive random variables and define the partial sums S, = Z’}:l X; and

V2= Yo X — X)? for n > 1, where X = rll Y7, Xi. Arnold and Villasenor [1] considered

n
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the limiting properties of sums of records and obtained the following version of the central limit
theorem for i.i.d. exponential random variables with the mean one,

Y ke log(Sy) —nlog(n) +n 4
N
N -

as n — 00, here and in the sequel, N stands for the standard normal random variable. By Stir-
ling’s formula, (1.1) can be equivalently stated as

1
"o\
<1—[%> 4 N

k=1

(1.1)

Rempala and Wesolowski [12] removed the condition that the distribution of X; is exponential
and obtained the following theorem.

Theorem A. Let {X, X;; i > 1} be a sequence of i.i.d. positive square integrable random vari-
ables. Denote . = EX > 0, the coefficient of variation y = o /11, where 6> =Var X. Then

1

nog —
[zt S\ 4, v, (1.2)
nlu

Recently, Qi [11] and Lu and Qi [10] obtained the similar results for {X, X;; i > 1}, which
is in the domain of attraction of a stable law with index « € (1, 2] and @ = 1, respectively. We
recall the definition of the domain of attraction of a stable law first, then state their results.

A sequence of i.i.d. random variables {X, X;; i > 1} is said to be in the domain of attraction
of a stable law L, if there exist constants A,, > 0 and B, € R (n > 1) such that

S, — B

4 L, (1.3)

n

where L is one of the stable distributions with index « € (0, 2].

Theorem B. Assume that the positive random variable X has mean u (> 0) and is in the domain
of attraction of a stable law with index o € (1, 2]. The constants A,, (n > 1) are defined as above
so that the limit L, in (1.3) has a character function as in Theorem 2.1 in [11]. Then
n i
<1'[k:1 Sk) Mod et L, (1.4)
nlu"

If o = 1 and L1 has a character function as (iii) in Theorem 2.1 in [11] with 8 = 1, then (1.4)
holds for a = 1.

It is well known that the so-called self-normalized limit theorems put a totally new coun-
tenance upon classical limit theorems. We refer to Bentkus and Gotze [2] for Berry—Esseen
inequalities, Giné et al. [7] for the necessary and sufficient condition for the asymptotic normal-
ity, Griffin and Kuelbs [8] for the law of the iterated logarithm, Csorgd et al. [4] for studentized
increments, Lin [9] for Chung-type law of the iterated logarithm, Csorgd et al. [S] for Donsker’s
theorem. For a survey on recent developments in this area, we refer to Shao [13] or Csorgd
et al. [6]. Consequently, in this paper, we take a sequence of random variables which is in the
domain of attraction of the normal law (L, is replaced by A in (1.3)) instead of a sequence
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of constants used in Theorem A as the power of (Hjl‘l!:‘,lsk ), i.e., the so-called self-normalized
products. Furthermore, since the investigation of the behavior of the sum of a random number of
random variables is important in sequential analysis, in random walk problems, etc., we will con-
sider the asymptotic normality of random sums for (1.1) in present paper, i.e., the self-normalized
products with random index. We state our results as follows.

Theorem 1.1. Assume that the positive random variable X has mean u (> 0) and is in the
domain of attraction of the normal law and t, be a positive integer-valued random variable,
in addition, if there is a positive constant sequence {b,} tending to infinity as n — 0o such that
t, /by L, v, where v is a positive random variable and independent of {X;; i > 1}. Then we have

th S VL
=1 2k ) T d V2N (1.5)
t,\uin

Obviously, it follows from Theorem 1.1 we have the following consequence.

Corollary 1.1. Assume that the positive random variable X has mean p (> 0) and is in the
domain of attraction of the normal law. Then

" -
[Tzt Sk\ ™ 4, NN (1.6)
nlu

2. Proof

Put /(x) = E(X — w)2I{|X — p| < x}, b =inf{x > 1: I(x) > 0}, and
I(s)

1
nj:inf{s: s>b+1, — < —_}, j=1,2,3,....
S J
Furthermore, let B,f(j) = Zf:l E(X; — p,)2l{|X,- — |l < nj} =kl(n;). It is easy to see that
B,%(n) =nl(n,) ~ 77,2, as n — oo. We state some lemmas before showing the proof of Theo-
rem 1.1.

