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a b s t r a c t

The quantitative structure–activity relationship (QSAR) studies are investigated in a series of chloroethyl-
nitrosoureas (CENUs) acting as alkylating agents of tumors by neural networks (NNs). The QSAR model
is described inaccurately by the traditional multiple linear regression (MLR) model for the substitution
of CENUs at N-3, whose characteristics play key roles in the biological activity. A nonlinear QSAR study is
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undertaken by a three-layered NN model, using molecular descriptors that are known to be responsible
for the antitumor activity to optimize the input variables of the MLR model. The results demonstrate that
NN models present the relationship between antitumor activity and molecular descriptors clearly, and
they yield predictions in excellent agreement with the experiment’s obtained values (R2 = 0.983). The R2

value is 0.983 for the 5-8-1 NN model, compared with 0.506 for the MLR model, and the nonlinear model
% of
onlinearity

olecular descriptor
is able to account for 98.3

. Introduction

Most tumors are likely to be the result of mutagens, such as
obacco smoke, heat-processed foods and endogenous metabolic
roducts, which generate reactive electrophilic species that alky-

ate DNA [1–4]. The consequences of alkylation appear to be
elated to DNA damage in the form of single-strand breaks and
ross-linking. Despite their mutagenic and carcinogenic poten-
ial, alkylating agents also have cytotoxic properties for the DNA
eplication of tumor cells and were used in chemotherapy against
arious tumors [5–8].

Chloroethylnitrosoureas (CENUs) are an extremely active
lass of alkylating agents, including 1,3-bis (2-chloroethyl)-1-
itrosourea, 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, 1-(2-
hloroethyl)-3-methylcyclohexyl-1-nitrosourea, and so on. The
ENUs have a wide range of activities against various neoplasms,
uch as leukemias, encephalomas, lymphomas, melanomas and
ome solid tumors [9,10]. The CENUs modify nucleosides by trans-
erring chloroethyl groups to nucleophilic sites between the double
trands in crosslink DNA and are an attractive possible source of
ytotoxicity [11,12].
Quantitative structure–activity relationship (QSAR) studies are
athematical equations that quantitatively correlate chemical

tructures with biological activity. These relationship models have
roved to be helpful in understanding the influence of molecu-

∗ Corresponding author. Tel.: +86 10 6739 6211; fax: +86 10 6739 2001.
E-mail address: hongyan@bjut.edu.cn (H. Yan).

093-3263/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
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the variance of antitumor activities.
© 2011 Elsevier Inc. All rights reserved.

lar properties on the biological activity of different compounds,
ultimately providing rational clues for the development of new
compounds with desirable biological properties. Because they pro-
vide valuable information for molecular design and medicinal
chemistry, QSAR studies have been widely used in drug design and
discovery [13–15].

Significant efforts have been devoted to the QSAR of CENUs,
seeking to enhance their antitumor activity with fewer hazards.
An estimate of the antileukemic activity of 17 l-(2-haloethyl)-l-
nitrosoureas was computed through linear regression equations
for the relationships between biological parameters and chemi-
cal and physicochemical parameters [16]. The correlation between
the antitumor activity and the lipophilic character (Log P) of the
nitrosoureas, including a rather wide range of chain, circular, aro-
matic hydrocarbon and glycosyl side groups, indicated that Log P of
nitrosoureas was the most important parameter determining their
antitumor activities [17]. The TOPS-MODE approach was used to
predict the rodent carcinogenicity of a set of nitroso-compounds,
by establishing the relationship between carcinogenic potential
and the length of the alkyl chains via a multiple linear regression
(MLR) model, which was able to explain the difference between
the nitrosoureas and hydroxyalkyl substituents [18]. By applying
an alternative replacement method to a large set of nitroso-
compounds, the QSAR approaches were expanded to typically 62

chemicals, and were able to explain 84.3% of the experimental
variance [19]. However, the nonlinear QSAR of CENUs, especially
considering the influence of the structural characteristics of the N-
3 substituents that play the key role in their biological activity, have
not yet been reported.

dx.doi.org/10.1016/j.jmgm.2011.01.007
http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
mailto:hongyan@bjut.edu.cn
dx.doi.org/10.1016/j.jmgm.2011.01.007
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Fig. 1. General structure of CENUs.

