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A Lie algebraic condition for global exponential stability of linear discrete switched impulsive

systems is presented in this paper. By considering a Lie algebra generated by all subsystem

matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new

criteria for global exponential stability of linear discrete switched impulsive systems. Moreover,

simple sufficient conditions in terms of Lie algebra are established for the synchronization of

nonlinear discrete systems using a hybrid switching and impulsive control. As an application,

discrete chaotic system’s synchronization is investigated by the proposed method. VC 2011
American Institute of Physics. [doi:10.1063/1.3594046]

Nowadays, the control of discrete system especially, the

discrete hybrid system, has received a great deal of atten-

tion, which provides a natural framework for mathemati-

cal modeling of many real-world phenomena such as

evolutionary process, biological systems, flying object

motions, and so on. However, until recently, the general

theory of discrete systems remained much weaker than

that in continuous-time case. This motivates us to investi-

gate the stability and its applications to discrete hybrid

systems. In this paper, we propose a new approach for

the stability of discrete switched impulsive systems and

synchronization of discrete nonlinear systems using a

hybrid switching and impulsive control. The Lie alge-

braic approach ensures the global exponential stability of

discrete switched impulsive systems under predesigned

dwell time conditions. Moreover, similar technique is

developed to accomplish the synchronization of discrete

nonlinear systems using a hybrid switching and impulsive

control. The main difficulty lies in the existence of both

stable and unstable subsystems as well as impulsive

behaviors. The conditions are easy to check and the

hybrid control demonstrates good performance.

I. INTRODUCTION

In the past decades, the study of hybrid systems has

been a hot research topic in the control loop, see Refs. 1–5

and the references therein. Switched systems are a class of

hybrid dynamical systems consisting of a family of continu-

ous and/or discrete-time subsystems, and a rule that orches-

trates the switching between them. Most recent efforts have

focused on the stability, stabilization, and controllability of

switched systems for both theoretical and practical reasons.

Among the methods contributed to the stability of switched

systems, the Lie algebraic approach is recognized to be

effective and interesting. Based on the assumption on system

matrices, Lie algebraic conditions can ensure the existence

of common quadratic Lyapunov function for the stability

analysis and system design of switched systems.3,4

On the other hand, discrete dynamic systems, which

arise from modeling processes with successive changes in

variables at discrete time, can be found in many applications

such as finance, economics, and so on. However, the control

theory of discrete systems is not fully developed compared

with the continuous-time counterpart.6–10 Different techni-

ques were utilized to investigate the analysis and control of

discrete hybrid systems, such as reachability,5 global stabili-

zation, stability, and bifurcation of nonlinear discrete sys-

tems11,12 and generating chaos for discrete delay systems.13

In practice, one kind of hybrid systems characterized by

switches of states and abrupt changes at switching instants

with certain logic rules is called switched impulsive system.

The instantaneous changes at certain moments come from

unexpected internal or external perturbations. Moreover,

switched systems with impulses have been used extensively

to describe systems in various applications, including infor-

mation science, electronics, and automatic control systems.

Because of technical difficulties, the dynamical behaviors

for such hybrid systems with switching and impulsive effects

are still under investigation from different viewpoints.14–16

From the control point of view, the hybrid switching and im-

pulsive control is effective in achieving stability and accom-

plishing synchronization.17–19 Nowadays, synchronization of

chaotic dynamics has been an active research area due to its

role in understanding the basic features of coupled nonlinear

systems and potential applications in communication, time

series analysis, and modeling.20,21 There have been several

results on the synchronization of hybrid systems using im-

pulsive control22–25 or hybrid switching and impulsive

control.16,18

However, to the best of our knowledge, there is no result

about the stability analysis of discrete switched impulsive

systems by the Lie algebraic approach. We present simple

sufficient conditions for global exponential stability of lineara)Electronic mail: zhaoshouwei@gmail.com.
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discrete switched impulsive systems based on Lie algebra

generated by coefficient matrices. It is worth mentioning that

all these matrices are not necessarily Schur stable. Lie alge-

braic feature of system matrices combining with dwell time

design achieves the global exponential stability. Moreover,

the advantage of hybrid control motivates us to study the

synchronization of discrete nonlinear systems by hybrid

switching and impulsive control. The main concern is how to

co-design the switching and impulsive control gain matrices

and dwell time for accomplishing the synchronization. The

advantage of this method is that conditions are easy to check

and the hybrid control can be designed flexibly according to

practical requirements.

The rest of this paper is organized as follows: Sec. II

gives some basic concepts and a lemma. In Sec. III, a Lie

algebraic condition is established for global exponential sta-

bility of discrete switched impulsive systems. Section IV

develops a new hybrid switching and impulsive control strat-

egy for the synchronization of nonlinear systems. In Sec. V,

a typical chaotic system synchronization is presented to

show the effectiveness of proposed results and comparisons

with switching control and impulsive control are discussed.