Lemmas 2.1 and 2.2 are due to Csorgd et al. [5] and Griffin and Kuelbs [8], respectively.
Lemma 2.1. I[fEX = 0, then the following statements are equivalent:

(a) X isin the domain of attraction of the normal law;
() xE|X[I{|X]>x}=0((x));
(c) EIX|“I{|X]| < x}=0x*2(x)) fora > 2.

Lemma 2.2, Let W, W, ..., W; be i.i.d. random variables. Then for any 0 <r <1 — 1,
l
P(Z[{Wj < Wi} >z—r> <r/l.
j=1

Lemma 2.3. Assume that the positive random variable X has mean p (> 0) and is in the
domain of attraction of the normal law and t, be a positive integer-valued random variable,
in addition, if there is a positive constant sequence {b,} tending to infinity as n — oo such that
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th/bn Ly %, where M isa positive random variable having a discrete distribution and independent
of {Xi; i 2 1}. Then

In
s Z(i—l)iuv. @2.1)

J2v2 o ke

Proof. Since X is a positive random variable having a discrete distribution and independent
of {X;; i > 1}, it is easily seen that we only need to prove (2.1) under the condition #, /b, N c,
where c is a positive constant. Denote k,, = [cb, ], here and in the sequel, [x] stands for the inte-

ger part of x, le = Zhj]] and C denotes a constant whose value can differ from line to line. It is
obvious that t,,/ k;, L, 1. Put X;f(k,,) =(X; —wI{IX; —ul <, }and SFky) =D 1, X;‘f(kn).
We show V,f / szn L, 1 first. To see this, we need the following fact,

Z?:I(Xj - X)?

m — 1 as. (n— 00). (2.2)
j=1\4;

Indeed,
Yo =X Y (X = —n(u—X)?
(X = w? > (X — w)?

B (n—X)?

Qo1 (Xj =) /n
We can choose two constants M > 0 and 0 < 6 < 1 such that P(|]X — u| > M) > § > 0, hence,
in view of the strong law of large numbers, we have for large n,

=1

(2.3)

w=x? (1 —X)
Qi (X —w/n i (X — w?H{IXj — ul > M})/n
- (n—X)?
M HIX =l > MY)/n
B o(1)
— M2[P(IX — | > M) +o(1)]
=o(l) as. (2.4)

which together with (2.3) imply (2.2). For any fixed 0 < ¢ < 1, we choose a ¢’ small enough such
that [1/¢’] —2/&? > 0. Moreover, we denote the event

In 2 n
A:{ 1 ijl(xj_ﬂ) <Vt3< 1 Z,{_l(xj_li)z}'

Fon Sy2 S g vk
1+SZ]-:1(XJ'—M)2 sz,, 1 8Zi:1(Xj_M)2

Then for large n we have

P(|th — Vk2n| > 8Vk2n)

V2
<Pl|—% -1
%

kn

> g, |ty — kn| < 'ky, A) + P(AC) + P(Ita — kn| = €'kn)
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tn 2
d(s e R R R OO R GRS
i=1\ A — 1

(1+&")ky
( > —m2>sZZ<X —m)

Jj=kn+1
kn kn
+ P( Y. XYy (X - mz) +P(A) + P(ltn — knl > &'kn)
j=(1—&"k,+1 j=1
i=Pi+Py+ P+ Pu. (2:5)

Obviously, P3 LN 0, Py L, 0 and

(1+€")ky (1+&)ky
P1<P(2 PSRN (xj—u)z)
J=kn+1 j=1
(1+&")k 5 (+e)k
( Z (Xj =)’ <— > (X —u))
J=kn+1
Let
(14&' =i =D& Yky
W; = > (X —w)? fori=1,2,...,[1/¢]+1.
j=(4¢&"—ie")k,+1
Then by Lemma 2.2 we have
(14+-&"k, (1+<c Vky,
( Z (X; —u)2<— > X —wz)
J=kn+1