Two major concerns in QSAR studies are how to find the opti-
al molecular descriptors and the optimal statistical methods. For

he selection of suitable descriptors, a powerful variable selection
ethod, such as MLR, genetic algorithm (GA) or partial least squares

PLS), is needed. For the statistical method, certain regression-
ased techniques have been applied to QSAR studies, such as MLR,
rincipal component analysis (PCA) and PLS. These algorithms
epend on an assumed linear relationship between the dependent
ariable and one or more descriptors [20]. Hence, the output is a
inear function that is readily understood and easily interpretable.
owever, in many cases the variables are so complex that they may
ot be sufficiently precisely emulated by a simple linear regression
odel to describe the relationships between structure and bioac-

ivity. In contrast to the simple QSAR methods based on regression
nalysis, neural networks (NNs) have recently been successfully
mplemented to solve complex nonlinear relationships, and they
o not require any prior model of input–output relations [21–24].
he combination of NN and the MLR could be taken as a feature
election method to discover the possible relationship between the
nput descriptors and the output bioactivity, which can be used for
onlinear phenomena or curved manifolds [25,26]. In this case, the
N acts as a nonlinear regression method, whereas MLR selects the
est set of input variables for NN.

We propose, therefore, to use NN to develop a nonlinear QSAR
odel with better predictive power, using descriptors known to

e responsible for the antitumor activity of CENUs with the diver-
ity substitutions on the N-3. In the present work, the correlations
ith activity of a series of 58 CENU derivatives with different steric

eatures or various hydrophilic congeners are examined by the mul-
iple linear regression and neural network chemometrics methods.

. Methodology

.1. Database set

A series of 58 CENU compounds, listed in Table 1, are subjected to
SAR analysis. These compounds were first synthesized by several
uthors [27,28]. Their general structure is presented in Fig. 1. In
able 1, C is the molal concentration (mol/kg) of CENUs producing a
-log kill in the viability of leukemia cells (i.e., a 1000-fold reduction

n the number of tumor cells). We have collected those claimed to
e relevant for describing the antitumor activity variation of the
eries under investigation. Fifty compounds were selected as the
raining set for the model generation. Eight compounds (marked
ith an asterisk in Table 1) were selected as the test set based on the

riterion that the test set must represent a wide structural diversity
nd a range of antiviral activities similar to that of the training set.

.2. Molecular descriptors
The QSAR technique requires high-quality biological and chem-
cal data to produce a well-trained computational model that
an identify the physiochemical and structural properties of the
olecule that contribute to a certain biological outcome. In the
s and Modelling 29 (2011) 826–833 827

present work, attempts were made to correlate these properties
with a huge number of descriptors encoding the steric, hydropho-
bic, electronic and structural features of CENUs. Thus, the molecular
descriptors were generated using the Gaussian 03 program package
and the Hyperchem 7.0 package [29,30]. To avoid including redun-
dant or unnecessary information in this analysis, pairs of variables
with a correlation coefficient greater than 0.9 were classified as
interrelated, and only one of them was included in the model.

2.3. Regression analysis

A step-wise multiple linear regression procedure has been used
for variable selection or model development in biological systems.
It is clear that MLR models can be obtained using a step-wise mul-
tiple regression procedure; among these models, the best one must
be chosen [31,32]. For this purpose, it is common to consider four
statistical parameters: the number of descriptors, the square corre-
lation coefficient (R2), the standard deviation (S) and the F statistic.
A reliable MLR model is one that has high R2 and F values and low
S and number of descriptors.

