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DISCRETIZED FRACTIONAL SUBSTANTIAL CALCULUS ∗
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Abstract. This paper discusses the properties and the numerical discretizations of the fractional
substantial integral

Iν
s f(x) =

1

Γ (ν)

∫ x

a

(x − τ )ν−1e−σ(x−τ)f(τ )dτ, ν > 0,

and the fractional substantial derivative

Dμ
s f(x) = Dm

s [Iν
s f(x)], ν = m − μ,

where Ds = ∂
∂x

+σ = D +σ, σ can be a constant or a function not related to x, say σ(y); and m is the
smallest integer that exceeds μ. The Fourier transform method and fractional linear multistep method
are used to analyze the properties or derive the discretized schemes. And the convergences of the
presented discretized schemes with the global truncation error O(hp) (p = 1, 2, 3, 4, 5) are theoretically
proved and numerically verified.
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1. Introduction

Anomalous diffusion processes are usually characterized by the nonlinear time dependance of the mean
squared displacement, i.e., 〈z2(t)〉 ∼ tα [1]. When 0 < α < 1, it is called subdiffusion; α > 1 corresponds to
superdiffusion, and α = 1 to normal diffusion. A versatile framework for describing the anomalous diffusion is
the continuous time random walks (CTRWs), which is governed by the waiting time probability density function
(PDF) and jump length PDF. When the waiting time PDF and/or jump length PDF are power-law, and the two
PDFs are independent, the transport equations can be derived, namely fractional Fokker–Planck and Klein–
Kramers equations [12]. Usually the time fractional Fokker–Planck equation characterizes the subdiffusion,
whereas the space fractional Fokker–Planck equation depicts the Lévy flight [13]. The Lévy flight has a diverging
mean squared displacement, and can just be applied to rather exotic physical processes [18].

Keywords and phrases. Fractional substantial calculus, fractional linear multistep methods, fourier transform, stability and
convergence.

∗ This work was supported by the National Natural Science Foundation of China under Grant No. 11271173.

1 School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou
University, Lanzhou 730000, P.R. China. chenmh2009@lzu.edu.cn; dengwh@lzu.edu.cn

Article published by EDP Sciences c© EDP Sciences, SMAI 2015

http://dx.doi.org/10.1051/m2an/2014037
http://www.esaim-m2an.org
http://www.edpsciences.org


374 M. CHEN AND W. DENG

Lévy walk [14] gives another proper dynamical description for the superdiffusion (roughly speaking, now
the particle has finite physical speed), and the PDFs of waiting time and jump length are spatiotemporal
coupling [18]. Friedrich and his co-workers discuss the CTRW model with position-velocity coupling PDF [8].
Carmi and Barkai use the CTRW model with functional of path and position coupling PDF [2]. Based on
the CTRW models with coupling PDFs, they also derive the deterministic equations; and mathematically an
important operator, fractional substantial derivative, is introduced [2, 3, 8, 18, 20].

With the wide applications of the fractional substantial derivative, it seems to be urgent to mathematically
analyze its properties and numerically provide its effective discretizations. This paper focuses on these two
topics. The fractional substantial derivative, firstly introduced in [8] and further applied in [2], is defined by

D1−ν
s f(x) =

1
Γ (ν)

[
∂

∂x
+ σ

] ∫ x

0

(x − τ)ν−1e−σ(x−τ)f(τ)dτ, 0 < ν < 1,

where σ can be a constant or a function not related to x, say, σ(y). In this paper, we extend the order of
fractional substantial derivative ν ∈ (0, 1) to ν > 0. First, we introduce the fractional substantial integral.

Definition 1.1. Let ν > 0, f(x) be piecewise continuous on (a,∞) and integrable on any finite subinterval
[a,∞); and let σ be a constant or a function without related to x. Then the fractional substantial integral of f
of order ν is defined as

Iν
s f(x) =

1
Γ (ν)

∫ x

a

(x − τ)ν−1e−σ(x−τ)f(τ)dτ, x > a. (1.1)

Definition 1.2. Let μ > 0, f(x) be (m−1)-times continuously differentiable on (a,∞) and its m-times deriva-
tive be integrable on any finite subinterval of [a,∞), where m is the smallest integer that exceeds μ; and let σ
be a constant or a function without related to x. Then the fractional substantial derivative of f of order μ is
defined as

Dμ
s f(x) = Dm

s [Im−μ
s f(x)], (1.2)

where

Dm
s =

(
∂

∂x
+ σ

)m

= (D + σ)m = (D + σ)(D + σ) . . . (D + σ). (1.3)

When σ = 0, obviously, the fractional substantial integral and derivative reduce to the Riemann–Liouville
fractional integral and derivative, respectively.

In the following, using Fourier transform methods and fractional linear multistep methods, respectively, we
derive the pth order (p ≤ 5) approximations of the αth fractional substantial derivative (α > 0) or fractional
substantial integral (α < 0) by the corresponding coefficients of the generating functions κp,α(ζ), with

κp,α(ζ) =

(
p∑

i=1

1
i

(
1 − e−σhζ

)i

)α

, (1.4)

where h is the uniform stepsize. We can rewrite (1.4) as a tabular; see Table 1.
For σ = 0, formula (1.4) reduces to the fractional Lubich’s methods [11]. For σ = 0 and α = 1, the scheme

reduces to the classical (p + 1)-point backward difference formula [10].
The outline of this paper is as follows. In Section 2, we give some properties of the fractional substantial cal-

culus. In Sections 3 and 4, using Fourier transform method and fractional linear multistep method, respectively,
we derive the convergence of the discretized schemes of the fractional substantial calculus. And the convergence
with the global truncation error O(hp) (p = 1, 2, 3, 4, 5) are numerically verified in Section 5. Finally, we conclude
the paper with some remarks in the last section.
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Table 1. Generating functions of the coefficients of (3.5) or (1.4) for the pth order approxi-
mation of αth fractional substantial derivative.

p κp,α(ζ)

1
(
1 − e−σhζ

)α

2
(
3/2 − 2e−σhζ + 1/2(e−σhζ)2

)α

3
(
11/6 − 3e−σhζ + 3/2(e−σhζ)2 − 1/3(e−σhζ)3

)α

4
(
25/12 − 4e−σhζ + 3(e−σhζ)2 − 4/3(e−σhζ)3 + 1/4(e−σhζ)4

)α

5
(
137/60 − 5e−σhζ + 5(e−σhζ)2 − 10/3(e−σhζ)3 + 5/4(e−σhζ)4 − 1/5(e−σhζ)5

)α

2. Properties for the fractional substantial calculus

Let us now consider some properties of the fractional substantial calculus.

Lemma 2.1. Let f(x) be continuous on [a,∞), and ν > 0. Then for all x ≥ a,

lim
ν→0

Iν
s f(x) = f(x).

Hence we can put I0
s f(x) = f(x).

Proof. If f(x) has continuous derivative for x ≥ a, then using integration by parts to (1.1), there exists

Iν
s f(x) = − 1

Γ (ν + 1)

∫ x

a

e−σ(x−τ)f(τ)d (x − τ)ν

=
(x − a)ν e−σ(x−a)f(a)

Γ (ν + 1)
+

1
Γ (ν + 1)

∫ x

a

(x − τ)ν e−σ(x−τ)Dsf(τ)dτ,

where Ds is defined by (1.3). So we get

lim
ν→0

Iν
s f(x) = e−σ(x−a)f(a) + σ

∫ x

a

e−σ(x−τ)f(τ)dτ +
∫ x

a

e−σ(x−τ)df(τ) = f(x).