Some concluding remarks are drawn in Sec. VI.

II. PRELIMINARIES

Consider the following linear discrete switched impul-

sive system

xðk þ 1Þ ¼ Aik xðkÞ; k 6¼ sk;

xðsk þ 1Þ ¼ Bjk xðskÞ; k ¼ 1; 2; :::;

xðkþ0 Þ ¼ x0;

(1)

where the variable k 2 Zþ denotes the discrete time, the

state variable xðkÞ :¼ xk 2 Rn, and Aik and Bjk are n� n
matrices with ik 2 f1; 2;…; lg and jk 2 f1; 2; � � �mg. The

switching sequence fð1; i1Þ; ð2; i2Þ; � � � ; ðk; ikÞ; � � �g specifies

which subsystem is activated at certain discrete-time instant

k. If ikþ1 6¼ ik, the system switches from the dynamics gov-

erned by Aik to that by Aikþ1
due to changes in a modeling’s

operating condition or a control action at discrete instants.

fsk : sk 2 Zþg is the sequence of impulsive instants, s1 <
s2 < � � � < sk < � � � with lim

k!1
sk ¼ 1 and skþ1 � sk > 1.

When the system is switched from the ith subsystem to the

jth subsystem at the instant sk, a sudden change of the state

happens due to external or internal effect, which is described

by xðsk þ 1Þ ¼ Bjk xðskÞ, jk 2 f1; 2;…;mg. This kind of sys-

tems can be regarded as impulsive controlled discrete

switched systems which has much more complex dynamic

behavior than that of discrete systems. Considering the initial

condition xðk0Þ ¼ xk0
and a switching sequence, the solution

sequence denoted by x(k) can be determined for k � k0. Let

xk k denotes the Euclidean vector norm, i.e., xk k ¼
ffiffiffiffiffiffiffiffi
x>x
p

.

The definition of exponential stability of system (1) is pre-

sented as follows.

Definition 1. For discrete switched impulsive system (1),
the trivial equilibrium point is exponentially stable if there
exist positive constants c > 0 and c 2 ð0; 1Þ such that

xðkÞk k � cck xð0Þk k; k � 0; (2)

where c is called the exponential convergence rate. If Eq. (2)

is satisfied for any initial condition xð0Þ 2 Rn, the trivial

equilibrium point is globally exponentially stable for dis-

crete-time switched impulsive system (1).

Next, some preliminaries of Lie algebra for integrity are

introduced. A Lie algebra L, is a vector space over a field

equipped with a Lie bracket ½�; ��. In the case of matrix Lie alge-

bra, the standard Lie bracket is defined as ½A;B� ¼D AB� BA.

The descending sequence of ideals LðkÞ is defined inductively

as follows: Lð1Þ :¼ L;Lðkþ1Þ :¼ ½LðkÞ;LðkÞ� � LðkÞ. If LðkÞ
¼ 0, for k sufficiently large, then L is called solvable. For

example, if L is a Lie algebra generated by two matrices A
and B, i.e., L ¼ fA;BgLA, then we have: Lð1Þ ¼L¼ span

fA;B; ½A;B�; ½A; ½A;B��; :::g, Lð2Þ ¼ span f½A;B�; ½A; ½A;
B��; :::g, Lð3Þ ¼ span f½½A;B�; ½A; ½A;B���; :::g, and so on.

For convenience, we confuse the set fAik ; ik 2
f1; 2; � � � lgg with fAi; i 2 f1; 2; � � � lgg and fBjk ; jk 2 f1;
2; � � �mgg with fBj; j 2 f1; 2; � � �mgg, respectively. If all the

eigenvalues of a matrix A lie in the unit plane, then A is

called Schur stable. Without loss of generality, it is

assumed that matrices A1,..., As1
ð0 � s1 � lÞ and B1,..., Bs2

ð0 � s2 � m, s1 þ s2 � 1Þ are Schur stable while the others

(if existing) are not stable. During [0, k], we define ts and tu
as total number dwelling on Schur stable and unstable sub-

systems, i.e., switched gain matrices Ai are Schur stable and

unstable, respectively. Similarly, ds(k) and du(k) are the total
number of Schur stable and unstable impulsive behavior dur-

ing [0, k]. Let ms¼ tsþ ds, mu¼ tuþ du, t¼ tsþ tu, and

d¼ dsþ du.