2.4. Neural networks

Because neural networks are artificial systems, they use a large
number of interrelated data-processing neurons to emulate the
function of brain. Although there are a number of different NN
models in use today, the most frequently used type of NN in QSAR,
and the one employed in our research, is the three-layered back-
propagation neural network. In the back propagation strategy, the
neurons are arranged in an input layer, a hidden layer, and an out-
put layer. Each neuron in any layer is fully connected with the
neurons of another layer, and there are no connections between
neurons in the same layer. The network received a set of inputs as
the training set. After training, a nonlinear transfer function was
applied to each node in the hidden layer. The goal of training the
network is to optimize the weights between the layers so as to
minimize the output errors [33,34].

3. Results and discussion

3.1. Variable selection

The correlation between the computed structural parameters
and the physicochemical properties was first constructed based
on the training set through linear regression analysis. As shown in
Table 2, five descriptors, the partition coefficient of lipophilic char-
acter (Log P), the energy difference between the Highest Occupied
Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular
Orbital (LUMO) (�E), the Mulliken charge of N1 (MUCH), the total
dipole (TD), and the single-point energy of CENUs (SPE), were iden-
tified and included in the MLR model, and there was no significant
correlation between the selected descriptors. The calculated values
of the descriptors are shown in Table 3.

3.2. Multiple linear regression model

The mechanism of the biological activity can be interpreted
using the proposed linear model. The final correlation equation is
the following:

Log
(

1
C

)
= 11.083 − 0.176 Log P − 18.931�E + 21.673MUCH
+0.088TD − 0.001SPE N = 50, R2 = 0.506,

S = 0.594, F = 9.019.
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Table 1
Chemical structures of the CENUs and their antitumor activity.

Noa R Obsdb Calcd

MLRc �Log (1/C) NNd �Log (1/C)

1 0.8530 0.9968 −0.1438 0.8497 0.0033

2 1.5900 1.3566 0.2334 1.5951 −0.0051

3 0.9180 1.3216 −0.4036 0.9158 0.0022

4 0.5910 1.2551 −0.6641 0.5913 −0.0003

5 0.8700 1.5277 −0.6577 0.8700 0.0000

6 0.7370 1.1403 −0.4033 0.7209 0.0161

7 1.5800 1.5035 0.0765 1.5800 0.0000

8 0.7400 1.1338 −0.3938 0.7363 0.0037

9 0.6050 1.3299 −0.7249 0.5999 0.0051

10 0.5620 1.2664 −0.7044 0.5620 0.0000

11 1.2500 1.0746 0.1754 1.2659 −0.0159

12 1.1600 1.1566 0.0034 1.1634 −0.0034

13 1.0900 1.0167 0.0733 1.2012 −0.1112

14 1.0900 1.0315 0.0585 1.2141 −0.1241

15 1.5500 1.0286 0.5214 1.2448 0.3052

16 0.2940 0.9771 −0.6831 0.3143 −0.0203

17 0.7630 0.9286 −0.1656 0.7753 −0.0123

18 0.6840 0.9120 −0.2280 0.6839 0.0001

19 1.2300 1.2610 −0.0310 1.2300 0.0000

20 1.6500 1.4596 0.1904 1.6499 0.0001

21 1.6600 1.7239 −0.0639 1.6604 −0.0004
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Table 1 (Continued)

Noa R Obsdb Calcd

MLRc �Log (1/C) NNd �Log (1/C)

22 1.8200 1.3490 0.4710 1.8202 −0.0002

23 1.2800 1.4524 −0.1724 1.2140 0.0660

24 1.4400 1.5894 −0.1494 1.4348 0.0052

25 1.3600 1.4779 −0.1179 1.3764 −0.0164

26 1.0200 1.4594 −0.4394 1.0694 −0.0494

27 1.9100 1.8952 0.0148 1.9093 0.0007

28 1.8700 1.8459 0.0241 1.8782 −0.0082

29 1.3800 1.3408 0.0392 1.4315 −0.0515

30 1.4700 1.3408 0.1292 1.4313 0.0387

31 1.6500 1.3549 0.2951 1.6504 −0.0004

32 1.5500 1.5447 0.0053 1.5548 −0.0048

33 1.4700 1.2916 0.1784 1.4644 0.0056

34 1.6300 1.3053 0.3247 1.6556 −0.0256

35 1.4700 1.3787 0.0913 1.4700 0.0000

36 1.5100 1.5277 −0.0177 1.5082 0.0018

37 1.6900 1.2882 0.4018 1.6450 0.0450

38 1.0900 1.1608 −0.0708 1.0796 0.0104

39 1.4100 1.5601 −0.1501 1.4099 0.0001

40 1.5100 1.2756 0.2344 1.5439 −0.0339
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Table 1 (Continued)