2
< P(Wl +Wot o+ Wyt < 8—2W1>

[1/61+1 )
<P H{w; > W —
(% rwzw<2)

j=1

{nd

[1/&'1+1 )
:P( Imq<wn>umq+1—7)
j=1 ¢
2/52

< m, (2.6)

which implies P; L) by letting ¢’ — 0. Similarly, we have P, Zo. V,i / szn Lo1is proved.
On the other hand, we have szn / B,f” (ky) L, 1 from (2.2) and the formula (18) in Csorg6 et al. [5].
Clearly, it suffices to prove

ad XX&—Q NV 2.7

J2BE (ky) i1 \KH
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for showing (2.1). Note that

1,
w n Sk )
S 2 2
J2B2 (kn) k=1 <’W

1 In 1 k
== % [(Si;(kn) —ES{ (k) + > _(Xj — wI{IX; — p| > g, }
\/ZB]%n(kn) k=1 j=1
k
—EY (Xj—wI{IX; —ul> nk,l}}. (2.8)
Jj=1

In view of Lemma 2.1, we have

Pl|—— X;—=mH{IX; — pl >, }
(,/23 (k); [Z

k
—EZ(Xj—IL)I{|Xj—M|>77k,,}:| >s)

j=1
2(1 + &)kyEIX — plI{|X —

< 2 EDGEIX — plHIX —pl >} |
£\/2B{ (kn)

_ Chy I(,)
= T ~0< ) + Py —0 (2.9)

as n — oo. From Lemma 1 in [12] and the formula (16) in [5], we have

Nk,

kl‘l
1 S;:(kn) - ES;:(kn) i}N

/282 (ko) ;; k

Now, we only need to prove

(2.10)

ty % _ * kn * _ *
I [ i () Esk<kn>_zw}go @.11)

J/2B2 (k) g g

k=1 k=1
by (2.8) to (2.10). Write
Lo &\ (85 (k) — ES} (Kn)|
< P( max (Z — ) k k > «/EsBkn (kn)>

U SpGkn) —ESf(kn) i i (kn) — ES} (kn)
k

k
k=1 k=1

( 1
P
V/ 2Bz, (kn)
kn<j<O+eda\ t=) k

. .
- 1S} (kn) — ES§ (k)|

P V2e By (k P

* ((IS’I)%ffjékn(Z l;) k > V2B, (ky) | + P4

=1
=:Ps+ Ps+ P4 (2.12)
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and

Ps

LIS L k) —ESE L (k)
P|{ max kn k7 ku kR \/EsBkn (kyn)
1<j<e’kn P ky, +k

&'ky
P<|S,fn(kn)—ES,fn(k,,)\Z ! >«/§83kn(kn)/2)
k=1

) otk
ik
+ P( max 2 pl (X7 (kn) — EXF (k)| > /26 By, (k,,)/2>
=: P51 + Ps;. (2.13)

By the Markov inequality and the formula (16) in [5] again, we have for large n,

Psi < [log(1 +&")]*Var 5§, (ky)

&2 B} (kn)

2
< ———[log(1 4+ &) | knl
25 (kn)[ g(1+ &))"kl (1k,.)

C 2
< 8—2[log(1 +&)]" =0 (2.14)

as e’ — 0, and

> 2¢By, (ky) /4)

J
/
Psp < P<1<r}1§§kn lglog(l + &) (X} (kn) — EX[ (kn))

< ——[log(1 + &) e'knl
ers o loet +e0 T ekt

< C[log(1 + 8/)]28’/82 -0 (2.15)

as ¢’ — 0. P¢ — 0 can be proved by the same way. The proof is completed. O

The next two lemmas are due to Blum et al. [3].

Lemma 2.4. Let Wy, X; p, Y,E,{L, and Z,(,{)n be random variables for m,n = 1,2, ..., and j =

1,..., k. Suppose

k
Wn == Xm,n + Z Yn(zl,ztzr(nl,z
j=1
and
(A) lim,,— o limsup,_, o, P(|Y,ff;2l| >¢e)=0foreverye >0and j=1,...,k;
(B) limps— o limsup,,_, o, limsup,_, o, P(|Z,(,{,)n| >M)=0forj=1,...,k;

(C) the distributions of {X, n} converge to the distribution function F for each fixed m.