If f(x) is only continuous for x ≥ a, the similar arguments can be performed as ([17], pp. 66 and 67), we
omit it here. �

Lemma 2.2. Let f(x) be continuous on [a,∞) and μ, ν > 0. Then for all x ≥ a,

Iν
s [Iμ

s f(x)] = Iμ+ν
s f(x) = Iμ

s [Iν
s f(x)].

Proof.

Iν
s [Iμ

s f(x)] =
1

Γ (ν)

∫ x

a

(x − τ)ν−1e−σ(x−τ)[Iμ
s f(τ)]dτ

=
1

Γ (μ)Γ (ν)

∫ x

a

(x − τ)ν−1e−σ(x−τ)dτ

∫ τ

a

(τ − ξ)μ−1e−σ(τ−ξ)f(ξ)dξ

=
1

Γ (μ)Γ (ν)

∫ x

a

e−σ(x−ξ)f(ξ)dξ

∫ x

ξ

(x − τ)ν−1 (τ − ξ)μ−1
dτ

= Iμ+ν
s f(x),

where the integral ∫ x

ξ

(x − τ)ν−1 (τ − ξ)μ−1 dτ =
Γ (μ)Γ (ν)
Γ (μ + ν)

(x − ξ)μ+ν−1. �



376 M. CHEN AND W. DENG

Lemma 2.3. Let f(x) be (m-1)-times continuously differentiable on (a,∞) and its m-times derivative be inte-
grable on any finite subinterval of [a,∞) and ν > 0, where m is the smallest integer that exceeds ν. Then for
all x ≥ a,

Dν
s [Iν

s f(x)] = f(x).

Proof. Let us first consider the case of integer ν = m ≥ 1 :

Dm
s [Im

s f(x)] = Dm
s

[
1

(m − 1)!

∫ x

a

(x − τ)m−1e−σ(x−τ)f(τ)dτ

]
= Ds

∫ x

a

e−σ(x−τ)f(τ)dτ = Ds[Isf(x)] = f(x).

For m − 1 < ν < m, from Lemma 2.2, there exists

Im
s = Im−ν

s [Iν
s f(x)].

Thus, using (1.2) and above equation, we obtain

Dν
s [Iν

s f(x)] = Dm
s {Im−ν

s [Iν
s f(x)]} = Dm

s [Im
s f(x)] = f(x). �

Lemma 2.4. Let f(x) be (r − 1)-times continuously differentiable on (a,∞) and its r-times derivative be in-
tegrable on any finite subinterval of [a,∞), where r = max(m, n), m and n are positive integers. Denoting
that

m − ν = n − μ, μ > 0, ν > 0,

then for all x ≥ a,
Dn

s [Iμ
s f(x)] = Dm

s [Iν
s f(x)].

Proof. If m = n, the lemma is trivial. Supposing that n > m and γ = n−m > 0, it yields μ = ν + γ > 0. Then
according to Lemmas 2.2 and 2.3, we obtain

Dγ
s [Iν+γ

s f(x)] = Dγ
s [Iγ

s Iν
s f(x)] = Iν

s f(x).

Letting Dm
s perform on both sides of the above equation leads to

Dm+γ
s [Iν+γ

s f(x)] = Dm
s [Iν

s f(x)],

that is
Dn

s [Iμ
s f(x)] = Dm

s [Iν
s f(x)]. �

Lemma 2.5. Let f(x) be continuously differentiable on [a,∞), and ν > 0. Then for all x ≥ a,

Iν+1
s [Dsf(x)] = Iν

s f(x) − f(a)
Γ (ν + 1)

(x − a)νe−σ(x−a); (2.1)

and

Ds[Iν
s f(x)] = Iν

s [Dsf(x)] +
f(a)
Γ (ν)

(x − a)ν−1e−σ(x−a). (2.2)
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Proof. Using integration by parts, it is easy to get

Iν
s f(x) =

f(a)
Γ (ν + 1)

(x − a)νe−σ(x−a) +
1

Γ (ν + 1)

∫ x

a

(x − τ)νe−σ(x−τ)[Dsf(τ)]dτ,

where Ds is defined by (1.3). Thus we obtain (2.1).
Next we prove (2.2). From (2.1), it leads to

Ds[Iν
s f(x)] = Ds

{
Iν+1
s [Dsf(x)] +

f(a)
Γ (ν + 1)

(x − a)νe−σ(x−a)

}
= Iν

s [Dsf(x)] +
f(a)

Γ (ν + 1)
(D + σ)

[
(x − a)νe−σ(x−a)

]
= Iν

s [Dsf(x)] +
f(a)
Γ (ν)

(x − a)ν−1e−σ(x−a).

Hence, we get (2.2). �

Lemma 2.6. Let f(x) be (m-1)-times continuously differentiable on (a,∞) and its m-times derivative be inte-
grable on any finite subinterval of [a,∞), μ > 0, ν > 0; and m is the smallest integer that exceeds μ. Then for
all x ≥ a,

Iν
s f(x) = Im+ν

s [Dm
s f(x)] +

m−1∑
k=0

Dk
sf(a)(x − a)k+νe−σ(x−a)

Γ (k + ν + 1)
; (2.3)

and

Dμ
s f(x) = Im−μ

s [Dm
s f(x)] +

m−1∑
k=0

Dk
sf(a)(x − a)k−μe−σ(x−a)

Γ (k − μ + 1)

= CD
μ

s f(x) +
m−1∑
k=0

Dk
sf(a)(x − a)k−μe−σ(x−a)

Γ (k − μ + 1)
, (2.4)

where CD
μ
s f(x) = Im−μ

s [Dm
s f(x)] can be similarly called Caputo fractional substantial derivative [17]. In par-

ticular, from (2.3) and (2.4), we can extend the definitions of Iν
s and Dμ

s , i.e., μ, ν can belong to R instead of
being limited to R+, then for any real α, there exists

Iα
s = D−α

s , (2.5)

i.e., if taking ν = α and μ = −α in (2.3) and (2.4), Iα
s f(x) = D−α

s f(x).

Proof. Replacing ν by ν + 1 and f by Dsf in (2.1), we obtain

Iν+1
s [Dsf(x)] = Iν+2

s [D2
sf(x)] +

Dsf(a)
Γ (ν + 2)

(x − a)ν+1e−σ(x−a).

Thus, according to the above equation and (2.1), there exists

Iν
s f(x) = Iν+1

s [Dsf(x)] +
f(a)

Γ (ν + 1)
(x − a)νe−σ(x−a)

= Iν+2
s [D2

sf(x)] +
Dsf(a)
Γ (ν + 2)

(x − a)ν+1e−σ(x−a) +
f(a)

Γ (ν + 1)
(x − a)νe−σ(x−a)

= I(ν+m)
s [Dm

s f(x)] +
m−1∑
k=0

Dk
sf(a)(x − a)ν+ke−σ(x−a)

Γ (ν + k + 1)
·
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To prove (2.4), letting Ds perform on both sides of (2.2) leads to

D2
s [Iν

s f(x)] = Ds{Iν
s [Dsf(x)]} +

f(a)
Γ (ν − 1)

(x − a)ν−2e−σ(x−a),

and replacing f with Dsf in (2.2) yields

Ds{Iν
s [Dsf(x)]} = Iν

s [D2
sf(x)] +

Dsf(a)
Γ (ν)

(x − a)ν−1e−σ(x−a).