Noa R Obsdb Calcd

MLRc �Log (1/C) NNd �Log (1/C)

41 1.3400 1.5170 −0.1770 1.3400 0.0000

42 1.2500 1.4247 −0.1747 1.2492 0.0008

43 1.2700 1.4059 −0.1359 1.2701 −0.0001

44 0.5990 0.8091 −0.2101 0.5990 0.0000

45 1.7600 1.8833 −0.1233 1.7600 0.0000

46 1.4800 1.7581 −0.2781 1.4800 0.0000

47 1.9100 1.8287 0.0813 1.9100 0.0000

48 1.9300 1.6326 0.2974 1.9274 0.0026

49 2.1100 2.2566 −0.1466 2.1100 0.0000

50 1.8200 2.2731 −0.4531 1.8115 0.0085

51* 1.2900 1.3749 −0.0849 1.2898 0.0002

52* 1.1000 1.3320 −0.2320 1.0995 0.0005

53* 1.3500 1.3718 −0.0218 1.3500 0.0000

54* 1.3200 1.4049 −0.0849 1.3200 0.0000

55* 1.2400 1.2225 0.0175 1.2398 0.0002
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Table 1 (Continued)

Noa R Obsdb Calcd

MLRc �Log (1/C) NNd �Log (1/C)

56* 0.9510 1.3459 −0.3949 0.9509 0.0001

57* 1.2100 1.0699 0.1401 1.2627 −0.0527

58* 1.4600 2.4978 −1.0378 1.4619 −0.0019

a The numbers marked by an asterisk are the CENUs in the test set.
b Experimental values taken from Refs. [24,25] for CENUs 1–58.
c The values predicted from the MLR equation.
d The values predicted from the NN′ architecture 5-8-1.

Table 2
Correlation matrix for the five selected descriptors.

Log P �E MUCH TD SPE

Log P 1.000

a
�
i
c
a
s
a
G
c
C

t
(
o
(
b
s

F

�E 0.037 1.000
MUCH 0.544 0.190
TD −0.137 0.130
SPE 0.238 0.143

The calculated results of the MLR model for the whole data set
re shown in Table 1 and Fig. 2A. The min/max absolute values of
Log (1/C) were 0.0034/0.7249 and 0.0175/1.0378 for the train-

ng and test sets, respectively. In the training set, only 28% of the
ompounds had a �Log (1/C) less than 0.1, and no compound had
�Log (1/C) larger than 1. In the test set, 50% of the compounds

howed a �Log (1/C) less than 0.1, and only compound 58 showed
large �Log (1/C), i.e., 1.0378, which can be considered an outlier.
enerally speaking, the magnitudes of �Log (1/C) were strongly
orrelated to the structural characteristics of N-3 substituents of
ENUs.

When the substituents of N-3 are chain alkyls (compounds 1–5),
he more branched alkyl or carboxyl groups had a higher �Log
1/C), which were probably relevant to the steric-hindrance effect

f branched groups. When the substituents of N-3 were cyclopentyl
compounds 8–10), the �Log (1/C) were relatively large, proba-
ly because of the steric effects and electron-withdrawing groups,
uch as carboxyl or ester groups. The cyclohexyl substituents on

ig. 2. Plots of predicted versus experimental Log (1/C) values of the training set (black d
1.000
−0.070 1.000