Definition 2. If not all the subsystems matrices and im-
pulsive coefficient matrices are Schur stable and there exists
a common positive definite matrix P satisfying

Ai

bs

� �T

P
Ai

bs

� �
� P < 0; i ¼ 1; � � � ; s1;

Bj

bs

� �T

P
Bj

bs

� �
� P < 0; j ¼ 1; � � � ; s2;

(3)

Ai

bu

� �T

P
Ai

bu

� �
� P < 0; s1 < i � l;

Bj

bu

� �T

P
Bj

bu

� �
� P < 0; s2 < j � m;

(4)

with scalars 0 < bs < 1, bu > 1, then V(x)¼ xT Px is called

common quadratic Lyapunov-like funtion (CQLLF) for all

the subsystems.

We first present the following lemma which plays a key

role in the subsequent discussion.

Lemma 1. If not all the subsystems and impulsive coeffi-
cient matrices are Schur stable, and the Lie algebra

fAi; i ¼ 1;…; l; Bj; j ¼ 1;…;mgLA (5)

is solvable, then there exists a CQLLF for all the subsystems
satisfying Eqs. (3) and (4).
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Proof. As the Lie algebra (5) is solvable, there exists a

nonsingular complex matrix U such that for all i, j,

Ai ¼ U�1 ~AiU; Bj ¼ U�1 ~BjU; i ¼ 1; 2;…; l; j ¼ 1; 2;…;m;

(6)

where ~Ai and ~Bj are upper-triangular matrices.

For Schur stable matrices Ai and Bj, there exists a posi-

tive scalar 0 < bs < 1 such that Ai

bs
and

Bj

bs
remain Schur stable.

For unstable matrices Ai and Bj, there exists a constant

bu > 1 such that Ai

bu
and

Bj

bu
become Schur stable. From Eq.

(6), it yields that

Ai

bs

¼ U�1
~Ai

bs

U; 1 � i � s1;
Bj

bs

¼ U�1
~Bj

bs

U; 1 � j < s2;

Ai

bu

¼ U�1
~Ai

bu

U; s1 < i � l;
Bj

bu

¼ U�1
~Bj

bu

U; s2 < j � m:

Note that all the matrices
~Ai

bs
ð1 � i � s1Þ,

~Ai

bu
(s1 < i � l),

~Bj

bs

(1 � j � s2), and
~Bj

bu
(s2 < j � m) are Schur stale and still

upper-triangular. Then using the similar technique as in the

proof of Theorem 3 in Ref. 4, we can construct a common

symmetric positive definite matrix P satisfying Eqs. (3) and

(4). The existence of CQLLF for all subsystems is then guar-

anteed. This completes the proof.

Remark 1. Although it has been shown in Ref. 4 that
CQLLF can be constructed explicitly, the computation
depends on the transformation matrix U. As obtaining U may
need some efforts when using standard numerical methods
mentioned in Ref. 4, it may be more effective to solve linear
matrix inequalities (LMIs) (3) and (4) with respect to P > 0
directly using the existing LMI software. In addition, bs can
be chosen as a positive constant such that 1 > bs > k, where
k ¼ max jkðAikÞj with kðAikÞ being eigenvalues of Aik .

III. GLOBAL EXPONENTIAL STABILITY

The main purpose of this section is to derive the global

exponential stability criteria for discrete switched impulsive

systems by the Lie algebraic condition and dwell time

design.

Theorem 1. When not all the matrices Ai(i¼ 1, 2,... l)
and Bj(j¼ 1, 2,... m) of system (1) are Schur stable, if the Lie
algebra (5) is solvable and any of the following conditions
holds,

1. for any given scalar b satisfying bs < b < 1,

mu

ms
� lnðbÞ � lnðbsÞ

lnðbuÞ � lnðbÞ ; (7)

2. for any given scalar b satisfying b2
s < b � bs,

mu

ms
� lnðbÞ � 2 lnðbsÞ

2 lnðbuÞ � lnðbÞ ; (8)

then system (1) is globally exponentially stable.

Proof. According to Lemma 1, we can obtain a positive defi-

nite matrix P for ðAi

bs
Þ ð1 � i � s1Þ; Ai

bu
ðs1 < i � lÞ; ðBj

bs
Þ

ð1 � j � s2Þ, and ðBj

bu
Þ ðs2 < j � mÞ such that Eqs. (3) and (4)

hold. Then let a Lyapunov function in the form of

VðkÞ :¼ VðxðkÞÞ ¼ x>ðkÞPxðkÞ.
When k 6¼ sk, from Eq. (1), we have

Vðk þ 1Þ ¼ xðk þ 1Þ>Pxðk þ 1Þ
¼ ðAik xðkÞÞ

>PðAik xðkÞÞ; ik 2 f1; 2;…; lg: (9)

Without loss of generality, when k ¼ k0 6¼ sk, the Schur sta-

ble subsystem xðk þ 1Þ ¼ Ai1 xðkÞ is assumed to be activated,

from Eq. (3), we have

Vðk0 þ 1Þ ¼ xðk0 þ 1Þ>Pxðk0 þ 1Þ
¼ ðAi1 xðk0ÞÞ>PðAi1 xðk0ÞÞ < b2

s Vðk0Þ:

At the first impulsive instant s1, the Schur stable impulsive

behavior is supposed to happen. Using Eq. (3), it follows that

Vðs1 þ 1Þ ¼ xðs1 þ 1Þ>Pxðs1 þ 1Þ
¼ x>ðs1ÞB>j1 PBj1 xðs1Þ < b2

s Vðs1Þ

Therefore, in general, according to Eqs. (3) and (4), we

obtain that

Vðk þ 1Þ < b2
s VðkÞ; when Aik ;Bjk are Schur stable;

b2
uVðkÞ; when Aik ;Bjk are unstable:

(

It is easy to get that no matter what activation order is

VðkÞ < b2ms
s b2mu

u Vðk0Þ; (10)

where mu and ms are defined in Sec. II. In the following, two

cases should be considered.

1. In order that VðkÞ < b2ðmsþmuÞVðk0Þ for a given scalar b
with bs < b < 1, we need the inequality as follows:

b2ms
s b2mu

u � b2ðmsþmuÞ;

which implies that

bu

b

� �2mu

� b
bs

� �2ms

:

Taking the logarithm on both sides of the above inequality

follows that

mu ln
bu

b

� �
� ms ln

b
bs

� �
;

equivalently,

mu

ms
� lnðbÞ � lnðbsÞ

lnðbuÞ � lnðbÞ :
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2. To obtain that VðkÞ < bðmsþmuÞVðk0Þ for a given scalar

b with b2
s < b � bs, the following inequality needs to hold

b2ms
s b2mu

u � bðmsþmuÞ;

which means that

b2
u

b

� �mu

� b

b2
s

 !ms

:

Similarly, taking the logarithm on both sides of the above in-

equality gives

mu

ms
� lnðbÞ � 2 lnðbsÞ

2 lnðbuÞ � lnðbÞ :

Hence, from the above analysis, under the dwell time design

(7) or (8), system (1) is globally exponentially stable. This

completes the proof.

Remark 2. According to Theorem 1, for a given positive
scalar b 2 ðb2

s ; 1Þ, we can design the dwell time scheme in
the form of Eq. (7) or (8) to obtain different exponential con-
vergence rates according to practical requirements. From
Eqs. (7) and (8), we can find that the scalar b affects the
dwell time design. The expression on the right hand in Eq.
(7) becomes greater with the increase of the value of b,
which implies that the choice of dwell time becomes more
flexible. Moreover, due to the existence of both Schur stable
and unstable coefficient matrices, a dwell time scheme is
necessary to guarantee the stability which is different from
known results by Lie algebraic approach, where exponential
stability can be achieved under arbitrary switching law.

Corollary 1. If we choose the Lyapunov function in a
more general form w(k)¼M(k) V(k), where M(k) is a dis-
crete-time nonincreasing function satisfying MðkÞ � m;
m > 0; k 2 Zþ. Then system (1) is globally exponentially
stable under condition (7) or (8).

Corollary 2. When the system (1) is reduced to the dis-
crete switched system, the inequality (10) becomes inequality
(20) in Ref. 4 if the continuous-time subsystems vanish.
Hence, the dwell time design is the same as that in Ref. 4.
The Lie algebraic approach for the stability of discrete sys-
tems is extended to the case of discrete switched impulsive
systems.

IV. GLOBAL EXPONENTIAL SYNCHRONIZATION

In this section, the issue of synchronization of nonlinear

discrete system is investigated using Lie algebraic approach.

The chaotic system is synchronized by hybrid controlled

response system based on the Lie algebraic condition and the

dwell time design. It is easy to observe that many discrete

chaotic systems can be written in the following form:

xðk þ 1Þ ¼ AxðkÞ þ f ðk; xkÞ; (11)

where k 2 Zþ, x 2 Rn, A is a known n� n matrix, and

f ðk; xkÞ : Zþ �Rn 7!Rn is a discrete vector-value function

guaranteeing the existence and uniqueness of solutions of Eq.

(11) for the initial value problem. For convenience, denote

x(k) as x without leading to confusion. Regarding Eq. (11) as

a drive system, the response system can be described as

yðk þ 1Þ ¼ AyðkÞ þ f ðk; yÞ þ uðk; x; yÞ; (12)

where u(k, x, y) is the control input. Construct a hybrid

switching and impulsive control u¼ u1þ u2 for the response

system (12) as follows:

u1ðkÞ ¼ B1k½yðkÞ � xðkÞ�; k 6¼ sk;
u2ðskÞ ¼ B2k½yðskÞ � xðskÞ� � ½f ðsk; yÞ � f ðsk; xÞ�;

�
(13)

where B1k and B2k are n� n constant matrices to be deter-

mined. It is clear from Eq. (13) that

yðk þ 1Þ ¼ AyðkÞ þ f ðk; yÞ þ B1kðyðkÞ � xðkÞÞ; k 6¼ sk;

which implies that u1(k) is a switching control and switches

its value at every instant k 6¼ sk. When k ¼ sk, Eqs. (12) and

(13) yield that

yðsk þ 1Þ ¼ AyðskÞ þ B2k½yðskÞ � xðskÞ� þ f ðsk; xÞ; sk 2 Zþ;

which means that the controller u2ðskÞ is an impulsive con-

trol with the effect of changing the state of response system

(12) instantaneously at the point sk. In the subsequent, the

control gain matrices B1k and B2k will be chosen from a finite

matrix set.