Then the distribution functions of {W,} converge to F.
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Lemma 2.5. Let {k,} and {m,,} be sequences tending to infinity with k, < m,,, and A, be an event
depending only on &, ..., &n,, which is a sequence of independent and identically distributed
random variables. If A is any event, then

limsup P(A,|A) =limsup P(A,),
n—0o0 n— oo
where we set P(A,|A) = P(A,) if P(A) =0.

By Lemmas 2.4 and 2.5, we will show (2.1) is still valid under the conditions of Theorem 1.1.

Lemma 2.6. Under the conditions of Theorem 1.1, we have

tn S
s (-" - 1) ENyYS (2.16)

1/2V,3 k=1 ki

Proof. Let m, k be positive integers, define w,, = k/2™ when (k — 1)/2" < v < k/2™ and

Mm,n =1In + [bn (Hm — V)]

Note that w,, is discrete for each m, 0 < p,, — v < 1/2™ and

Mm,n ty [by (e — V)] p
— =t 2.17
i D0 s > 2.17)

asn — oco.Put S} =37, Sihut X (mbn) = (X — W IIX — ] < My, ) and S (b)) =
S5 X% (mby)- Then

In

1% Z(E . 1) — S//Lm,n + St/n - S//Lm,n
J2v2 o ke 2VR 2B )

\/ 2‘/1%171,51 - 2Vt3 Sl,lm,n

+
vV zvtz \/ zvl%m,n
= Xy + Y ZW + Y222 . (2.18)
It follows from Lemma 2.3 that for each fixed m, X, , = Z,(,i)n 4 Nasn— oo by noting (2.17),

S0 it is easy to see that Zmz,),, satisfies condition (B) of Lemma 2.4. Moreover, P(v <m/2™) — 0

as m — oo and for m /2™ < v, we have

lim 2B < +1/m)T =150 (2.19)
n— 00 v

Mm,n — In
In

as m — oo, which together with (2.17) imply that

1,
"2 (2.20)
/'Lm bn

as n — oo and m — oo. By the same way which is used in Lemma 2.3 we have
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VZ V2
MTYRSY 2, 221
VMmbn Vﬂmbn
and
V2
In LN (2.22)

Bimbn (mbn)

as n — 0o and m — o0. (2.21) and (2.22) imply that Y(ZL and Z,, () m.n satisfy the conditions (A)
and (B) of Lemma 2.4, respectively. Next, we only need to show Y,SL L, 0 as n — 0o and

m — oo for showing (2.16). For any ¢ > 0,
)

2B | (tmbn)

> 27 >+P(‘Mm’" — Um
by

lim sup limsup P <'
m—o0 n—>00 232 b (Mmb )

!/ !
S[n Sﬂm n In

b

> 2_’") +P(lv = pm| > 2_”’)}

>§

> €,

Mm,n —v < 2—m+l
b

n

_U‘ gz—my

< limsup lim sup{ P (

m—0oQ n—oo

P
+e( |

— =
n

S~

m—>o00 n—>00 L2

|#_v|<27771+1

< limsup limsup P ( - max —_—
lb 2B,imbn (Mmbn)

m-2m / !
k—1 k S; =S
< lim sup lim sup E P —SV<g-,  max — L __|>¢
m—>00 n—>00 om 2 I —vI<2™" ,/233 b (mbn)

j — 1
| —vi<em

-1
+ lim sup lim supP(v < mzm orm < v)

m— o0 n—oo

m-2" / / / /
k—1 k IS; =S|I+ 1S — S|

< limsup limsup » P( SV <o max — ">
m—>00  n—>o00 2 |bLn—V|<2_m 1/2Bimbn(,uvmbn)

|1717_v|<27m+1

(where t = [b, (k — 3)27"])
m-2"

< limsup Z lim sup 2P

&
max — S/ > — ZBZ m( b )
m—>0 00 (bn(k—3)2’"<r<b,,(k+3)2’" /| 2V = Pky /2 (HmOn

k—1 k k—1 k
—<v<— )P <v< — (2.23)
2m m 2m 2m
Denote s = [60,27"]. When (k — 1)/2" < v < k/2™, we have