0.195 −0.083 1.000

N-3 (compounds 11–43) were the largest classes of compounds
chosen for the training set, and the �Log (1/C) were probably
relevant to the properties and steric or locational effects of sub-
stituents in the cyclohexyl ring. The 3-methylcyclohexyl CENUs
(compounds 13 and 14) had �Log (1/C) values of 0.0733 and 0.0585,
and the 4-methylcyclohexyls (compounds 15 and 18) had relatively
larger �Log (1/C) values of 0.5214 and 0.2280, respectively. The
cis-3-methylcyclohexyl CENUs (compound 13) had a �Log (1/C)
of 0.0733, which was larger than that of trans-3-methylcyclohexyl
(compound 14) of the 0.0585 �Log (1/C). There were two hydroxyls
distributed at positions 2 and 6 of cyclohexyl (compounds 27 and
28), and their �Log (1/C) values, 0.0148 and 0.0241, were lower
than that of one hydroxyl at position 2 (compound 22), �Log (1/C)
of 0.4710. The cis-4-methoxylcyclohexyl CENUs (compound 29),

had a �Log (1/C) of 0.0392, which was lower than that of the trans-
4-methoxylcyclohexyl (compound 30), �Log (1/C) of 0.1292. The
�Log (1/C) values of glycosyl substituents on N-3 were also relevant
to the steric effects of substituents in the hexatomic ring (com-

ots) and the test set (red triangles) for (A) MLR model and (B) 5-8-1-NN model.
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Table 3
The calculated results of the selected molecular descriptors.

Noa Log P �E MUCH TD SPE

1 3.55 0.1841 −0.3461 4.0551 −1167.98
2 1.53 0.1826 −0.3527 2.4177 −1430.99
3 3.11 0.1675 −0.3425 3.6364 −1241.78
4 0.91 0.1822 −0.3499 1.8818 −1199.27
5 0.60 0.1822 −0.3563 3.7932 −1387.84
6 3.42 0.1840 −0.3464 4.1925 −1281.09
7 0.50 0.1815 −0.3549 3.3447 −1159.96
8 2.19 0.1842 −0.3474 4.1408 −1088.13
9 1.82 0.1829 −0.3497 3.7730 −1276.69

10 2.88 0.1831 −0.3483 3.9768 −1355.32
11 2.83 0.1842 −0.3469 4.1780 −1127.46
12 2.45 0.1836 −0.3472 4.3084 −1126.23
13 3.37 0.1842 −0.3470 4.1779 −1166.78
14 3.30 0.1842 −0.3470 4.2064 −1166.77
15 3.30 0.1842 −0.3471 4.1975 −1166.78
16 4.06 0.1842 −0.3468 4.1652 −1245.40
17 4.60 0.1842 −0.3468 4.2472 −1284.72
18 4.66 0.1842 −0.3472 4.2768 −1284.72
19 2.89 0.1765 −0.3555 4.2879 −1355.33
20 2.16 0.1842 −0.3469 4.6238 −1355.34
21 2.35 0.1842 −0.3462 7.3879 −1394.64
22 1.34 0.1828 −0.3560 5.4015 −1202.67
23 1.11 0.1841 −0.3477 4.3520 −1202.67
24 1.00 0.1843 −0.3462 5.3628 −1202.67
25 1.11 0.1841 −0.3475 4.5927 −1202.67
26 1.10 0.1841 −0.3475 4.3626 −1202.67
27 0.16 0.1846 −0.3494 7.1561 −1277.88
28 0.69 0.1846 −0.3494 7.2087 −1317.20
29 2.09 0.1841 −0.3473 4.4989 −1241.98
30 2.09 0.1841 −0.3473 4.4986 −1241.98
31 2.56 0.1822 −0.3567 6.2177 −1355.32
32 1.66 0.1840 −0.3479 4.7941 −1355.32
33 1.53 0.1840 −0.3478 2.0796 −1316.03
34 1.68 0.1840 −0.3477 2.5108 −1316.02
35 1.86 0.1840 −0.3484 3.8775 −1316.02
36 1.89 0.1840 −0.3480 5.0851 −1355.33
37 1.89 0.1840 −0.3476 2.2798 −1355.33
38 3.45 0.1828 −0.3486 3.4795 −1394.64
39 2.20 0.1838 −0.3487 5.7567 −1394.63
40 2.20 0.1840 −0.3476 2.2956 −1394.65
41 2.73 0.1834 −0.3530 5.1130 −1587.05
42 2.66 0.1840 −0.3478 2.7726 −1587.06
43 3.01 0.1841 −0.3520 3.8681 −1626.36
44 5.80 0.1839 −0.3453 3.9628 −1363.31
45 −1.02 0.1821 −0.3604 4.2677 −1503.53
46 0.80 0.1787 −0.3598 4.2660 −1621.43
47 0.82 0.1813 −0.3591 2.9324 −1846.96
48 1.32 0.1829 −0.3550 4.9406 −1503.53
49 1.04 0.1813 −0.3577 4.8542 −2114.13
50 0.67 0.1832 −0.3526 7.3314 −1772.93