Therefore, there exists

D2
s [Iν

s f(x)]= Iν
s [D2

sf(x)]+
Dsf(a)
Γ (ν)

(x − a)ν−1e−σ(x−a)+
f(a)

Γ (ν − 1)
(x − a)ν−2e−σ(x−a).

Repeating the procedure m − 1 times results in

Dm
s [Iν

s f(x)] = Iν
s [Dm

s f(x)] +
m−1∑
k=0

Dk
sf(a)(x − a)ν+k−me−σ(x−a)

Γ (ν + k − m + 1)
· (2.6)

Taking ν = m − μ, then equation (2.6) can be rewritten as

Dμ
s f(x) = Dm

s [Iν
s f(x)] = Im−μ

s [Dm
s f(x)] +

m−1∑
k=0

Dk
sf(a)(x − a)k−μe−σ(x−a)

Γ (k − μ + 1)
.

From (2.3) and (2.4), it yields that Iα
s = D−α

s for any real α. �

Lemma 2.7. Let f(x) be (m − 1)-times continuously differentiable on (a,∞) and its m-times derivative be
integrable on any finite subinterval of [a,∞) and ν > 0, where m is the smallest integer that exceeds ν. Then
for all x > a,

Iν
s [Dν

s f(x)] = f(x) −
m∑

j=1

[Dν−j
s f(x)]x=a

(x − a)ν−j e−σ(x−a)

Γ (ν − j + 1)
·

Proof. On the one hand, there exists

Iν
s [Dν

s f(x)] = Ds

{
1

Γ (ν + 1)

∫ x

a

(x − τ)νe−σ(x−τ)[Dν
s f(τ)]dτ

}
. (2.7)
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On the other hand, repeatedly integrating by parts and using Lemma 2.2 we have

1
Γ (ν + 1)

∫ x

a

(x − τ)νe−σ(x−τ)Dν
sf(τ)dτ

=
1

Γ (ν + 1)

∫ x

a

(x − τ)νe−σ(x−τ)Dm
s [Im−ν

s f(τ)]dτ

=
1

Γ (ν)

∫ x

a

(x − τ)ν−1e−σ(x−τ)Dm−1
s [Im−ν

s f(τ)]dτ

− (x − a)ν e−σ(x−a)

Γ (ν + 1)
{
Dm−1

s [Im−ν
s f(x)]

}
x=a

=
1

Γ (ν − m + 1)

∫ x

a

(x − τ)ν−me−σ(x−τ)[Im−ν
s f(τ)]dτ

−
m∑

j=1

{
Dm−j

s [Im−ν
s f(x)]

}
x=a

(x − a)ν−j+1 e−σ(x−a)

Γ (ν − j + 2)

= Iν−m+1
s [Im−ν

s f(τ)] −
m∑

j=1

[
Dν−j

s f(x)
]
x=a

(x − a)ν−j+1 e−σ(x−a)

Γ (ν − j + 2)

= Isf(τ) −
m∑

j=1

[
Dν−j

s f(x)
]
x=a

(x − a)ν−j+1 e−σ(x−a)

Γ (ν − j + 2)
· (2.8)

Combining (2.7) and (2.8), we obtain

Iν
s [Dν

s f(x)] = f(x) −
m∑

j=1

[Dν−j
s f(x)]x=a

(x − a)ν−j e−σ(x−a)

Γ (ν − j + 1)
· �

Lemma 2.8. Let f(x) be (m-1)-times continuously differentiable on (a,∞) and its m-times derivative be inte-
grable on any finite subinterval of [a,∞) and μ > 0, ν > 0, where m is the smallest integer that exceeds μ. Then
for all x > a,

Dμ
s [D−ν

s f(x)] = Dμ−ν
s f(x).

Proof. Two cases must be considered: μ > ν ≥ 0 and ν ≥ μ ≥ 0.
Case μ > ν ≥ 0: taking 0 ≤ n− 1 ≤ μ− ν < n, n is an integer and using 0 ≤ m− 1 ≤ μ < m, then from (2.5)

and (1.2) and Lemmas 2.2 and 2.4, we have

Dμ
s [D−ν

s f(x)] = Dμ
s [Iν

s f(x)] = Dm
s

{
Im−μ
s [Iν

s f(x)]
}

= Dm
s

{
Im−μ+ν
s f(x)

}
= Dn

s

{
In−μ+ν
s f(x)

}
= Dμ−ν

s f(x).

Case ν ≥ μ ≥ 0: according to Lemmas 2.2 and 2.3, we obtain

Dμ
s [Iν

s f(x)] = Dμ
s [Iμ

s Iν−μ
s f(x)] = Dμ−ν

s f(x). �

Lemma 2.9. Let f(x) be (m − 1)-times continuously differentiable on (a,∞) and its m-times derivative be
integrable on any finite subinterval of [a,∞) and μ > 0, ν > 0, where m is the smallest integer that exceeds ν.
Then for all x > a,

D−μ
s [Dν

sf(x)] = Dν−μ
s f(x) −

m∑
j=1

[Dν−j
s f(x)]x=a

(x − a)μ−j e−σ(x−a)

Γ (μ − j + 1)
·
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Proof. If ν ≤ μ, there exists D−μ
s = Dν−μ

s D−ν
s by Lemma 2.2; and if ν ≥ μ, there also exists D−μ

s = Dν−μ
s D−ν

s

by Lemma 2.8. Therefore, using Lemma 2.7 we have

D−μ
s [Dν

s f(x)] = Dν−μ
s {D−ν

s [Dν
s f(x)]}

= Dν−μ
s

⎧⎨⎩f(x) −
m∑

j=1

[Dν−j
s f(x)]x=a

(x − a)ν−j e−σ(x−a)

Γ (ν − j + 1)

⎫⎬⎭
= Dν−μ

s f(x) −
m∑

j=1

[Dν−j
s f(x)]x=a

(x − a)μ−j e−σ(x−a)

Γ (μ − j + 1)
,

where we use the following formula

Dμ
s [e−σ(x−a) (x − a)ν ] =

Γ (ν + 1)
Γ (ν + 1 − μ)

(x − a)ν−μ e−σ(x−a), (2.9)

which can be similarly proven as the way in ([17], p. 56). �

Lemma 2.10. Let μ > 0, ν > 0 and f(x) be (r− 1)-times continuously differentiable on (a,∞) and its r-times
derivative be integrable on any finite subinterval of [a,∞), where r = max(m, n), m and n is the smallest integer
that exceeds μ and ν, respectively. Then for all x > a,

Dμ
s [Dν

s f(x)] = Dμ+ν
s f(x) −

n∑
j=1

[Dν−j
s f(x)]x=a

(x − a)−μ−j e−σ(x−a)

Γ (−μ − j + 1)
·

Proof. Similar to the well-known property of integer-order derivatives:

dm

dxm

(
dnf(x)

dxn

)
=

dn

dxn

(
dmf(x)

dxm

)
=

dm+nf(x)
dxm+n

,

it is easy to check that
Dm

s [Dn
s f(x)] = Dn

s [Dm
s f(x)] = Dm+n

s f(x).