Accordingly, under control (13), the closed-loop

response system of Eq. (12) becomes

yðkþ1Þ¼AyðkÞþ f ðk;yÞþB1kðyðkÞ�xðkÞÞ; k 6¼sk;

yðkþ1Þ¼AyðkÞþB2k½yðkÞ�xðkÞ�þ f ðk;xÞ; k¼sk; k2Zþ;

yðk0Þ ¼y0:

8><
>:

(14)

Let the synchronization error be e(k)¼ y(k) – x(k). Systems

(11) and (14) can be reformulated as

eðk þ 1Þ ¼ ðAþ B1kÞeðkÞ þ f ðk; yÞ � f ðk; xÞ; k 6¼ sk;

eðk þ 1Þ ¼ ðAþ B2kÞeðkÞ; k ¼ sk;

eðk0Þ ¼ e0;

8><
>:

(15)

where B1k and B2k are to be determined. Now, we study the

stability of the synchronization error system (15). Let the

switching control gain matrices B1k 2 fB11;B12;…;B1lg,
and let the impulsive control gain matrices B2k 2 fB21;
B22;…;B2mg. Then system (15) becomes a discrete switched

impulsive system

eðk þ 1Þ ¼ Aik eðkÞ þ f ðk; yÞ � f ðk; xÞ; k 6¼ sk;

eðk þ 1Þ ¼ Cjk eðkÞ; k ¼ sk;

eðk0Þ ¼ e0; k ¼ 1; 2;…;

8><
>: (16)

where Aik ¼ Aþ B1ik and Cjk ¼ Aþ B2jk ; ik 2 f1; 2;…; lg;
jk 2 f1; 2;…;mg.
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Assume that fA1;A2; � � � ;Al;C1;C2; � � � ;Cmg is a com-

pact (with respect to the usual topology in Rn�n) set of real

n� n matrices, and there exists a positive definite symmetric

matrix P satisfying inequalities (3) and (4) and a function

LðkÞ � 0 such that

k f ðk; yÞ � f ðk; xÞ k� LðkÞ k x� y k : (17)

Assume that there exists a constant L such that L ¼
sup
k2Zþ

LðkÞ. Define asðkÞ, auðkÞ, and q such that

b2
s þ 2kqLðkÞ þ qL2ðkÞ ¼ asðkÞ;

b2
u þ 2kqLðkÞ þ qL2ðkÞ ¼ auðkÞ; q ¼ kmaxðPÞ

kminðPÞ
; (18)

where kmaxðPÞ and kminðPÞ denote the maximum and mini-

mum eigenvalues of P.

Based on the discussion in Theorem 1, we obtain the

synchronization criteria for systems (11) and (12).

Theorem 2. Assume that not all the matrices
Ai;Cj; i ¼ 1; 2; � � � l; j ¼ 1; 2; � � �m of system (16) are Schur
stable and the Lie algebra fAi;Cj; i ¼ 1; 2; � � � l; j ¼
1; 2; � � �mgLA is solvable, asðkÞ � a1, auðkÞ � a2, where a1

and a2 are positive constants with a2 > 1. If one of the fol-
lowing conditions is satisfied, then the trivial solution of sys-
tem (16) is globally exponentially stable which implies that
the drive system (11) and the response system (12) are glob-
ally exponentially synchronized by the hybrid switching and
impulsive control.

1. If 0 < a1 < 1; and for any given scalars a; b satisfying

0 < a1 < a < 1, bs < b < 1,

tu

ts
� ln a� ln a1

ln a2 � ln a
;

du

ds
� ln b� ln bs

ln bu � ln b
: (19)

2. If 0 < a1 < 1; and for any given scalars a; b satisfying

0 < a1 < a < 1, b2
s < b � bs,

tu

ts
� ln a� ln a1

ln a2 � ln a
;

du

ds
� ln b� 2 ln bs

2 ln bu � ln b
: (20)

3. If a1 � 1; and for any given scalar b satisfying

bs < b < 1

tþ 2du

2ds
� ln b� ln bs

maxfln a2 � ln b; ln bu � ln bg : (21)

4. If a1 � 1; and for any given scalar b satisfying b2
s

< b � bs,

tþ du

ds
� ln b� 2 ln bs

maxfln a2 � ln b; 2 ln bu � ln bg : (22)

Proof. Noting that the Lie algebra fAik ;Cjk :
ik 2 f1; 2;…; lg; jk 2 f1; 2;…;mggLA is solvable, we can

explicitly construct a symmetric positive definite n� n

matrix P satisfying (3) and (4) and let a Lyapunov function

VðkÞ :¼ VðeðkÞÞ ¼ e>Pe.