51* 2.57 0.1752 −0.3428 3.2728 −1202.46
52* 2.59 0.1842 −0.3502 4.4407 −1391.00
53* 2.22 0.1841 −0.3474 3.8478 −1355.34
54* 1.75 0.1840 −0.3486 5.2923 −1202.68
55* 1.96 0.1821 −0.3589 4.0331 −1355.33
56* 2.73 0.1824 −0.3566 3.8396 −1587.06
57* 2.98 0.1838 −0.3480 4.1769 −1165.55

p
t

i
t
e
w
L
a
o
L

substituents on N-3 (compound 4) was improved from 0.6641 in
MLR to 0.0003 in the NN model. The �Log (1/C) value of CENUs
with cyclohexyl substituents on N-3 (compound 16) was improved
58* −0.66 0.1824 −0.3558 6.5529 −1886.27

a The numbers marked by an asterisk are the CENUs in the test set.

ounds 47 and 49) because their main structures were similar to
hose of cyclohexyls.

By interpreting the descriptors involved in the QSAR model, it
s possible to gain some insights into the factors that may affect
he Log (1/C) values of CENUs. As can be seen in the regression
quation, the Log P term is negatively correlated with Log (1/C),
hich indicated that the more hydrophilic a molecule, the lower its

og P value and the higher its antitumor activity. For example, the

ctivity of compound 11 (Log (1/C) = 1.0746) was lower than that
f 27 (Log (1/C) = 1.8952) with Log P reduced (11′ Log P = 2.83, 27′

og P = 0.16) by the introduction of two hydroxyls to the cyclohexyl.
s and Modelling 29 (2011) 826–833

The �E term negatively correlates with Log (1/C); a chemical
reaction could easily occur with the lowest �E value. That is to say,
the chloroethylation of CENUs occurred between the compounds
with lowest �E and DNA. For example, the activity of compound
1 (Log (1/C) = 0.9968) was lower than 3 (Log (1/C) = 1.3216), as �E
was reduced (1′�E = 0.1841, 3′�E = 0.1675) by the replacement of
n-pentyl with carboxyl.

The MUCH of N1 was positively correlated with Log (1/C) and
played an important role in the migration of the chloroethyl sub-
stitution. Our previous study has showed that the decomposition
of CENUs into chloroethyl-diazonium cations is the key step in the
alkylation of the DNA base reaction [35]. For example, the activ-
ity of compound 19 (Log (1/C) = 1.2610) was lower than that of
21 (Log (1/C) = 1.7239), and likewise the MUCH values were lower
(19′MUCH = −0.3555, 21′MUCH = −0.3462) after the replacement
of acetyl with carboxyl.