Therefore, according to (1.2), the above equation, and Lemma 2.8, there exists

Dn
s

[
Dm−α

s f(x)
]

= Dn+m
s [Iα

s f(x)] = Dn+m−α
s f(x), for α ∈ (0, 1],

and denoting that γ = m − α, it leads to

Dn
s [Dγ

s f(x)] = Dn+γ
s f(x). (2.10)

According to (1.2), Lemma 2.9, and (2.10), we obtain

Dμ
s [Dν

s f(x)] = Dm
s

{
D−(m−μ)

s [Dν
sf(x)]

}
= Dm

s

⎧⎨⎩Dμ+ν−m
s f(x) −

n∑
j=1

[Dν−j
s f(x)]x=a

(x − a)m−μ−j e−σ(x−a)

Γ (m − μ − j + 1)

⎫⎬⎭
= Dμ+ν

s f(x) −
n∑

j=1

[Dν−j
s f(x)]x=a

(x − a)−μ−j e−σ(x−a)

Γ (−μ − j + 1)
· �

Similar to the proof of ([17], pp. 76 and 77), we have the following remarks.
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Remark 2.11. If Dμ
s f(x) exists and is integrable, then the fractional substantial derivative Dν

s f(x) also exists
and is integrable for 0 < ν < μ.

Remark 2.12. Let f(x) be (m-1)-times continuously differentiable on (a,∞) and its m-times derivative be
integrable on any finite subinterval of [a,∞). Then for all x ≥ a,

[Dμ
s f(x)]x=a = 0, m − 1 ≤ μ < m,

if and only if
D(j)

s f(a) = 0, for j = 0, 1, . . . , m − 1.

3. Discretizations of fractional substantial calculus and its convergence;

Fourier transform methods

In this section, we derive the discretization schemes of fractional substantial calculus and prove their conver-
gence by Fourier transform method.

Lemma 3.1. Let ν > 0, f(x) ∈ Lq(R), q ≥ 1, and

Iν
s f(x) =

1
Γ (ν)

∫ x

−∞
(x − τ)ν−1e−σ(x−τ)f(τ)dτ. (3.1)

Then

F(Iν
s f(x)) = (σ − iω)−ν f̂(ω),

where F denotes Fourier transform operator and f̂(ω) = F(f), i.e.,

f̂(ω) =
∫

R

eiωxf(x)dx.

Proof. Taking the fractional substantial integral (1.1) with the lower terminal a = −∞, equation (1.1) reduces
to (3.1).

Let us start with the Laplace transform of the function

h(x) =
xν−1

Γ (ν)
e−σx,

i.e.,

1
Γ (ν)

∫ ∞

0

xν−1e−(σ+s)xdx = (σ + s)−ν , (3.2)

where we use the well-known Laplace transform of the function xν−1

L{xν−1; s} =
∫ ∞

0

xν−1e−sxdx = Γ (ν)s−ν .

It follows from the Dirichlet theorem ([7], p. 564) that the integral (3.2) converges if ν > 0. Taking s = −iω,
where ω is real, we immediately have the Fourier transform of the function

h+(x) =

{
xν−1

Γ (ν) e
−σx, x > 0;

0, x ≤ 0,
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in the form

F(h+(x)) =
∫ ∞

−∞
h+(x)eiωxdx =

1
Γ (ν)

∫ ∞

0

xν−1e−(σ−iω)xdx = (σ − iω)−ν .

Since

Iν
s f(x) =

1
Γ (ν)

∫ x

−∞
(x − τ)ν−1e−σ(x−τ)f(τ)dτ =

xν−1e−σx

Γ (ν)
∗ f(x) = h(x) ∗ f(x),

where the asterisk means the convolution, then we have

F(Iν
s f(x)) = F(h(x) ∗ f(x)) = F(h(x)) · F(f(x)) = (σ − iω)−ν f̂(ω). �

Lemma 3.2. Let ν > 0, f ∈ Cm−1
0 (a,∞) and its m-times derivative be integrable on any finite subinterval of

[a,∞). Denoting that
Dν

s f(x) = Dm
s [Im−ν

s f(x)], (3.3)

where m is the smallest integer that exceeds ν and Dm
s and Im−ν

s are defined by (1.3) and (3.1), respectively.
Then

F(Dν
s f(x)) = (σ − iω)ν f̂(ω).

Proof. Taking the lower terminal a = −∞ and using (2.4), we obtain

Dν
s f(x) = Dm

s [Im−ν
s f(x)] = Im−ν

s [Dm
s f(x)].

Then from Lemma 3.1, there exists

F(Dν
s f(x)) = (σ − iω)ν−mF(Dm

s f(x)) = (σ − iω)ν f̂(ω),

where F(Dm
s f(x)) = (σ − iω)mf̂(ω) can be proven by the mathematical induction. �

In the following, we do the expansions to (1.4) to get the formulas of the coefficients when p = 1, 2, 3, 4, 5;
and we prove that the operators have their respective desired convergent order by the technique of Fourier
transform.

First, taking p = 1 and h be the uniform space stepsize, then from (1.4), we have

κ1,α(ζ) = (1 − ζ

eσh
)α =

∞∑
m=0

e−mσh(−1)m

(
α
m

)
ζm =

∞∑
m=0

g1,α
m ζm,

with the recursively formula

g1,α
0 = 1, g1,α

m = e−σh

(
1 − α + 1

m

)
g1,α

m−1, m ≥ 1, (3.4)

where σ is defined in Definition 1.1.
Similar to the way performed in [4, 5], it is easy to compute

κp,α(ζ) =

(
p∑

i=1

1
i

(
1 − ζ

eσh

)i
)α

=
∞∑

m=0

gp,α
m ζm, p = 1, 2, 3, 4, 5, (3.5)

with g1,α
m given in (3.4); and

gp,α
m = e−σmhlp,α

m , p = 1, 2, 3, 4, 5,

where l1,α
m , l2,α

m , l3,α
m , l4,α

m and l5,α
m are defined by (2.2), (2.4), (2.6), (2.8) and (2.10) in [4], respectively. And it

implies that to get the coefficients gp,α
m , we only need to compute the coefficients lp,α

m .
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Theorem 3.3. (Case p = 1) Let f , Dα+1
s f(x) with α > 0 and their Fourier transforms belong to L1(R), and

denote that

A1,αf(x) =
1
hα

∞∑
m=0

g1,α
m f(x − mh),

where Dα+1
s and g1,α

m is defined by (3.3) and (3.4), respectively. Then

Dα
s f(x) = A1,αf(x) + O(h).