According to matrix inequality theory, for k 6¼ sk, we

have

½f ðk; yÞ � f ðk; xÞ�>PAik e � LðkÞðe>eÞ
1
2ðe>A>ik PPAik eÞ

1
2

� qLðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðA>ik AikÞ

q
e>Pe:

Also it can be derived that

½f ðk; yÞ � f ðk; xÞ�>P½f ðk; yÞ � f ðk; xÞ�
� kmaxðPÞ½f ðk; yÞ � f ðk; xÞ�>½f ðk; yÞ � f ðk; xÞ�
� qL2ðkÞe>Pe; k 6¼ sk:

Let k ¼ max!
ik¼1;…;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðA>ik AikÞ

q
. For k 6¼ sk, if the Schur stable

subsystem is activated, we have

Vðk þ 1Þ ¼ eðk þ 1Þ>Peðk þ 1Þ
¼ ½Aik eðkÞ þ f ðk; yÞ � f ðk; xÞ�>P½Aik eðkÞ þ f ðk; yÞ
� f ðk; xÞ�
¼ eðkÞ>A>ik PAik eðkÞ þ 2½f ðk; yÞ � f ðk; xÞ�>PAik eðkÞ
þ½ f ðk; yÞ � f ðk; xÞ�>P½f ðk; yÞ � f ðk; xÞ�
� ½b2

s þ 2LðkÞkqþ qL2ðkÞ�VðkÞ

Similarly, when the Schur unstable subsystem is activated, it

follows that

Vðk þ 1Þ � ½b2
u þ 2LðkÞkqþ qL2ðkÞ�VðkÞ

At impulsive instants k ¼ sk, the Schur stable impulsive

behavior gives

Vðsk þ 1Þ ¼ eðsk þ 1Þ>Peðsk þ 1Þ
¼ ½Cjk eðskÞ�>P½Cjk eðskÞ� � b2

s VðskÞ;

and the unstable impulsive effect follows that Vðsk þ 1Þ
� b2

uVðskÞ.
The above inequalities imply that, on time interval

[k0, k],

VðkÞ � PtsasðkÞPtuauðkÞb2ds
s b2du

u Vðk0Þ
� ats

1 atu
2 b2ds

s b2du
u Vðk0Þ; (23)

where the symbol “P” represents the successively multiply-

ing asðkÞ and auðkÞ; in the time order k. Next, four cases will

be considered based on different choices of a1 and b.

1. If 0 < a1 < 1; we want prove that VðkÞ � cðk�k0ÞVðk0Þ,
where c ¼ maxfa; bg with predesigned positive constants

a; b satisfying a1 < a < 1; bs < b < 1. Then the follow-

ing two conditions need to hold.

ats
1 atu

2 � atsþtu ; b2ds
s b2du

u � b2ðdsþduÞ:
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Simple deduction follows that ða2

a Þ
tu � ð aa1

Þts ; ðbu

b Þ
du

� ð bbs
Þds ; which implies that

tu

ts
� ln a� ln a1

ln a2 � ln a
;
du

ds
� ln b� ln bs

ln bu � ln b
:

2. If 0 < a1 < 1; then proceed with similar proof to case (1)

for any given scalar b satisfying b2
s < b � bs. We can

obtain that VðkÞ � cðk�k0ÞVðk0Þ:
3. If a1 � 1; then VðkÞ � atsþtu

2 b2ds
s b2du

u Vðk0Þ � at
2b

2ds
s b2du

u

Vðk0Þ: For any given positive scalar b satisfying

bs < b < 1, to prove that VðkÞ � bðk�k0ÞVðk0Þ needs to

prove the following inequality

at
2b

2ds
s b2du

u � btþ2ðdsþduÞ;

If ðmaxfa2

b ;
bu

b gÞ
tþ2du � ð bbs

Þ2ds , then VðkÞ � bðk�k0ÞVðk0Þ.
This inequality implies

tþ 2du

2ds
� ln b� ln bs

maxfln a2 � ln b; ln bu � ln bg ;

which coincides with the condition (21).

4. Similar argument to case (3), we can easily verify that

condition (22) leads to VðkÞ � bðk�k0ÞVðk0Þ.