The other two descriptors, TD and SPE, correlated less with Log
(1/C) than the three considered above. The TD refers to the dipole
moments due to non-uniform distributions of positive and nega-
tive charges on the various atoms of CENUs. The electrical charges
were uniformly distributed in non-polar molecules, whereas, if
the electron density was shared unequally between atoms, as in
hydroxyl (–OH), the compound exhibited different polarities. Then,
the larger the dipole moment, the higher would be the Log 1/C
value. For example, the activity of compound 11 (Log (1/C) = 1.0746)
was lower than that of 28 (Log (1/C) = 1.8459), and the correspond-
ing TD value was lower (11′TD = 4.1780, 28′TD = 7.2087) because of
the polarity enhancement with the introduction of hydroxyl and
methyl to cyclohexyl. In addition, SPE was introduced into the
model because this descriptor reflects the conformational stabil-
ity of a molecule. The larger the SPE value, the lower would be
the Log 1/C value. For example, the activity of compound 8 (Log
(1/C) = 1.1338) was lower than that of 10 (Log (1/C) = 1.2664), and
the SPE was lower (8′SPE = −1088.13, 10′SPE = −1355.32), proba-
bly because of the easily hydrolyzable nature of ethyl carboxylate
ester.

3.3. Neural network models

The NN models were generated using the five descriptors
appearing in the MLR model as their inputs. One neuron, which
encoded the antitumor activity, constituted the output layer, and
the hidden layer contained a variable number of neurons. The input
values were normalized to [−1, 1], the number of neurons in the
hidden layer was limited to 4–8, the learning rate interval was set
to 0.05, the number of epochs was 104, and the goal was 0.01. The
training function, the adaption learning function and the transfer
function were designated as TRAINLM, LEARNGDM and TANSIG,
respectively.

The prediction results from the 5-8-1 NN model are given in
Table 1 and Fig. 2B. The min/max absolute values of the residuals for
the training and test sets were 0/0.3052 and 0/0.0527, respectively.
For the whole dataset, 94.8% of the compounds had residuals less
than 0.1. These results clearly show the strong correlations between
Log (1/C) and the structural characteristics of N-3 substituents of
CENUs. They also show some differences (especially for the test set)
from the MLR model, which confirms the nonlinear relationship
between structural information and antitumor activity.

For example, the �Log (1/C) value of CENUs with chain alkyls
from 0.6831 in MLR to 0.0203 in the NN model. The �Log (1/C) of
value CENUs with glycosyl substituents on N-3 (compound 50) was
improved from 0.4531 in MLR to 0.0085 in the NN model.
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Table 4
Statistical results of different NN models and MLR analysis.

Model R2 S

5-4-1 0.931 0.282
5-5-1 0.911 0.199
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5-6-1 0.919 0.298
5-7-1 0.947 0.224
5-8-1 0.983 0.119
MLR 0.506 0.594

.4. Comparison of MLR and NN models

The fitting quality of the MLR and NN models is estimated by
he square correlation coefficient (R2) and the standard error of
alculation (S) in Table 4. The results are also shown in Fig. 2. As
an be seen from the data, the R2 values of NN models range from
.919 to 0.983 for the 5-8-1 NN model for the training set, which

s significantly higher than the 0.506 value for the MLR model. This
eans that the NN model is able to account 98.3% of the variance

f the antitumor activity. This statistical parameter is also much
ore than the replacement method (RM), which was an alterna-

ive method on the base of elimination method (EM) and was able
o explain 84.3% of the experimental carcinogenic potency of 62
ypical nitroso-compounds [19]. The high correlation coefficients
iven by the trained NN models indicated that the Log (1/C) value
ignificantly correlated with the five variables adopted in this work.

. Conclusions

The NN models can be used to establish the QSAR model of
ENUs with higher accuracy, taking into account the influence of
he structural characteristics of the N-3 substituents. The antitumor
ctivity of CENUs was represented by linear and nonlinear models
ased on five-parameters (Log P, �E, MUCH, TD and SPE). A linear
odel was obtained by MLR, with R2 values of 0.506 and S of 0.594

or the training set. The R2 and S values from the nonlinear 5-8-1
N model for the training set were 0.983 and 0.119, respectively.
he results show that the nonlinear model is reliable and correctly
dentified the structural factors that play important roles in the
etermination of antitumor activity. The NN QSAR may be of con-
iderable interest for the design of new antitumor drugs and will
e analyzed in future studies to provide medicinal chemists with

mmediately useful features derived by NN analyses, allowing for
ore precise control of the antitumor activity of CENU derivatives.
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