Proof. Using Fourier transform, we obtain

F(A1,αf)(ω) =
1
hα

∞∑
m=0

g1,α
m F (f(x − mh)) (ω)

=
1
hα

∞∑
m=0

g1,α
m

(
eiωh

)m
f̂(ω)

=
1
hα

(
1 − eiωh

eσh

)α

f̂(ω)

= (σ − iω)α

(
1 − e−(σ−iω)h

(σ − iω)h

)α

f̂(ω)

= (σ − iω)α

(
1 − e−z

z

)α

f̂(ω),

with z = (σ − iω)h. It is easy to check that(
1 − e−z

z

)α

= 1 − α

2
z +

3α2 + α

24
z2 − α3 + α2

48
z3 + O(z4).

Therefore, from Lemma 3.2, there exists

F(A1,αf)(ω) = F(Dα
s f) + φ̂(ω),

where φ̂(ω) = (σ − iω)α
(−α

2 z + O(z2)
)
f̂(ω), z = (σ − iω)h. Then

|φ̂(ω)| ≤ c̃ · |(σ − iω)α+1f̂(ω)| · h.

With the condition F [Dα+1
s f(x)] ∈ L1(R), it leads to

|Dα
s f(x) − A1,αf(x)| = |φ(x)| ≤ 1

2π

∫
R

|φ̂(ω)|dx ≤ c||F [Dα+1
s f ](ω)||L1 · h = O(h). �

Theorem 3.4. Let f , Dα+p
s f(x) (p = 2, 3, 4, 5) with α > 0 and their Fourier transforms belong to L1(R), and

denote that

Ap,αf(x) =
1
hα

∞∑
m=0

gp,α
m f(x − mh),

where gp,α
m is defined by (3.5). Then

Dα
s f(x) = Ap,αf(x) + O(hp), p = 2, 3, 4, 5.

Proof. Using the ideas of the proof of Theorem 3.3 and Lemmas 2.3–2.7 of [4], we can similarly prove this
theorem; the details are omitted here. �



384 M. CHEN AND W. DENG

Remark 3.5. Theorems 3.3–3.4 still hold for the fractional substantial integral operators Iα
s ; in fact, comparing

Lemmas 3.1 with 3.2 gives us the intuition.

All the above schemes are applicable to finite domain, say, (a, b), after performing zero extensions to the
functions considered. Let f(x) be the zero extended function from the finite domain (a, b), and satisfy the
requirements of the above corresponding theorems. Taking p = 1, 2, 3, 4, 5 and

Ãp,αf(x) =
1
hα

[ x−a
h ]∑

m=0

gp,α
m f(x − mh), α > 0, (3.6)

with gp,α
m given in (3.5). Then

Dα
s f(x) = Ãp,αf(x) + O(hp), α > 0, (3.7)

where Dα
s is defined by (1.2). Thus the approximation operator of (3.6) can be described as

Ãp,αf(xi) =
1
hα

i∑
m=0

gp,α
m f(xi−m), α > 0,

where the mesh points xi = a + ih, i = 0, . . . , M and h = (b− a)/M is the uniform space stepsize; the fractional
substantial derivative has pth order approximations

Dα
s f(xi) = h−α

i∑
m=0

gp,α
m f(xi−m) + O(hp), α > 0. (3.8)

Similarly, the fractional substantial integral has pth order approximations

Iα
s f(xi) = hα

i∑
m=0

gp,−α
m f(xi−m) + O(hp), α > 0. (3.9)

4. Discretizations of fractional substantial calculus and its convergence;

fractional linear multistep methods

Essentially the results given this section are the generalizations of the ones for fractional calculus provided
in [11] to fractional substantial calculus; some of them are not straightforward, so we restate and prove them.
In particular, comparing with Section 3, by adding some terms at the neighborhood of the boundary of the
fractional substantial calculus, we can relax the regularity requirements of the performed functions but still
preserve the desired convergent order.

For the simplicity of presentation, we take the lower terminal a = 0 (that is not essential, a can be any
given constant but not infinity). Then the fractional substantial integral (1.1) and fractional substantial deriva-
tive (1.2), respectively, reduce to

Iα
s f(x) =

1
Γ (α)

∫ x

0

(x − τ)α−1e−σ(x−τ)f(τ)dτ, (4.1)

and
Dα

s f(x) = Dm
s [Im−α

s f(x)], (4.2)

where m is the smallest integer that exceeds α.
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For σ = 0, the fractional substantial integral (4.1) and fractional substantial derivative (4.2), respectively,
reduce to the Riemann–Liouville fractional integral

Iαf(x) =
1

Γ (α)

∫ x

0

(x − τ)α−1
f(τ)dτ, (4.3)

and Riemann–Liouville fractional derivative [9, 15, 16]

Dαf(x) =
dm

dxm

1
Γ (m − α)

∫ x

0

(x − τ)m−α−1
f(τ)dτ, m − 1 < α < m. (4.4)

Using the homogeneity and the convolution structure of Iα in (4.3):

(Iαf)(x) = xα(Iαf(tx))(1) and Iαf =
1

Γ (α)
tα−1 ∗ f,

Lubich gets the following important property [11](
Eα

h tβ−1
)
(x) = xα+β−1

(
Eα

h/xtβ−1
)

(1); (Eα
h tβ−1)(1) = O(hβ) + O(hp), (4.5)

and

Iα(f ∗g) =
1

Γ (α)
tα−1∗(f ∗g) =

(
1

Γ (α)
tα−1 ∗ f

)
∗g = (Iαf)∗g; Ωα

h (f ∗g) = (Ωα
h f)∗g; Eα

h (f ∗g) = (Eα
h f)∗g,

where

Eα
h = Ωα

h − Iα and Ωα
h f(x) = hα

n∑
j=0

ωα
n−jf(jh), (x = nh),

and ωα
n denotes the convolution quadrature weights. So Lubich obtains the following convolution quadratures

to approximation the Riemann–Liouville fractional integral

Iα
h f(x) = hα

n∑
j=0

ωα
n−jf(jh) + hα

r∑
j=1

ωα
n,jf(jh), (x = nh), α > 0, (4.6)

where ωα
n,j denotes the starting quadrature weights. The added term hα

∑r
j=1 ωα

n,jf(jh) is mainly for keeping
the accuracy when relaxing the requirement of the regularity of f(x).

For Dα
hf(x) or I−α

h f(x) in (4.6) with α > 0, taking D(j)f(0) = 0, j = 0, 1, . . . , m − 1, m − 1 < α < m, then
it yields the convolution structure of Dα in (4.4):

Dαf(x) =
dm

dxm

[
1

Γ (m − α)

∫ x

0

(x − τ)m−α−1
f(τ)dτ

]
=

1
Γ (m − α)

∫ x

0

(x − τ)m−α−1(dmf(τ)/dτm)dτ =
1

Γ (m − α)
xm−α−1 ∗ dmf(x)

dxm
,

and the homogeneity of Dα:

(Dαf)(x) = xm−α(Dαf(tx))(1), m − 1 < α < m.

Therefore, we also obtain following property(
E−α

h tβ−1
)
(x) = x−α+β−1

(
E−α

h/xtβ−1
)

(1), β > m,
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where

E−α
h = Ω−α

h − Dα and Ω−α
h f(x) = h−α

n∑
j=0

ω−α
n−jf(jh), (x = nh).