In conclusion, under the above dwell time design, the drive

system (11) and the response system (12) are globally expo-

nentially synchronized by the hybrid switching and impul-

sive control. This completes the proof.

Remark 3. By the hybrid switching and impulsive control
technique, we can flexibly design the control gain matrices
to satisfy practical requirements such as convergence rate
and control cost. The control gain matrices can be chosen
such that all matrices Aik ;Cjk are Schur stable at the expense
of high control cost, which will be presented in Corollary 3
below. In view of this, the proposed control design has the
advantage that not all matrices Aik ;Cjk are necessarily Schur
stable.

Corollary 3. When B1k and B2k are chosen such that all
of the matrices Aik and Cjk are Schur stable and a1 > 1, if the
Lie algebra fAik ;Cjk : ik 2 f1; 2;…; lg; jk 2 f1; 2;…;mggLA

is solvable, then Eq. (23) is reduced to the following concise
form

Vðk þ 1Þ � at
1 � b2d

s Vðk0Þ:

For any give scalar b satisfying bs < b < 1 (b2
s < b � bs), if

t
d � 2 � ln b�ln bs

ln a1�ln b ( t
d �

ln b�2 ln bs

ln a1�ln b ), systems (11) and (12) are

exponentially synchronized by the hybrid switching and im-

pulsive control.

V. NUMERICAL SIMULATION AND DISCUSSION

In this section, a numerical example on the synchroniza-

tion of nonlinear chaotic systems by the hybrid control is

presented. Compared with the switching control and impul-

sive control, the hybrid control achieves good performance.

Consider 3-dimensional generalized discrete chaotic system

with Hénon map9

x1ðk þ 1Þ ¼ 1� ax2
1ðkÞ þ x2ðkÞ

x2ðk þ 1Þ ¼ bx1ðkÞ þ x3ðkÞ
x3ðk þ 1Þ ¼ �bx1ðkÞ:

8<
: (24)

When a¼ 1.07 and b¼ 0.3, the chaotic behavior of system

(24) is presented in Fig. 1.

Rewrite the system (24) as

xðk þ 1Þ ¼ AxðkÞ þ f ðxðkÞÞ; (25)

where x ¼ ðx1; x2; x3Þ>, f ðxÞ ¼ ½1� ax2
1ðkÞ; 0; 0�

>
, and A ¼

0 1 0

0:3 0 1

�0:3 0 0

2
4

3
5:

Regarding Eq. (25) as a drive system, under hybrid

switching and impulsive control (13), the corresponding

response system becomes

yðkþ 1Þ ¼ AyðkÞþ f ðk;yÞþB1ik ½yðkÞ� xðkÞ�; k 6¼ sk;

yðkþ 1Þ ¼ AyðkÞþB2jk ½yðkÞ� xðkÞ�þ f ðk;xÞ;k¼ sk;k 2Z;

yðk0Þ ¼ y0;

8><
>:

(26)

with B1ik and B2jk being 3� 3 matrices, B1ik 2 fB11;
B12;…;B1lg; B2jk 2 fB21;B22;…;B2mg; and sk !1. Thus,

from Eqs. (25) and (26), the synchronization error system is

a discrete switched impulsive system

eðk þ 1Þ ¼ ðAþ B1ikÞeðkÞ þ f ðk; yÞ � f ðk; xÞ; k 6¼ sk;

eðk þ 1Þ ¼ ðAþ B2jkÞeðkÞ; k ¼ sk;

eðk0Þ ¼ e0;

8><
>:

(27)

where e (k)¼ y(k) – x(k) is the synchronization error and we

denote Cjk ¼ ðAþ B2jkÞ.

FIG. 1. (Color online) System trajectory of Hénon discrete chaotic system

(24).
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From Ref. 25, we know that f ðyÞ � f ðxÞk k � L y� xk k;
with L¼ 4.2. If we choose l¼m¼ 2, B1i, B2i, Ai¼AþB1i,

and Ci¼AþB2i, i¼ 1, 2 as follows:

B11¼

0:12 �1:18 0

�0:3 0:15 �1:18

0:3 0 0:18

2
664

3
775; B12¼

1:17 �2:04 0

�0:3 1:04 �2:17

0:3 0 1:105

2
664

3
775;

B21¼

0:15 �1 0

�0:3 0:12 �1

0:3 0 0:15

2
664

3
775; B22¼

1:04 �1 0

�0:3 1:17 �1

0:3 0 1:04

2
664

3
775;

A1¼

0:12 �0:18 0

0 0:15 �0:18

0 0 0:18

2
664

3
775; A2¼

1:17 �1:04 0

0 1:04 �1:17

0 0 1:105

2
664

3
775;

C1¼

0:15 0 0

0 0:12 0

0 0 0:15

2
664

3
775; C2¼

1:04 0 0

0 1:17 0

0 0 1:04

2
664

3
775:

It is clear that matrices A1 and C1 are Schur stable, and A2

and C2 are unstable.