&

P( max S =S| > 5 2B (umb )
bn(k—3)2*’”<r<hn(k+3)2*m| ;=S| 2 kby /2 (Hinbn)
g -5 2 m )

P, 9 =811 > 52850, Ot
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¢ LHhp2
> E ZBkb,,/2”’ (/’Lmbn)
‘/ kb /2m(/fLmb ))
Zt—}— Z( t+j — W) > \/ kbn/zm(ﬂmbn)>

—: P; + Ps. (2.24)

"\ Si4i —ESi4i
t+i

(ISz ESz

+P( max

1<r<s

Write

s
1 €
P; < P<|S;‘(umbn) —ES} (tmb)| ) 7~ gV 2Bl (umbn>)
i=1

A

t
= 2 EX; = wH{|(X; = ] > i,
j=1
=: P71 + Pp. (2.25)

t
Y X = wH{[(X) = 0] > n,, )

j=1

N

1 €
Z i+i 8V 2B/?b,,/zm(P‘mbﬂ))

‘We estimate P first,

32 d
Py ————Var (X; =) |(Xj — )| < Npppy | -log(1 +s/1)
EzBI?b /zm(ﬂmbn) (Z ! {| ! | g }

< Ctl(Mub,) s

S5~
8szbn/2m (Umby) 1
C

< —. 2.26
oy (2.26)

By Lemma 2.1,
_ CIEIX — ulI{1X — pt] > Ny, b, }

P < >
8‘/ Bkbn/zm (Mmbn)

Cb, 2™ Y l (rmmbn)>

< : (
e/ By jan mbn) N Mhinbr

Ch, 27"
<— -o(1)
&by

-log(1+s/1)

o)
= -o(1). (2.27)

In view of Lemma 2.5 and (2.25)—(2.27) we have
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m-2™
e k—1 k
lim su limsupP|{ |S; — ES, —> 2B?2 - b —— << —
m—>oop E n_)oop <| t ‘| E 4\/ kb /2 (mbn) om 2m)
— 1
~P(k <v< i) =0. (2.28)
2”1 2m

Similarly, we have

m-2"
lim sup Z limsup P < max

\/ kbn/Z’" (mbn)

Zt+ Z( t+j — W] >

m—00 n—00 I<r<s
k—1 k k—1 k
<v<—)-P( §U<—>=0. (2.29)
om om om om

So Y, £ 0 is proved by (2.23), (2.24) (2.28) and (2.29). The proof is completed. O

Proof of Theorem 1.1. Denote T = k ,k=1,2,.... By the strong law of large numbers, it
follows that for any § > O there exists a pos1t1ve 1nteger R such that

P(sup | Ty — 1] >8) < 4.
k>R

Consequently, there exist two sequences {3,,} | 0 (61 = 1/2), {R,(,ll)} to0 (m=1,2,...) such
that

P( sup [Ti—1] > am) <5
k> Ry,
At the same time, the strong law of large numbers also guarantees that there exists a sequence
{(RP} 100 (m=1,2,...) such that

sup |Tx —1|<1/m as.
k>=RP

Let R, max{R(l) R,(nz)}, we have

P( sup |Te — 1] >5m) <8, and  sup [Ti—1]<1/m as. (2.30)
k>R k>Rn

For any real x, write

tn
< Zlog(Tk) < x)
. /2V

> log(Ti) < x. sup |Ti — 1] > 8y, )

:P(\/ﬁ k> Ry

Zlog(Tk) <x, sup |Tx — 1] <

In
+P
1/2V k2 R

=: Py + Pyo. (2.31)
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Obviously, Py < §,,. As to Pjg, we use the expansion log(1 +x) = x + ﬁ, where 6 € (0, 1)
depends on x € (—1, 1). Write
M Rm/\(tn_l) /»L In
Py = p<_ > lg)+— Y.  logl+T—1<x,
,/2V,f k=1 ,/ZV,f k=R Aty —1))+1
sup |Tx — 1| < 0
k>R
" RuA(t,—1) m In
= P(— Yo logTo+—— Y (G—D
,/2V,f k=1 2V,f k=R A(ta—1))+1
1,
4 T, — 1)?
+L %<x, sup |Tk_1|<5m>
V2V2 k=gt -ty+1 T Te= Do) k>R