So similar to the discussions in [11], we can also get the following scheme to approximate the Riemann–
Liouville fractional derivative

Dα
hf(x) = h−α

n∑
j=0

ω−α
n−jf(jh) + h−α

r∑
j=1

ω−α
n,j f(jh), (x = nh), α > 0. (4.7)

Form (4.6) and (4.7), there exists

Iα
h f(x) = hα

n∑
j=0

ωn−jf(jh) + hα
r∑

j=1

ωn,jf(jh), (x = nh), α ∈ R, (4.8)

where α > 0 corresponds to (4.6) (ωn = ωα
n , ωn,j = ωα

n,j) and α < 0 corresponds to (4.7) (ωn = ω−α
n , ωn,j =

ω−α
n,j ).
In this section, we mainly focus on the discretized fractional substantial calculus; for simplicity, the following

notations are used:

Eα
s,h = Ωα

s,h − Iα
s , where Ωα

s,hf(x) = hα
n∑

j=0

κn−jf(jh), (x = nh), α ∈ R, (4.9)

and it is easy to get the following properties for α ∈ R:(
Iα
s [e−σtf(t)]

)
(x) = e−σx (Iα[f(t)]) (x);(

Eα
s,h[e−σtf(t)]

)
(x) = e−σx (Eα

h [f(t)]) (x), (4.10)

and
Iα
s (f ∗ g) = (Iα

s f) ∗ g; Ωα
s,h(f ∗ g) = (Ωα

s,hf) ∗ g; Eα
s,h(f ∗ g) = (Eα

s,hf) ∗ g, (4.11)

where α > 0 corresponds to fractional substantial integral and α < 0 corresponds to fractional substantial
derivative.

So we consider the following scheme to approximate the fractional substantial integral (4.1) or the fractional
substantial derivative (4.2)

Iα
s,hf(x) =hα

n∑
j=0

κp,α
n−jf(jh) + hα

r∑
j=1

κn,jf(jh), (x = nh), α ∈ R, (4.12)

where
κp,α

j = e−jσhωj , ωj is defined by (4.8), (4.13)

and κp,α
j (being simply denoted as κj hereafter) and κn,j also denote the convolution quadrature weights and

the starting quadrature weights, respectively.
Given a sequence κ = (κn)∞0 (or ω = (ωn)∞0 ) and take [11]

κ(ζ) =
∞∑

n=0

κnζn,
(
or ω(ζ) =

∞∑
n=0

ωnζn
)
,

to be its generating power series.
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Definition 4.1. A convolution quadrature κ is stable (for Iα
s ) if

κn = O(nα−1).

Definition 4.2. A convolution quadrature κ is consistent of order p (for Iα
s ) if

hακ
(
eσhe−h

)
= 1 + O(hp).

Definition 4.3. A convolution quadrature κ is convergent of order p (to Iα
s ) if

(Eα
s,h[e−σttβ−1])(1) = O(hβ) + O(hp) for all β ∈ C, β 
= 0,−1,−2, . . . (4.14)

Lemma 4.4. If (Eα
s,h[e−σttk−1])(1) = O(hk) + O(hp) for k = 1, 2, 3, . . . , then κ is consistent of order p.

Moreover, κ is consistent of order p if and only if ω is consistent of order p.

Proof. According to (4.10), we have

(Eα
s,h[e−σttk−1])(1) = e−σ(Eα

h tk−1)(1),

and it leads to
(Eα

h tk−1)(1) = O(hk) + O(hp), for k = 1, 2, 3, . . .

Then from Lemma 3.1 of [11], we obtain

hαω(e−h) = 1 + O(hp), with ω(ζ) =
∞∑

n=0

ωnζn.

Using (4.13), there exists

κ(ζ) =
∞∑

n=0

κnζn =
∞∑

n=0

e−nσhωnζn = ω

(
ζ

eσh

)
· (4.15)

Therefore
hακ

(
eσhe−h

)
= hαω(e−h) = 1 + O(hp),

and it means that κ is consistent of order p if and only if ω is consistent of order p. �

Using (3.6) of [11] and (4.15), we get

κ(ζ) = ω

(
ζ

eσh

)
=
(

1 − ζ

eσh

)−α [
c0 + c1

(
1 − ζ

eσh

)
+ c2

(
1 − ζ

eσh

)2

+ . . .

+ cN−1

(
1 − ζ

eσh

)N−1

+
(

1 − ζ

eσh

)N

r̃

(
ζ

eσh

)]
, (4.16)

and

κ(ζ) = ω

(
ζ

eσh

)
=
(

1 − ζ

eσh

)−α

ω̃

(
ζ

eσh

)
·

Therefore, we can characterize consistency in terms of the coefficients ci.

Lemma 4.5. Let
∞∑

i=0

γi(1 − ζ)i =
(
− ln ζ

1−ζ

)−α

. Then κ is consistent of order p if and only if the coefficients ci

in (4.16) satisfy
ci = γi for i = 0, 1, . . . , p − 1.
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Proof. From Lemma 4.4, it implies that κ is consistent of order p if and only if ω is consistent of order p. Thus,
using Lemma 3.2 of [11], the desired result is obtained. �

Whether the method κ is stable depends on the remainder in the expansion (4.16), and (4.16) can be
rewritten as

κ(ζ) =
(

1 − ζ

eσh

)−α
[
c0 + c1

(
1 − ζ

eσh

)
+ . . . + cN−1

(
1 − ζ

eσh

)N−1
]

+
(

1 − ζ

eσh

)N

r

(
ζ

eσh

)
, (4.17)

where r(ζ) = (1 − ζ)−α
r̃ (ζ).

Lemma 4.6. κ is stable if and only if ω is stable; and ω is stable if and only if the coefficients rn of r(ζ)
in (4.17) satisfy

rn = O(nα−1).

Proof. By Lemma 3.3 of [11], we have ω is stable if and only if rn = O(nα−1). From (4.13) and e−jσh ∈
[e−|σ| x, e|σ| x], j = 0, 1, . . . , n, x = nh, it implies that κ is stable if and only if ω is stable. �

Lemma 4.7. Convergence implies stability. Moreover, κ is convergent of order p if and only if ω is convergent
of order p.

Proof. According to (4.10), we have

(Eα
s,h[e−σttβ−1])(1) = e−σ(Eα

h tβ−1)(1),

and it implies that κ is convergent of order p if and only if ω is convergent of order p. Hence, according to
Lemma 3.4 of [11], the desired result is got. �

Lemma 4.8. Let α, β ∈ C, β 
= 0,−1,−2, · · · . If κ is stable, then the convolution quadrature error of e−σttβ−1

has the asymptotic expansion as

(Eα
s,h[e−σttβ−1])(1) = e−σ

(
e0 + e1h + · · · + eN−1h

N−1 + O(hN ) + O(hβ)
)
,

and the coefficients ej = ej(α, β, c0, . . . , cj) depend analytically on α, β and the coefficients c0, . . . , cj of (4.17).

Proof. From Lemma 4.6, κ is stable if and only if ω is stable. According to (4.10) and Lemma 3.5 of [11], we
get

(Eα
s,h[e−σttβ−1])(1) = e−σ(Eα

h tβ−1)(1)

= e−σ
(
e0 + e1h + · · · + eN−1h

N−1 + O(hN ) + O(hβ)
)
. �

Lemma 4.9. Let �(α) > 0. If (Eα
s,h[e−σttp−1])(1) = O(hp), then (Eα

s,h[e−σttβ−1])(1) = O(hp) for all �(β) > p.