Some standard Lie brackets are computed as follows:

½A1;A2� ¼
0 0:0546 0:0234

0 0 0:0234

0 0 0

2
64

3
75;

½A1;C1� ¼
0 0:0054 0

0 0 �0:0054

0 0 0

2
64

3
75;

½A1;C2� ¼
0 �0:0234 0

0 0 0:0234

0 0 0

2
64

3
75;

½A2;C2� ¼
0 �0:1352 0

0 0 0:1521

0 0 0

2
64

3
75;

½½A1;A2�; ½A1;C1�� ¼
0 0 �0:4212� 10�3

0 0 0

0 0 0

2
64

3
75;

½½A1;A2�; ½A2;C1�� ¼
0 0 �0:0026

0 0 0

0 0 0

2
64

3
75:

FIG. 2. (Color online) Synchronization error under the hybrid control.

FIG. 3. (Color online) Synchronization error under the switch control.

FIG. 4. (Color online) Synchronization error under the impulsive control.

FIG. 5. (Color online) Synchronization error systems under the hybrid

control.

023125-7 Discrete switched impulsive Lie algebra Chaos 21, 023125 (2011)

Downloaded 07 Aug 2011 to 137.132.123.69. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



Further computation shows that the Lie algebra

fA1;A2;C1;C2gLA is solvable with k¼ 4.

Choose bs ¼ 0:3 and bu ¼ 1:3, then A1

bs
, A2

bu
, C1

bs
, and C2

bu
are

Schur stable. By solving LMIs, we can obtain a positive defi-

nite matrix P satisfying Eqs. (3) and (4) as follows:

P ¼
0:2891 0:0416 �0:0137

0:0416 0:2898 0:0509

�0:0137 0:0509 0:3357

2
4

3
5:

It is easy to get q ¼ 1:6288, k ¼ 1:9722, and

b2
u þ 2Lkqþ qL2 < 57:4060. Given b ¼ 0:9, according to

Theorem 2, under dwell time scheme tþ2du

2ds
� 0:2644, the cha-

otic drive system (24) and the controlled response system (26)

are globally exponentially synchronized using hybrid switch-

ing and impulsive control. The synchronization performance

by hybrid control under the dwell time tþ2du

2ds
¼ 0:2 is illus-

trated in Fig. 2 for initial states xð0Þ ¼ ½�1:2; 0; 0:3�> and

yð0Þ ¼ ½�1:54; 0; 0:46�>. Figs. 3 and 4 show the synchroniza-

tion performances by switching control and impulsive control,

respectively. It can be found that the hybrid control performs

better than switching control and impulsive control.

Moreover, if we choose another set of B11, B12, B21, and

B22 as follows:

B11¼
0:12 �1:18 0

�0:3 0:15 �1:18

0:3 0 0:18

2
64

3
75; B12¼

1:35 �2:2 0

�0:3 1:2 �2:35

0:3 0 1:2

2
64

3
75;

B21¼
0:15 �1 0

�0:3 0:12 �1

0:3 0 0:15

2
64

3
75; B22¼

1:2 �1 0

�0:3 1:35 �1

0:3 0 1:2

2
64

3
75:

Denote the parameter matrices of the error system (27)

Ai¼AþB1i, Ci¼AþB2i, and i¼ 1, 2. It is clear that A1 and

C1 are Schur stable, and A2 and C2 are unstable. Similar compu-

tation on Lie bracket shows that the Lie algebra

fA1;A2;C1;C2gLA is solvable with k¼ 4. Choose bs ¼ 0:3
and bu ¼ 1:5. Given b ¼ 0:9, it follows from similar

process that under the dwell time tþ2du

2ds
� 0:2641, the hybrid

control can accomplish the synchronization for xð0Þ
¼ ½�1:2; 0; 0:3�> and yð0Þ ¼ ½�1:54; 0; 0:46�>, which is

shown in Fig. 5. However, Fig. 6 illustrates that the switching

control fails to achieve synchronization, and the impulsive con-

trol performance is illustrated in Fig. 7. From the above discus-

sion, we can see that the hybrid control performs better than

switching control and impulsive control in achieving synchroni-

zation and it can be designed flexibly.

VI. CONCLUSION

This paper has studied the issue on the global exponen-

tial stability of discrete switched impulsive systems and its

application to hybrid synchronization. By a Lie algebraic

condition together with the dwell time design, the explicit

stability criteria of discrete switched impulsive system have

been derived. Based on the Lie algebraic condition, a new

hybrid switching and impulsive control strategy for nonlinear

synchronization problem has been proposed. Our results are

more general than the existing results and the conditions are

easy to check. A typical illustrative example of synchroniza-

tion for chaotic system has demonstrated the effective con-

trol performance.
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