Ry A(th—1) m Iy
o ol +— > (Ti—1D

_ p<_ﬂ
V2Ve k=l V2V k=R A —1)+1

1,

W d (Ti — 1) )

+ | L= E — I[ sup |Tk—1|<8m}<x
(V 2Vl% k=(RuA(ty—1))+1 (1 + (Tk N 1)9]() k2 R

i RyA(t,—1) m In
- p( Yo leg(T+— Y.  (Tki—D<x,

V2VE k=l V2ViE k=R A —1)+1

sup |Tx — 1] > 6
k>R

=: P1o,1 — P10,2, (2.32)

then we have Pjp2 < 8, and

M Ry Aty —1) m In
Pw,lzp(— > (log(To) — Te+ 1) + > (T@-1

V2VE k= J2V2 k=

t)l 2

w (Ti — 1) )

+ = 3 AT 1{ sup |Tk—1|<5m}<x .
( /2th k=Rt L Te = DOk) k> Ry,

(2.33)

First, in view of Lemma 2.6, we have \/2"? Z;(”: (T =1) LN N'. Secondly, observe that for any
fixed m, it is easy to obtain fn

R A(ta—1)

LY (logm - Ti+1) B0 (2.34)
2V =
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as n — oo by noting that th L, c0. At last, we deal with the third term in the large brackets of
(2.33) for two cases.

(1)if Ry, > t, — 1, then as n large enough,

1,

i Ty — 1)?

<—/M— 2 %)’l sup 1T =11 <
2V k=Rt 4 Tk = Do) k=R

LN (7, = 1)?
= a2 A+ (T, = D6,)?

as. (C
2.0 (2.35)
V2V
as n — oQ0.

2)if Ry, <t, — 1, then R, + 1 < t,,. We suppose t,, /by, Lo (c is a positive constant) first.
By denoting k,, = [cb, ], we have 1,/ k, L, 1 and

1

" " (T — 1)

(— Y aTa—Tew 1 sup |7 — 11 <)
/Zsz k=Rt —ty1 LT Te— DOk k= Ry

k

" Ty — 1)2

Loy ("—)2 1{ sup |Tk—1|<5m}
/2V;f eat (1 + (Tx — 1)6r) k>R

n kn 2
w (Tr — 1)
N _ )i suwp T - 1<)
(,/ZV,2 (k:%,:ﬂ k=§+1> 1+ T = D? ) ik, !
=: P11 + Pp2. (2.36)
Let n, m be large enough, by noting (2.30), we have

k k
d Ty — 1)? C g
= Y mater < e, L BV
287 (kn) k=R +1 k k B (kn) k=Rp+1
k
s. C "
<—— Y m-1bo (2.37)

my/ B (kn) k=Rp-+1

as m — oo by the same way used in (2.8)—(2.10), which together with the fact th / B,?n (kn) LS|

imply that P Zo. Similarly, Pi> L, 0 can be proved by the same way used in (2.11) and by
noting (2.30) again. It is easily seen that Py L, 0 and P> L, 0 still hold if t, /b, convergence
in probability to a positive and discrete random variable which is independent of {X;; i > 1}.
Then, imitate the similar way used in Lemma 2.6, we can conclude that

= (Tr — 1)
/Zth K= (R D)+ 1 (I + (Tr — D) k>R

when t, /b, L, y, the detail is omitted here for sake of avoiding the repetitions. Consequently,
P1o,1 = @(x), a standard normal distribution function. Write
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"
In Vi In
S n
P{ log ||—k <V2x ) =P LE log Tj < x

k=1 ki ,/2Vt3 k=1

= Py + Pio,1 — P1o,2, (2.39)

then the proof is completed by noting | P9 — Pio2| < 28, — 0 asm — oo and P ; Yy P (x) as
n—o00. 0O
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