Proof. According to (4.10), it leads to

(Eα
s,h[eσttp−1])(1) = e−σ(Eα

h tp−1)(1) = O(hp).

Then form Lemma 3.6 of [11], we obtain (Eα
h tβ−1)(1) = O(hp) for all �(β) > p. Using (4.10) again, there

exists (Eα
s,h[e−σttβ−1])(1) = O(hp) for all �(β) > p. �
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Lemma 4.10. Let �(α) > 0. There exist γ̃0, γ̃1, . . . (independent of κ) such that the following holds for stable κ:

(Eα
s,h[e−σttq−1])(1) = O(hq), for q = 1, 2, . . . , p,

if and only if ci of (4.17) satisfy
ci = γ̃i, for i = 0, 1, . . . , p − 1.

Proof. From Lemma 4.6, κ is stable if and only if ω is stable. From (4.10) and Lemma 3.7 of [11], there eixsts

(Eα
s,h[e−σttq−1])(1) = e−σ(Eα

h tq−1)(1) = O(hq),

if and only if
(Eα

h tq−1)(1) = O(hq), for q = 1, 2, . . . , p,

if and only if the coefficients ci of (4.17) satisfy

ci = γ̃i, for i = 0, 1, . . . , p − 1. �

Lemma 4.11. Let α ∈ R. κ is convergent of order p, if it is stable and consistent of order p.

Proof. According to Lemmas 4.6 and 4.4, κ is stable and consistent of order p if and only if ω is stable and
consistent of order p. Then from Lemma 3.8 of [11], ω is convergent of order p, and it leads to that κ is also
convergent of order p by Lemmas 4.7. �

Theorem 4.12. κ is stable and consistent of order p if and only if it is convergent of order p.

Proof. From lemmas 4.4, 4.7 and 4.11, we obtain it. �

Theorem 4.13. Let κ satisfy (4.14), and f(x) = xβ−1g(x), where β 
= 0,−1,−2, . . ., for α ≥ 0 and β > �−α

for α < 0; and g(x) is sufficiently differentiable. Then, there exists a starting quadrature κn,j, such that the
approximation Iα

s,hf given by (4.12) satisfies

Iα
s,hf(x) − Iα

s f(x) = O(hp).

Proof. A suitable starting quadrature can be chosen by putting

Iα
s,h[e−σttq+β−1](x) − Iα

s [e−σttq+β−1](x) = 0, q = 0, 1, . . . , m,

where m satisfies �(m + β − 1) ≤ p < �(m + β); then the following holds

hα
m+1∑
j=1

κn,je−σjh(jh)q+β−1 + (Eα
s,h[e−σttq+β−1])(1) = 0, nh = 1. (4.18)

From (4.14) and (4.18), we have

m+1∑
j=1

κn,je−σjhjq+β−1 = O(h1−α) + O(hp−α−q−β+1), q = 0, 1, . . . , m. (4.19)

Using (4.18) again, we have

m+1∑
j=1

κn,je−σjhjq+β−1 =
Γ (q + β)

Γ (α + q + β)
e−σnhnq+α+β−1 −

n∑
j=1

κn−je−σjhjq+β−1,
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i.e., ⎡⎢⎢⎢⎣
e−σh1β−1 e−2σh2β−1 · · · e−(m+1)σh(m + 1)β−1

e−σh1β e−2σh2β · · · e−(m+1)σh(m + 1)β

...
... · · · ...

e−σh1β+m−1 e−2σh2β+m−1 · · · e−(m+1)σh(m + 1)β+m−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

κn,1

κn,2

...
κn,m+1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
F0

F1

...
Fm

⎤⎥⎥⎦ , (4.20)

where Fq = Γ (q+β)
Γ (α+q+β)e

−σnhnq+α+β−1 −
n∑

j=1

κn−je−σjhjq+β−1; this gives a Vandermonde type system for κn,j,

and it becomes the Vandermonde system when σ = 0.
Let f(x) = xβ−1g(x) = e−σxxβ−1h(x), where h(x) = eσxg(x), and g(x) is sufficiently differentiable. From

Lemma 2.7, there exists

f(x) =
m∑

q=0

D
(q+β−1)
s f(0)
Γ (q + β)

xq+β−1e−σx +
1

Γ (m + β)

[(
tm+β−1e−σt

) ∗ D(m+β)
s f

]
(x)

:=A(x) + B(x). (4.21)

From (4.5) and (4.10), we obtain(
Eα

s,h[e−σttm+β−1]
)
(x) = e−σx

(
Eα

h [tm+β−1]
)
(x) = e−σxxα+m+β−1

(
Eα

h/x[tm+β−1]
)

(1)

= O(e−σxxα+m+β−1−php).

Then utilizing (4.11) and the boundedness of D
(m+β)
s , we have(

Eα
s,h

[(
tm+β−1e−σt

) ∗ D(m+β)
s f

])
(x) =

([
Eα

s,h

(
tm+β−1e−σt

)] ∗ D(m+β)
s f

)
(x)

= O(e−σxxα+m+β−php). (4.22)

According to (4.18), (4.19), (4.21), and (4.22), there exists

Iα
s,hf(x) − Iα

s f(x) = Eα
s,hf(x) − hα

m+1∑
j=1

κn,jf(jh)

= Eα
s,hB(x) − hα

m+1∑
j=1

κn,jB(jh)

= O (
e−σxxα+m+β−php

)
+ O (

hα+m+β−1
)m+1∑

j=1

κn,je−σjhjm+β−1

= O(hp) uniformly for bounded x. �

Remark 4.14. When computing the fractional substantial derivative or integral of a given function f(x) defined
in [a, +∞), we prefer the first method (3.8) if f(x) itself and its several derivatives (from 1 to p − 1) equal to
zero at the point a, otherwise we choose the second one (4.12).

5. Numerical results

We use two numerical examples to confirm the theoretical results given in the above sections, including
the fractional substantial derivatives and integrals. The first example mainly verifies the truncation errors; the
second one primarily focuses on illustrating that the starting quadrature numerically works very well for keeping
the high order accuracy when the performed function becomes less regular. The third example shows that the
shifted scheme can effectively solve a two-point boundary value problem. And the l∞ norm is used to measure
the numerical errors.
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Table 2. The maximum errors and convergence orders for (3.8), when p = 5, σ = 1/2.

h α = −0.5 Rate α = 0.5 Rate α = 1.5 Rate
1/10 3.7956e-005 2.0214e-004 3.7954e-003
1/20 1.3109e-006 4.8557 6.9814e-006 4.8557 1.2933e-004 4.8751
1/40 4.3065e-008 4.9279 2.2935e-007 4.9279 4.3193e-006 4.9041
1/80 1.3798e-009 4.9639 7.3488e-009 4.9639 1.4014e-007 4.9459

Table 3. The maximum errors and convergence orders for (4.12) and (3.8), respectively, when
p = 5, σ = 1/2, β = 1.6, r = 4.

Numerical scheme (4.12) Numerical scheme (3.8)
h α = −0.5 Rate α = 0.5 Rate α = −0.5 Rate α = 0.5 Rate

1/10 2.8710e-05 3.7035e-04 1.4508e-02 4.3208e-01
1/20 1.0424e-06 4.78 1.2791e-05 4.86 6.9407e-03 1.06 4.1336e-01 0.064
1/40 3.5111e-08 4.90 4.2020e-07 4.93 3.2787e-03 1.08 3.9053e-01 0.082
1/80 1.1391e-09 4.95 1.3464e-08 4.96 1.5392e-03 1.09 3.6666e-01 0.091
1/160 3.6272e-11 4.97 4.2604e-10 4.98 7.2029e-04 1.10 3.4318e-01 0.096

Example 5.1. To numerically verify the truncation error given in Theorem 3.4 in a bounded domain, we utilize
the approximation (3.8) with p = 5 to compute Dα

s f(x), where f(x) = e−σxx5+α with x ∈ (0, 1) and σ is taken
as 1

2 ; and by comparing with the analytical solution Γ (6+α)
Γ (6) x5e−σx, we get the numerical errors and convergence

orders in Table 2.

Table 2 numerically verifies Theorem 3.4, and shows that the truncation errors are O(h5).

Example 5.2. To numerically confirm the result given in Section 4 that the starting quadrature can keep the
accuracy when the performed function is not sufficiently regular, we utilize the approximation (4.12) and (3.8)
(both with p = 5), respectively, to simulate Dα

s f(x), where f(x) = e−σx(x5+α + x0.6) with x ∈ (0, 1) and σ

is taken as 1
2 ; and by comparing with the analytical solution Γ (6+α)

Γ (6) x5e−σx + Γ (1.6)
Γ (1.6−α)x

0.6−αe−σx, we get the
numerical errors and convergence orders in Table 3.

Table 3 numerically verifies Theorem 4.13, i.e., when the performed functions are less regular, the
scheme (4.12) still keeps the high convergence order but the scheme (3.8) fails.

Example 5.3. By shifting (3.8), we simulate the following problem

−Dα
s y(x) + y(x) = 0, α ∈ (1, 2), (5.1)

on a finite domain 0 < x < 1; and take σ = 1
2 , h = 1

50 , and the boundary conditions y(0) = y(1) = 1. Here, the
shifted difference operator [19] is defined by

Dα
s,hy(xi) =

1
hα

i+1∑
k=0

gp,α
k y(xi−k+1) with p = 1.

Figure 1 shows the simulation results, which confirm the effectiveness of the scheme. Besides this, for more
complex simulations see [6].

6. Conclusions

When studying the anomalous diffusion, CTRW is the most widely used model. However, if the boundary
conditions and external fields are involved, the equations are more convenient to include these quantities.
Assuming the probability density functions (PDFs) of the waiting time and jump lengths in CTRW model
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Figure 1. Simulations to (5.1).

are independent, from CTRW model we can derive the corresponding fractional partial differential equations
(PDEs). When extending the concept of CTRW to position-velocity space, the derived PDEs usually have a
fractional substantial derivative/integral [8]. Nowadays, it seems that there are less mathematical works for
these kind of operators. This paper detailedly discusses the properties of fractional substantial calculus, and
provides a series of high order discretization schemes, which can be used to effectively solve PDEs with fractional
substantial calculus [6].

Appendixes

We provide the pseudo codes used in this paper. According to Remark 4.14, one can choose Algorithm 1 or 2
to compute fractional substantial derivative/integral of a given function.

Algorithm 1. Computing fractional substantial derivative or integral of a given function f(x) defined
in [a, +∞).
1: Determine the stepsize h and expected convergence order p
2: Create the grid points xm = a + mh and evaluate f(xm), where m = 1, · · · , (x − a)/h
3: Compute the coefficients: gp,α

m given in (A.1)

4: Compute fractional substantial derivative (α < 0) or integral (α > 0): Iα
s,hf(x) = hα ∑((x−a)/h)

m=0 gp,−α
m f(x((x−a)/h)−m)

Algorithm 2. Computing fractional substantial derivative or integral of a given function f(x) defined
in [a, +∞).
1: Determine the stepsize h and expected convergence order p
2: Create the grid points xm = a + mh and evaluate f(xm), where m = 1, · · · , (x − a)/h
3: Compute the coefficients: κp,α

n−j = gp,−α
m , and κn,j by solving (4.20)

4: Compute fractional substantial derivative (α < 0) or integral (α > 0): Iα
s,hf(x) = hα

∑(x−a)/h
m=0 κp,α

(x−a)/h−m
f(mh) +

hα
∑r

m=1 κ(x−a)/h,mf(mh)
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The coefficients used in Algorithms 1–2 [4]:

gp,α
m = e−σmhlp,α

m , p = 1, 2, 3, 4, 5, (A.1)

where

l1,α
0 = 1, l1,α

m =
(

1 − α + 1
m

)
l1,α
m−1, m ≥ 1,

l2,α
j =

(
3
2

)α j∑
m=0

3−m l1,α
m l1,α

j−m,

l3,α
k =

(
11
6

)α k∑
j=0

j∑
m=0

μ3
m μ3

j−m l1,α
m l1,α

j−m l1,α
k−j ,

l4,α
n =

(
25
12

)α n∑
k=0

k∑
j=0

j∑
m=0

ν4
n−kμ4

m μ4
j−m l1,α

m l1,α
j−m l1,α

k−j l1,α
n−k,

l5,α
q =

(
137
60

)α q∑
n=0

n∑
k=0

k∑
j=0

j∑
m=0

ν5
q−nν5

n−kμ5
m μ5

j−m l1,α
m l1,α

j−m l1,α
k−j l1,α

n−k l1,α
q−n

with

μ3 =
4

7 +
√

39 i
, μ3 =

4
7 −√

39 i
, i =

√−1, ν4 =
3a

−b − (
3
√

Y1 − 3
√−Y2

) ,

μ4 =
3a

−b + 1
2

(
3
√

Y1 − 3
√−Y2

)
+

√
3

2

(
3
√

Y1 + 3
√−Y2

)
i
, μ4 =

3a

−b + 1
2

(
3
√

Y1 − 3
√−Y2

)− √
3

2

(
3
√

Y1 + 3
√−Y2

)
i
,

ν5 =
4

−(b + M) +
√

(b + M)2 − 16(y + N
M )

, ν5 =
4

−(b − M) +
√

(b − M)2 − 16(y − N
M )

,

μ5 =
4

−(b + M) −
√

(b + M)2 − 16(y + N
M )

, μ5 =
4

−(b − M) −
√

(b − M)2 − 16(y − N
M )

,

where

a = 1, b = −21
4

, c =
137
12

, d = −163
12

, e =
137
12

, ã = 1, b̃ = −137
24

, c̃ =
1231
192

, d̃ =
4259
1536

,

A = b̃2 − 3ãc̃, B = b̃c̃ − 9ãd̃, C = c̃2 − 3b̃d̃, Δ = B2 − 4AC < 0, T =
2Ab̃ − 3ãB

2A
3
2

, θ = arccos(T ),

y =
−b̃ − 2A

1
2 cos θ

3

3a
, M =

√
8y + b2 − 4c, N =

√
by − d.
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